diff --git a/theories/fin_map_dom.v b/theories/fin_map_dom.v
index c955877ec89249d84865e842d6bf18a7575faf15..d46161ad4702b70cebe632f37134c2892a988304 100644
--- a/theories/fin_map_dom.v
+++ b/theories/fin_map_dom.v
@@ -182,7 +182,7 @@ Proof.
   intros.
   exists (filter (λ '(k,x), k ∈ X1) m), (filter (λ '(k,x), k ∉ X1) m).
   assert (filter (λ '(k, _), k ∈ X1) m ##ₘ filter (λ '(k, _), k ∉ X1) m).
-  { apply map_disjoint_filter. }
+  { apply map_disjoint_filter_complement. }
   split_and!; [|done| |].
   - apply map_eq; intros i. apply option_eq; intros x.
     rewrite lookup_union_Some, !map_filter_lookup_Some by done.
diff --git a/theories/fin_maps.v b/theories/fin_maps.v
index 2b568bfca9a603ed28df8c8a92d8789dc6dffa2c..4bfbcdafaa955124aa1ab7bd7b09adfcf0b2b9d7 100644
--- a/theories/fin_maps.v
+++ b/theories/fin_maps.v
@@ -1868,7 +1868,9 @@ Proof.
 Qed.
 Lemma map_disjoint_delete_r {A} (m1 m2 : M A) i : m1 ##ₘ m2 → m1 ##ₘ delete i m2.
 Proof. symmetry. by apply map_disjoint_delete_l. Qed.
-Lemma map_disjoint_filter {A} (P : K * A → Prop) `{!∀ x, Decision (P x)} (m : M A) :
+
+Lemma map_disjoint_filter_complement {A} (P : K * A → Prop)
+    `{!∀ x, Decision (P x)} (m : M A) :
   filter P m ##ₘ filter (λ v, ¬ P v) m.
 Proof.
   apply map_disjoint_spec. intros i x y.
@@ -2184,11 +2186,12 @@ Proof.
   naive_solver eauto using map_Forall_union_1_1,
     map_Forall_union_1_2, map_Forall_union_2.
 Qed.
-Lemma map_union_filter {A} (P : K * A → Prop) `{!∀ x, Decision (P x)} (m : M A) :
+Lemma map_filter_union_complement {A} (P : K * A → Prop) `{!∀ x, Decision (P x)} (m : M A) :
   filter P m ∪ filter (λ v, ¬ P v) m = m.
 Proof.
   apply map_eq; intros i. apply option_eq; intros x.
-  rewrite lookup_union_Some, !map_filter_lookup_Some by apply map_disjoint_filter.
+  rewrite lookup_union_Some, !map_filter_lookup_Some
+    by auto using map_disjoint_filter_complement.
   destruct (decide (P (i,x))); naive_solver.
 Qed.
 Lemma map_fmap_union {A B} (f : A → B) (m1 m2 : M A) :