diff --git a/theories/co_pset.v b/theories/co_pset.v
new file mode 100644
index 0000000000000000000000000000000000000000..021c7218228527af6a6256bfefae8f402ef58790
--- /dev/null
+++ b/theories/co_pset.v
@@ -0,0 +1,270 @@
+(* Copyright (c) 2012-2015, Robbert Krebbers. *)
+(* This file is distributed under the terms of the BSD license. *)
+(** This files implements an efficient implementation of finite/cofinite sets
+of positive binary naturals [positive]. *)
+Require Export prelude.collections.
+Require Import prelude.pmap prelude.mapset.
+Local Open Scope positive_scope.
+
+(** * The tree data structure *)
+Inductive coPset_raw :=
+  | coPLeaf : bool → coPset_raw
+  | coPNode : bool → coPset_raw → coPset_raw → coPset_raw.
+
+Instance coPset_raw_eq_dec (t1 t2 : coPset_raw) : Decision (t1 = t2).
+Proof. solve_decision. Defined.
+
+Fixpoint coPset_wf (t : coPset_raw) : bool :=
+  match t with
+  | coPLeaf _ => true
+  | coPNode true (coPLeaf true) (coPLeaf true) => false
+  | coPNode false (coPLeaf false) (coPLeaf false) => false
+  | coPNode b l r => coPset_wf l && coPset_wf r
+  end.
+Arguments coPset_wf !_ / : simpl nomatch.
+
+Lemma coPNode_wf_l b l r : coPset_wf (coPNode b l r) → coPset_wf l.
+Proof. destruct b, l as [[]|],r as [[]|]; simpl; rewrite ?andb_True; tauto. Qed.
+Lemma coPNode_wf_r b l r : coPset_wf (coPNode b l r) → coPset_wf r.
+Proof. destruct b, l as [[]|],r as [[]|]; simpl; rewrite ?andb_True; tauto. Qed.
+Local Hint Immediate coPNode_wf_l coPNode_wf_r.
+
+Definition coPNode' (b : bool) (l r : coPset_raw) : coPset_raw :=
+  match b, l, r with
+  | true, coPLeaf true, coPLeaf true => coPLeaf true
+  | false, coPLeaf false, coPLeaf false => coPLeaf false
+  | _, _, _ => coPNode b l r
+  end.
+Arguments coPNode' _ _ _ : simpl never.
+Lemma coPNode_wf b l r : coPset_wf l → coPset_wf r → coPset_wf (coPNode' b l r).
+Proof. destruct b, l as [[]|], r as [[]|]; simpl; auto. Qed.
+Hint Resolve coPNode_wf.
+
+Fixpoint coPset_elem_of_raw (p : positive) (t : coPset_raw) {struct t} : bool :=
+  match t, p with
+  | coPLeaf b, _ => b
+  | coPNode b l r, 1 => b
+  | coPNode _ l _, p~0 => coPset_elem_of_raw p l
+  | coPNode _ _ r, p~1 => coPset_elem_of_raw p r
+  end.
+Local Notation e_of := coPset_elem_of_raw.
+Arguments coPset_elem_of_raw _ !_ / : simpl nomatch.
+Lemma coPset_elem_of_coPNode' b l r p :
+  e_of p (coPNode' b l r) = e_of p (coPNode b l r).
+Proof. by destruct p, b, l as [[]|], r as [[]|]. Qed.
+
+Lemma coPLeaf_wf t b : (∀ p, e_of p t = b) → coPset_wf t → t = coPLeaf b.
+Proof.
+  induction t as [b'|b' l IHl r IHr]; intros Ht ?; [f_equal; apply (Ht 1)|].
+  assert (b' = b) by (apply (Ht 1)); subst.
+  assert (l = coPLeaf b) as -> by (apply IHl; try apply (λ p, Ht (p~0)); eauto).
+  assert (r = coPLeaf b) as -> by (apply IHr; try apply (λ p, Ht (p~1)); eauto).
+  by destruct b.
+Qed.
+Lemma coPset_eq t1 t2 :
+  (∀ p, e_of p t1 = e_of p t2) → coPset_wf t1 → coPset_wf t2 → t1 = t2.
+Proof.
+  revert t2.
+  induction t1 as [b1|b1 l1 IHl r1 IHr]; intros [b2|b2 l2 r2] Ht ??; simpl in *.
+  * f_equal; apply (Ht 1).
+  * by discriminate (coPLeaf_wf (coPNode b2 l2 r2) b1).
+  * by discriminate (coPLeaf_wf (coPNode b1 l1 r1) b2).
+  * f_equal; [apply (Ht 1)| |].
+    + apply IHl; try apply (λ x, Ht (x~0)); eauto.
+    + apply IHr; try apply (λ x, Ht (x~1)); eauto.
+Qed.
+
+Fixpoint coPset_singleton_raw (p : positive) : coPset_raw :=
+  match p with
+  | 1 => coPNode true (coPLeaf false) (coPLeaf false)
+  | p~0 => coPNode' false (coPset_singleton_raw p) (coPLeaf false)
+  | p~1 => coPNode' false (coPLeaf false) (coPset_singleton_raw p)
+  end.
+Instance coPset_union_raw : Union coPset_raw :=
+  fix go t1 t2 := let _ : Union _ := @go in
+  match t1, t2 with
+  | coPLeaf false, coPLeaf false => coPLeaf false
+  | _, coPLeaf true => coPLeaf true
+  | coPLeaf true, _ => coPLeaf true
+  | coPNode b l r, coPLeaf false => coPNode' b l r
+  | coPLeaf false, coPNode b l r => coPNode' b l r
+  | coPNode b1 l1 r1, coPNode b2 l2 r2 => coPNode' (b1 || b2) (l1 ∪ l2) (r1 ∪ r2)
+  end.
+Local Arguments union _ _!_ !_ /.
+Instance coPset_intersection_raw : Intersection coPset_raw :=
+  fix go t1 t2 := let _ : Intersection _ := @go in
+  match t1, t2 with
+  | coPLeaf true, coPLeaf true => coPLeaf true
+  | _, coPLeaf false => coPLeaf false
+  | coPLeaf false, _ => coPLeaf false
+  | coPNode b l r, coPLeaf true => coPNode' b l r
+  | coPLeaf true, coPNode b l r => coPNode' b l r
+  | coPNode b1 l1 r1, coPNode b2 l2 r2 => coPNode' (b1 && b2) (l1 ∩ l2) (r1 ∩ r2)
+  end.
+Local Arguments intersection _ _!_ !_ /.
+Fixpoint coPset_opp_raw (t : coPset_raw) : coPset_raw :=
+  match t with
+  | coPLeaf b => coPLeaf (negb b)
+  | coPNode b l r => coPNode' (negb b) (coPset_opp_raw l) (coPset_opp_raw r)
+  end.
+
+Lemma coPset_singleton_wf p : coPset_wf (coPset_singleton_raw p).
+Proof. induction p; simpl; eauto. Qed.
+Lemma coPset_union_wf t1 t2 : coPset_wf t1 → coPset_wf t2 → coPset_wf (t1 ∪ t2).
+Proof. revert t2; induction t1 as [[]|[]]; intros [[]|[] ??]; simpl; eauto. Qed.
+Lemma coPset_intersection_wf t1 t2 :
+  coPset_wf t1 → coPset_wf t2 → coPset_wf (t1 ∩ t2).
+Proof. revert t2; induction t1 as [[]|[]]; intros [[]|[] ??]; simpl; eauto. Qed.
+Lemma coPset_opp_wf t : coPset_wf (coPset_opp_raw t).
+Proof. induction t as [[]|[]]; simpl; eauto. Qed.
+Lemma elem_of_coPset_singleton p q : e_of p (coPset_singleton_raw q) ↔ p = q.
+Proof.
+  split; [|by intros <-; induction p; simpl; rewrite ?coPset_elem_of_coPNode'].
+  by revert q; induction p; intros [?|?|]; simpl;
+    rewrite ?coPset_elem_of_coPNode'; intros; f_equal'; auto.
+Qed.
+Lemma elem_of_coPset_union t1 t2 p : e_of p (t1 ∪ t2) = e_of p t1 || e_of p t2.
+Proof.
+  by revert t2 p; induction t1 as [[]|[]]; intros [[]|[] ??] [?|?|]; simpl;
+    rewrite ?coPset_elem_of_coPNode'; simpl;
+    rewrite ?orb_true_l, ?orb_false_l, ?orb_true_r, ?orb_false_r.
+Qed.
+Lemma elem_of_coPset_intersection t1 t2 p :
+  e_of p (t1 ∩ t2) = e_of p t1 && e_of p t2.
+Proof.
+  by revert t2 p; induction t1 as [[]|[]]; intros [[]|[] ??] [?|?|]; simpl;
+    rewrite ?coPset_elem_of_coPNode'; simpl;
+    rewrite ?andb_true_l, ?andb_false_l, ?andb_true_r, ?andb_false_r.
+Qed.
+Lemma elem_of_coPset_opp t p : e_of p (coPset_opp_raw t) = negb (e_of p t).
+Proof.
+  by revert p; induction t as [[]|[]]; intros [?|?|]; simpl;
+    rewrite ?coPset_elem_of_coPNode'; simpl.
+Qed.
+
+(** * Packed together + set operations *)
+Definition coPset := { t | coPset_wf t }.
+
+Instance coPset_singleton : Singleton positive coPset := λ p,
+  coPset_singleton_raw p ↾ coPset_singleton_wf _.
+Instance coPset_elem_of : ElemOf positive coPset := λ p X, e_of p (`X).
+Instance coPset_empty : Empty coPset := coPLeaf false ↾ I.
+Definition coPset_all : coPset := coPLeaf true ↾ I.
+Instance coPset_union : Union coPset := λ X Y,
+  (`X ∪ `Y) ↾ coPset_union_wf _ _ (proj2_sig X) (proj2_sig Y).
+Instance coPset_intersection : Intersection coPset := λ X Y,
+  (`X ∩ `Y) ↾ coPset_intersection_wf _ _ (proj2_sig X) (proj2_sig Y).
+Instance coPset_difference : Difference coPset := λ X Y,
+  (`X ∩ coPset_opp_raw (`Y)) ↾
+    coPset_intersection_wf _ _ (proj2_sig X) (coPset_opp_wf _).
+
+Instance coPset_elem_of_dec (p : positive) (X : coPset) : Decision (p ∈ X) := _.
+Instance coPset_collection : Collection positive coPset.
+Proof.
+  split; [split| |].
+  * by intros ??.
+  * intros p q. apply elem_of_coPset_singleton.
+  * intros X Y p; unfold elem_of, coPset_elem_of, coPset_union; simpl.
+    by rewrite elem_of_coPset_union, orb_True.
+  * intros X Y p; unfold elem_of, coPset_elem_of, coPset_intersection; simpl.
+    by rewrite elem_of_coPset_intersection, andb_True.
+  * intros X Y p; unfold elem_of, coPset_elem_of, coPset_difference; simpl.
+    by rewrite elem_of_coPset_intersection,
+      elem_of_coPset_opp, andb_True, negb_True.
+Qed.
+Instance coPset_leibniz : LeibnizEquiv coPset.
+Proof.
+  intros X Y; split; [rewrite elem_of_equiv; intros HXY|by intros ->].
+  apply (sig_eq_pi _), coPset_eq; try apply proj2_sig.
+  intros p; apply eq_bool_prop_intro, (HXY p).
+Qed.
+
+(** Infinite sets *)
+Fixpoint coPset_infinite_raw (t : coPset_raw) : bool :=
+  match t with
+  | coPLeaf b => b
+  | coPNode b l r => coPset_infinite_raw l || coPset_infinite_raw r
+  end.
+Definition coPset_infinite (t : coPset) : bool := coPset_infinite_raw (`t).
+Lemma coPset_infinite_coPNode b l r :
+  coPset_infinite_raw (coPNode' b l r) = coPset_infinite_raw (coPNode b l r).
+Proof. by destruct b, l as [[]|], r as [[]|]. Qed.
+
+(** Splitting of infinite sets *)
+Fixpoint coPset_l_raw (t : coPset_raw) : coPset_raw :=
+  match t with
+  | coPLeaf false => coPLeaf false
+  | coPLeaf true => coPNode true (coPLeaf true) (coPLeaf false)
+  | coPNode b l r => coPNode' b (coPset_l_raw l) (coPset_l_raw r)
+  end.
+Fixpoint coPset_r_raw (t : coPset_raw) : coPset_raw :=
+  match t with
+  | coPLeaf false => coPLeaf false
+  | coPLeaf true => coPNode false (coPLeaf false) (coPLeaf true)
+  | coPNode b l r => coPNode' false (coPset_r_raw l) (coPset_r_raw r)
+  end.
+
+Lemma coPset_l_wf t : coPset_wf (coPset_l_raw t).
+Proof. induction t as [[]|]; simpl; auto. Qed.
+Lemma coPset_r_wf t : coPset_wf (coPset_r_raw t).
+Proof. induction t as [[]|]; simpl; auto. Qed.
+Definition coPset_l (X : coPset) : coPset := coPset_l_raw (`X) ↾ coPset_l_wf _.
+Definition coPset_r (X : coPset) : coPset := coPset_r_raw (`X) ↾ coPset_r_wf _.
+
+Lemma coPset_lr_disjoint X : coPset_l X ∩ coPset_r X = ∅.
+Proof.
+  apply elem_of_equiv_empty_L; intros p; apply Is_true_false.
+  destruct X as [t Ht]; simpl; clear Ht; rewrite elem_of_coPset_intersection.
+  revert p; induction t as [[]|[]]; intros [?|?|]; simpl;
+    rewrite ?coPset_elem_of_coPNode'; simpl;
+    rewrite ?orb_true_l, ?orb_false_l, ?orb_true_r, ?orb_false_r; auto.
+Qed.
+Lemma coPset_lr_union X : coPset_l X ∪ coPset_r X = X.
+Proof.
+  apply elem_of_equiv_L; intros p; apply eq_bool_prop_elim.
+  destruct X as [t Ht]; simpl; clear Ht; rewrite elem_of_coPset_union.
+  revert p; induction t as [[]|[]]; intros [?|?|]; simpl;
+    rewrite ?coPset_elem_of_coPNode'; simpl;
+    rewrite ?orb_true_l, ?orb_false_l, ?orb_true_r, ?orb_false_r; auto.
+Qed.
+Lemma coPset_l_infinite X : coPset_infinite X → coPset_infinite (coPset_l X).
+Proof.
+  destruct X as [t Ht]; unfold coPset_infinite; simpl; clear Ht.
+  induction t as [[]|]; simpl;
+    rewrite ?coPset_infinite_coPNode; simpl; rewrite ?orb_True; tauto.
+Qed.
+Lemma coPset_r_infinite X : coPset_infinite X → coPset_infinite (coPset_r X).
+Proof.
+  destruct X as [t Ht]; unfold coPset_infinite; simpl; clear Ht.
+  induction t as [[]|]; simpl;
+    rewrite ?coPset_infinite_coPNode; simpl; rewrite ?orb_True; tauto.
+Qed.
+
+(** Conversion from psets *)
+Fixpoint to_coPset_raw (t : Pmap_raw ()) : coPset_raw :=
+  match t with
+  | PLeaf => coPLeaf false
+  | PNode None l r => coPNode false (to_coPset_raw l) (to_coPset_raw r)
+  | PNode (Some _) l r => coPNode true (to_coPset_raw l) (to_coPset_raw r)
+  end.
+Lemma to_coPset_raw_wf t : Pmap_wf t → coPset_wf (to_coPset_raw t).
+Proof.
+  induction t as [|[] l IHl r IHr]; simpl; rewrite ?andb_True; auto.
+  * intros [??]; destruct l as [|[]], r as [|[]]; simpl in *; auto.
+  * destruct l as [|[]], r as [|[]]; simpl in *; rewrite ?andb_true_r;
+      rewrite ?andb_True; rewrite ?andb_True in IHl, IHr; intuition.
+Qed.
+Definition to_coPset (X : Pset) : coPset :=
+  to_coPset_raw (pmap_car (mapset_car X)) ↾ to_coPset_raw_wf _ (pmap_prf _).
+Lemma elem_of_to_coPset X i : i ∈ to_coPset X ↔ i ∈ X.
+Proof.
+  destruct X as [[t Ht]]; change (e_of i (to_coPset_raw t) ↔ t !! i = Some ()).
+  clear Ht; revert i.
+  induction t as [|[[]|] l IHl r IHr]; intros [i|i|]; simpl; auto; by split.
+Qed.
+Instance Pmap_dom_Pset {A} : Dom (Pmap A) coPset := λ m, to_coPset (dom _ m).
+Instance Pmap_dom_coPset: FinMapDom positive Pmap coPset.
+Proof.
+  split; try apply _; intros A m i; unfold dom, Pmap_dom_Pset.
+  by rewrite elem_of_to_coPset, elem_of_dom.
+Qed.