diff --git a/theories/sets.v b/theories/sets.v index ec22d0c24c1029d5c37ba618675c235d838d95e3..5acb31f0d3b94587141515ccd3c0b465dbfe6945 100644 --- a/theories/sets.v +++ b/theories/sets.v @@ -448,7 +448,7 @@ Section semi_set. Proof. set_solver. Qed. Lemma elem_of_equiv_empty X : X ≡ ∅ ↔ ∀ x, x ∉ X. Proof. set_solver. Qed. - Lemma elem_of_empty x : x ∈ (∅ : C) ↔ False. + Lemma elem_of_empty x : x ∈@{C} ∅ ↔ False. Proof. set_solver. Qed. Lemma equiv_empty X : X ⊆ ∅ → X ≡ ∅. Proof. set_solver. Qed. @@ -460,19 +460,19 @@ Section semi_set. Proof. set_solver. Qed. (** Singleton *) - Lemma elem_of_singleton_1 x y : x ∈ ({[y]} : C) → x = y. + Lemma elem_of_singleton_1 x y : x ∈@{C} {[y]} → x = y. Proof. by rewrite elem_of_singleton. Qed. - Lemma elem_of_singleton_2 x y : x = y → x ∈ ({[y]} : C). + Lemma elem_of_singleton_2 x y : x = y → x ∈@{C} {[y]}. Proof. by rewrite elem_of_singleton. Qed. Lemma elem_of_subseteq_singleton x X : x ∈ X ↔ {[ x ]} ⊆ X. Proof. set_solver. Qed. - Lemma non_empty_singleton x : ({[ x ]} : C) ≢ ∅. + Lemma non_empty_singleton x : {[ x ]} ≢@{C} ∅. Proof. set_solver. Qed. - Lemma not_elem_of_singleton x y : x ∉ ({[ y ]} : C) ↔ x ≠y. + Lemma not_elem_of_singleton x y : x ∉@{C} {[ y ]} ↔ x ≠y. Proof. by rewrite elem_of_singleton. Qed. - Lemma not_elem_of_singleton_1 x y : x ∉ ({[ y ]} : C) → x ≠y. + Lemma not_elem_of_singleton_1 x y : x ∉@{C} {[ y ]} → x ≠y. Proof. apply not_elem_of_singleton. Qed. - Lemma not_elem_of_singleton_2 x y : x ≠y → x ∉ ({[ y ]} : C). + Lemma not_elem_of_singleton_2 x y : x ≠y → x ∉@{C} {[ y ]}. Proof. apply not_elem_of_singleton. Qed. Lemma singleton_subseteq_l x X : {[ x ]} ⊆ X ↔ x ∈ X. @@ -587,7 +587,7 @@ Section semi_set. Proof. unfold_leibniz. apply non_empty_inhabited. Qed. (** Singleton *) - Lemma non_empty_singleton_L x : {[ x ]} ≠(∅ : C). + Lemma non_empty_singleton_L x : {[ x ]} ≠@{C} ∅. Proof. unfold_leibniz. apply non_empty_singleton. Qed. (** Big unions *) @@ -670,7 +670,7 @@ Section set. Global Instance intersection_empty_r: RightAbsorb (≡@{C}) ∅ (∩). Proof. intros X; set_solver. Qed. - Lemma intersection_singletons x : ({[x]} : C) ∩ {[x]} ≡ {[x]}. + Lemma intersection_singletons x : {[x]} ∩ {[x]} ≡@{C} {[x]}. Proof. set_solver. Qed. Lemma union_intersection_l X Y Z : X ∪ (Y ∩ Z) ≡ (X ∪ Y) ∩ (X ∪ Z). @@ -752,7 +752,7 @@ Section set. Global Instance intersection_empty_r_L: RightAbsorb (=@{C}) ∅ (∩). Proof. intros ?. unfold_leibniz. apply (right_absorb _ _). Qed. - Lemma intersection_singletons_L x : {[x]} ∩ {[x]} = ({[x]} : C). + Lemma intersection_singletons_L x : {[x]} ∩ {[x]} =@{C} {[x]}. Proof. unfold_leibniz. apply intersection_singletons. Qed. Lemma union_intersection_l_L X Y Z : X ∪ (Y ∩ Z) = (X ∪ Y) ∩ (X ∪ Z).