From b755969de9754417338c378c41934cb0362f2899 Mon Sep 17 00:00:00 2001 From: Robbert Krebbers <mail@robbertkrebbers.nl> Date: Mon, 16 Feb 2015 10:57:56 +0100 Subject: [PATCH] Properties about singleton arrays. --- theories/list.v | 81 +++++++++++++++++++++++++++++++++++++++++++++++++ 1 file changed, 81 insertions(+) diff --git a/theories/list.v b/theories/list.v index 94b468af..0f411330 100644 --- a/theories/list.v +++ b/theories/list.v @@ -60,6 +60,11 @@ Instance list_insert {A} : Insert nat A (list A) := | [] => [] | x :: l => match i with 0 => y :: l | S i => x :: <[i:=y]>l end end. +Fixpoint list_inserts {A} (i : nat) (k l : list A) : list A := + match k with + | [] => l + | y :: k => <[i:=y]>(list_inserts (S i) k l) + end. (** The operation [delete i l] removes the [i]th element of [l] and moves all consecutive elements one position ahead. In case [i] is out of bounds, @@ -455,6 +460,20 @@ Lemma list_lookup_insert_ne l i j x : i ≠j → <[i:=x]>l !! j = l !! j. Proof. revert i j. induction l; [done|]. intros [] [] ?; simpl; auto with congruence. Qed. +Lemma list_lookup_insert_Some l i x j y : + <[i:=x]>l !! j = Some y ↔ + i = j ∧ x = y ∧ j < length l ∨ i ≠j ∧ l !! j = Some y. +Proof. + destruct (decide (i = j)) as [->|]; + [split|rewrite list_lookup_insert_ne by done; tauto]. + * intros Hy. assert (j < length l). + { rewrite <-(insert_length l j x); eauto using lookup_lt_Some. } + rewrite list_lookup_insert in Hy by done; naive_solver. + * intros [(?&?&?)|[??]]; rewrite ?list_lookup_insert; naive_solver. +Qed. +Lemma list_insert_commute l i j x y : + i ≠j → <[i:=x]>(<[j:=y]>l) = <[j:=y]>(<[i:=x]>l). +Proof. revert i j. by induction l; intros [|?] [|?] ?; f_equal'; auto. Qed. Lemma list_lookup_other l i x : length l ≠1 → l !! i = Some x → ∃ j y, j ≠i ∧ l !! j = Some y. Proof. @@ -499,6 +518,55 @@ Qed. Lemma delete_middle l1 l2 x : delete (length l1) (l1 ++ x :: l2) = l1 ++ l2. Proof. induction l1; f_equal'; auto. Qed. +Lemma inserts_length l i k : length (list_inserts i k l) = length l. +Proof. + revert i. induction k; intros ?; csimpl; rewrite ?insert_length; auto. +Qed. +Lemma list_lookup_inserts l i k j : + i ≤ j < i + length k → j < length l → + list_inserts i k l !! j = k !! (j - i). +Proof. + revert i j. induction k as [|y k IH]; csimpl; intros i j ??; [lia|]. + destruct (decide (i = j)) as [->|]. + { by rewrite list_lookup_insert, Nat.sub_diag + by (rewrite inserts_length; lia). } + rewrite list_lookup_insert_ne, IH by lia. + by replace (j - i) with (S (j - S i)) by lia. +Qed. +Lemma list_lookup_inserts_lt l i k j : + j < i → list_inserts i k l !! j = l !! j. +Proof. + revert i j. induction k; intros i j ?; csimpl; + rewrite ?list_lookup_insert_ne by lia; auto with lia. +Qed. +Lemma list_lookup_inserts_ge l i k j : + i + length k ≤ j → list_inserts i k l !! j = l !! j. +Proof. + revert i j. induction k; csimpl; intros i j ?; + rewrite ?list_lookup_insert_ne by lia; auto with lia. +Qed. +Lemma list_lookup_inserts_Some l i k j y : + list_inserts i k l !! j = Some y ↔ + (j < i ∨ i + length k ≤ j) ∧ l !! j = Some y ∨ + i ≤ j < i + length k ∧ j < length l ∧ k !! (j - i) = Some y. +Proof. + destruct (decide (j < i)). + { rewrite list_lookup_inserts_lt by done; intuition lia. } + destruct (decide (i + length k ≤ j)). + { rewrite list_lookup_inserts_ge by done; intuition lia. } + split. + * intros Hy. assert (j < length l). + { rewrite <-(inserts_length l i k); eauto using lookup_lt_Some. } + rewrite list_lookup_inserts in Hy by lia. intuition lia. + * intuition. by rewrite list_lookup_inserts by lia. +Qed. +Lemma list_insert_inserts_lt l i j x k : + i < j → <[i:=x]>(list_inserts j k l) = list_inserts j k (<[i:=x]>l). +Proof. + revert i j. induction k; intros i j ?; simpl; + rewrite 1?list_insert_commute by lia; auto with f_equal. +Qed. + (** ** Properties of the [elem_of] predicate *) Lemma not_elem_of_nil x : x ∉ []. Proof. by inversion 1. Qed. @@ -896,6 +964,8 @@ Proof. * intros Hin [x' Hx']; destruct Hin. rewrite lookup_replicate in Hx'; tauto. * intros Hx ?. destruct Hx. exists x; auto using lookup_replicate_2. Qed. +Lemma insert_replicate x n i : <[i:=x]>(replicate n x) = replicate n x. +Proof. revert i. induction n; intros [|?]; f_equal'; auto. Qed. Lemma elem_of_replicate_inv x n y : x ∈ replicate n y → x = y. Proof. induction n; simpl; rewrite ?elem_of_nil, ?elem_of_cons; intuition. Qed. Lemma replicate_S n x : replicate (S n) x = x :: replicate n x. @@ -1994,6 +2064,14 @@ Section Forall_Exists. revert i. induction l; intros [|?]; simpl; inversion_clear 1; constructor; eauto. Qed. + Lemma Forall_insert l i x : Forall P l → P x → Forall P (<[i:=x]>l). + Proof. rewrite list_insert_alter; auto using Forall_alter. Qed. + Lemma Forall_inserts l i k : + Forall P l → Forall P k → Forall P (list_inserts i k l). + Proof. + intros Hl Hk; revert i. + induction Hk; simpl; auto using Forall_insert. + Qed. Lemma Forall_replicate n x : P x → Forall P (replicate n x). Proof. induction n; simpl; constructor; auto. Qed. Lemma Forall_replicate_eq n (x : A) : Forall (x =) (replicate n x). @@ -2951,6 +3029,9 @@ Section zip_with. revert k i. induction l; intros [|??] [|?]; f_equal'; auto. by destruct (_ !! _). Qed. + Lemma insert_zip_with l k i x y : + <[i:=f x y]>(zip_with f l k) = zip_with f (<[i:=x]>l) (<[i:=y]>k). + Proof. revert i k. induction l; intros [|?] [|??]; f_equal'; auto. Qed. Lemma fmap_zip_with_l (g : C → A) l k : (∀ x y, g (f x y) = x) → length l ≤ length k → g <$> zip_with f l k = l. Proof. revert k. induction l; intros [|??] ??; f_equal'; auto with lia. Qed. -- GitLab