From b668ba52dc32846d0c702d67020ba636e1d385c7 Mon Sep 17 00:00:00 2001 From: Robbert Krebbers <mail@robbertkrebbers.nl> Date: Thu, 5 Mar 2020 12:38:16 +0100 Subject: [PATCH] =?UTF-8?q?Prove=20that=20`<`=20and=20`=E2=89=A4`=20are=20?= =?UTF-8?q?finite/infinite.?= MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 8bit --- theories/sets.v | 19 +++++++++++++++++++ 1 file changed, 19 insertions(+) diff --git a/theories/sets.v b/theories/sets.v index d0dde8aa..02f52822 100644 --- a/theories/sets.v +++ b/theories/sets.v @@ -1016,6 +1016,25 @@ Section pred_finite_infinite. Proof. intros xs. exists (fresh xs). split; [done|]. apply infinite_is_fresh. Qed. + + Lemma pred_finite_lt n : pred_finite (flip lt n). + Proof. + exists (seq 0 n); intros i Hi. apply (elem_of_list_lookup_2 _ i). + by rewrite lookup_seq. + Qed. + Lemma pred_infinite_lt n : pred_infinite (lt n). + Proof. + intros l. exists (S (n `max` max_list l)). split. + - induction l; simpl; lia. + - assert (∀ n, n ∈ l → n ≤ max_list l) as help. + { induction 1; simpl; lia. } + intros H%help; lia. + Qed. + + Lemma pred_finite_le n : pred_finite (flip le n). + Proof. eapply pred_finite_impl; [apply (pred_finite_lt (S n))|]; simpl; lia. Qed. + Lemma pred_infinite_le n : pred_infinite (le n). + Proof. eapply pred_infinite_impl; [apply (pred_infinite_lt (S n))|]; simpl; lia. Qed. End pred_finite_infinite. Section set_finite_infinite. -- GitLab