diff --git a/theories/sets.v b/theories/sets.v index d0dde8aadf0a09f76b51924b4539ff20ba147372..02f52822437177ecc2d00654174b46536e9b1331 100644 --- a/theories/sets.v +++ b/theories/sets.v @@ -1016,6 +1016,25 @@ Section pred_finite_infinite. Proof. intros xs. exists (fresh xs). split; [done|]. apply infinite_is_fresh. Qed. + + Lemma pred_finite_lt n : pred_finite (flip lt n). + Proof. + exists (seq 0 n); intros i Hi. apply (elem_of_list_lookup_2 _ i). + by rewrite lookup_seq. + Qed. + Lemma pred_infinite_lt n : pred_infinite (lt n). + Proof. + intros l. exists (S (n `max` max_list l)). split. + - induction l; simpl; lia. + - assert (∀ n, n ∈ l → n ≤ max_list l) as help. + { induction 1; simpl; lia. } + intros H%help; lia. + Qed. + + Lemma pred_finite_le n : pred_finite (flip le n). + Proof. eapply pred_finite_impl; [apply (pred_finite_lt (S n))|]; simpl; lia. Qed. + Lemma pred_infinite_le n : pred_infinite (le n). + Proof. eapply pred_infinite_impl; [apply (pred_infinite_lt (S n))|]; simpl; lia. Qed. End pred_finite_infinite. Section set_finite_infinite.