diff --git a/CHANGELOG.md b/CHANGELOG.md index cd50794e2e4cd92684fe8d6267fa37d9cdb43a54..571ee447f1b490af02778bb405db7f8640083284 100644 --- a/CHANGELOG.md +++ b/CHANGELOG.md @@ -11,6 +11,8 @@ API-breaking change is listed. example, change `(!! i)` into `(.!! x)` so that `!!` can also be used as a prefix, as done in VST. A sed script to perform the renaming can be found at: https://gitlab.mpi-sws.org/iris/stdpp/merge_requests/93 +- Add type class `TopSet` for sets with a `⊤` element. Provide instances for + `boolset`, `propset`, and `coPset`. ## std++ 1.2.1 (released 2019-08-29) diff --git a/theories/base.v b/theories/base.v index 30feccb2b6759ea57976109a1017f33b460b4069..0d143c06817b7e14b5517179a1905dcda9e252de 100644 --- a/theories/base.v +++ b/theories/base.v @@ -1158,17 +1158,62 @@ Notation "<[ k := a ]{ Γ }>" := (insertE Γ k a) Arguments insertE _ _ _ _ _ _ !_ _ !_ / : simpl nomatch, assert. +(** * Notations for lattices. *) +(** SqSubsetEq registers the "canonical" partial order for a type, and is used +for the \sqsubseteq symbol. *) +Class SqSubsetEq A := sqsubseteq: relation A. +Hint Mode SqSubsetEq ! : typeclass_instances. +Instance: Params (@sqsubseteq) 2 := {}. +Infix "⊑" := sqsubseteq (at level 70) : stdpp_scope. +Notation "(⊑)" := sqsubseteq (only parsing) : stdpp_scope. +Notation "( x ⊑.)" := (sqsubseteq x) (only parsing) : stdpp_scope. +Notation "(.⊑ y )" := (λ x, sqsubseteq x y) (only parsing) : stdpp_scope. + +Infix "⊑@{ A }" := (@sqsubseteq A _) (at level 70, only parsing) : stdpp_scope. +Notation "(⊑@{ A } )" := (@sqsubseteq A _) (only parsing) : stdpp_scope. + +Instance sqsubseteq_rewrite `{SqSubsetEq A} : RewriteRelation (⊑@{A}) := {}. + +Hint Extern 0 (_ ⊑ _) => reflexivity : core. + +Class Meet A := meet: A → A → A. +Hint Mode Meet ! : typeclass_instances. +Instance: Params (@meet) 2 := {}. +Infix "⊓" := meet (at level 40) : stdpp_scope. +Notation "(⊓)" := meet (only parsing) : stdpp_scope. +Notation "( x ⊓.)" := (meet x) (only parsing) : stdpp_scope. +Notation "(.⊓ y )" := (λ x, meet x y) (only parsing) : stdpp_scope. + +Class Join A := join: A → A → A. +Hint Mode Join ! : typeclass_instances. +Instance: Params (@join) 2 := {}. +Infix "⊔" := join (at level 50) : stdpp_scope. +Notation "(⊔)" := join (only parsing) : stdpp_scope. +Notation "( x ⊔.)" := (join x) (only parsing) : stdpp_scope. +Notation "(.⊔ y )" := (λ x, join x y) (only parsing) : stdpp_scope. + +Class Top A := top : A. +Hint Mode Top ! : typeclass_instances. +Notation "⊤" := top (format "⊤") : stdpp_scope. + +Class Bottom A := bottom : A. +Hint Mode Bottom ! : typeclass_instances. +Notation "⊥" := bottom (format "⊥") : stdpp_scope. + + (** * Axiomatization of sets *) -(** The classes [SemiSet A C] and [Set_ A C] axiomatize sset of type [C] with -elements of type [A]. The first class, [SemiSet] does not include intersection -and difference. It is useful for the case of lists, where decidable equality -is needed to implement intersection and difference, but not union. +(** The classes [SemiSet A C], [Set_ A C], and [TopSet A C] axiomatize sets of +type [C] with elements of type [A]. The first class, [SemiSet] does not include +intersection and difference. It is useful for the case of lists, where decidable +equality is needed to implement intersection and difference, but not union. Note that we cannot use the name [Set] since that is a reserved keyword. Hence we use [Set_]. *) Class SemiSet A C `{ElemOf A C, Empty C, Singleton A C, Union C} : Prop := { - not_elem_of_empty (x : A) : x ∉@{C} ∅; + not_elem_of_empty (x : A) : x ∉@{C} ∅; (* We prove + [elem_of_empty : x ∈@{C} ∅ ↔ False] in [sets.v], which is more convenient for + rewriting. *) elem_of_singleton (x y : A) : x ∈@{C} {[ y ]} ↔ x = y; elem_of_union (X Y : C) (x : A) : x ∈ X ∪ Y ↔ x ∈ X ∨ x ∈ Y }. @@ -1178,6 +1223,12 @@ Class Set_ A C `{ElemOf A C, Empty C, Singleton A C, elem_of_intersection (X Y : C) (x : A) : x ∈ X ∩ Y ↔ x ∈ X ∧ x ∈ Y; elem_of_difference (X Y : C) (x : A) : x ∈ X ∖ Y ↔ x ∈ X ∧ x ∉ Y }. +Class TopSet A C `{ElemOf A C, Empty C, Top C, Singleton A C, + Union C, Intersection C, Difference C} : Prop := { + top_set_set :> Set_ A C; + elem_of_top' (x : A) : x ∈@{C} ⊤; (* We prove [elem_of_top : x ∈@{C} ⊤ ↔ True] + in [sets.v], which is more convenient for rewriting. *) +}. (** We axiomative a finite set as a set whose elements can be enumerated as a list. These elements, given by the [elements] function, may be @@ -1276,45 +1327,3 @@ Class Half A := half: A → A. Hint Mode Half ! : typeclass_instances. Notation "½" := half (format "½") : stdpp_scope. Notation "½*" := (fmap (M:=list) half) : stdpp_scope. - -(** * Notations for lattices. *) -(** SqSubsetEq registers the "canonical" partial order for a type, and is used -for the \sqsubseteq symbol. *) -Class SqSubsetEq A := sqsubseteq: relation A. -Hint Mode SqSubsetEq ! : typeclass_instances. -Instance: Params (@sqsubseteq) 2 := {}. -Infix "⊑" := sqsubseteq (at level 70) : stdpp_scope. -Notation "(⊑)" := sqsubseteq (only parsing) : stdpp_scope. -Notation "( x ⊑.)" := (sqsubseteq x) (only parsing) : stdpp_scope. -Notation "(.⊑ y )" := (λ x, sqsubseteq x y) (only parsing) : stdpp_scope. - -Infix "⊑@{ A }" := (@sqsubseteq A _) (at level 70, only parsing) : stdpp_scope. -Notation "(⊑@{ A } )" := (@sqsubseteq A _) (only parsing) : stdpp_scope. - -Instance sqsubseteq_rewrite `{SqSubsetEq A} : RewriteRelation (⊑@{A}) := {}. - -Hint Extern 0 (_ ⊑ _) => reflexivity : core. - -Class Meet A := meet: A → A → A. -Hint Mode Meet ! : typeclass_instances. -Instance: Params (@meet) 2 := {}. -Infix "⊓" := meet (at level 40) : stdpp_scope. -Notation "(⊓)" := meet (only parsing) : stdpp_scope. -Notation "( x ⊓.)" := (meet x) (only parsing) : stdpp_scope. -Notation "(.⊓ y )" := (λ x, meet x y) (only parsing) : stdpp_scope. - -Class Join A := join: A → A → A. -Hint Mode Join ! : typeclass_instances. -Instance: Params (@join) 2 := {}. -Infix "⊔" := join (at level 50) : stdpp_scope. -Notation "(⊔)" := join (only parsing) : stdpp_scope. -Notation "( x ⊔.)" := (join x) (only parsing) : stdpp_scope. -Notation "(.⊔ y )" := (λ x, join x y) (only parsing) : stdpp_scope. - -Class Top A := top : A. -Hint Mode Top ! : typeclass_instances. -Notation "⊤" := top (format "⊤") : stdpp_scope. - -Class Bottom A := bottom : A. -Hint Mode Bottom ! : typeclass_instances. -Notation "⊥" := bottom (format "⊥") : stdpp_scope. diff --git a/theories/boolset.v b/theories/boolset.v index cd4efe1a56d0e4a7b46144c11158605c3992a9a1..3bfa3b3d394180c7d9d4ddba5db98f1a87468949 100644 --- a/theories/boolset.v +++ b/theories/boolset.v @@ -19,15 +19,16 @@ Instance boolset_intersection {A} : Intersection (boolset A) := λ X1 X2, BoolSet (λ x, boolset_car X1 x && boolset_car X2 x). Instance boolset_difference {A} : Difference (boolset A) := λ X1 X2, BoolSet (λ x, boolset_car X1 x && negb (boolset_car X2 x)). -Instance boolset_set `{EqDecision A} : Set_ A (boolset A). +Instance boolset_top_set `{EqDecision A} : TopSet A (boolset A). Proof. - split; [split| |]. + split; [split; [split| |]|]. - by intros x ?. - by intros x y; rewrite <-(bool_decide_spec (x = y)). - split. apply orb_prop_elim. apply orb_prop_intro. - split. apply andb_prop_elim. apply andb_prop_intro. - intros X Y x; unfold elem_of, boolset_elem_of; simpl. destruct (boolset_car X x), (boolset_car Y x); simpl; tauto. + - done. Qed. Instance boolset_elem_of_dec {A} : RelDecision (∈@{boolset A}). Proof. refine (λ x X, cast_if (decide (boolset_car X x))); done. Defined. diff --git a/theories/coPset.v b/theories/coPset.v index ada2caeb738de0b0a004740ad4f9d6a7c04ff20e..1b21418116ebaaa36ad6e72a90641ff303ecb724 100644 --- a/theories/coPset.v +++ b/theories/coPset.v @@ -169,9 +169,9 @@ Instance coPset_difference : Difference coPset := λ X Y, let (t1,Ht1) := X in let (t2,Ht2) := Y in (t1 ∩ coPset_opp_raw t2) ↾ coPset_intersection_wf _ _ Ht1 (coPset_opp_wf _). -Instance coPset_set : Set_ positive coPset. +Instance coPset_top_set : TopSet positive coPset. Proof. - split; [split| |]. + split; [split; [split| |]|]. - by intros ??. - intros p q. apply coPset_elem_of_singleton. - intros [t] [t'] p; unfold elem_of, coPset_elem_of, coPset_union; simpl. @@ -181,6 +181,7 @@ Proof. - intros [t] [t'] p; unfold elem_of, coPset_elem_of, coPset_difference; simpl. by rewrite coPset_elem_of_intersection, coPset_elem_of_opp, andb_True, negb_True. + - done. Qed. Instance coPset_leibniz : LeibnizEquiv coPset. @@ -204,11 +205,6 @@ Proof. refine (λ X Y, cast_if (decide (X ∪ Y = Y))); abstract (by rewrite subseteq_union_L). Defined. -(** * Top *) -Lemma coPset_top_subseteq (X : coPset) : X ⊆ ⊤. -Proof. done. Qed. -Hint Resolve coPset_top_subseteq : core. - (** * Finite sets *) Fixpoint coPset_finite (t : coPset_raw) : bool := match t with diff --git a/theories/namespaces.v b/theories/namespaces.v index 04f9e931143bac93cd0465fcf847f923f23aedde..67f7447a0994dbc5022486d8a5a633a5aea5fa95 100644 --- a/theories/namespaces.v +++ b/theories/namespaces.v @@ -80,6 +80,7 @@ Create HintDb ndisj. considering they are. *) Hint Resolve (subseteq_difference_r (A:=positive) (C:=coPset)) : ndisj. Hint Resolve (empty_subseteq (A:=positive) (C:=coPset)) : ndisj. +Hint Resolve (top_subseteq (A:=positive) (C:=coPset)) : ndisj. Hint Resolve (union_least (A:=positive) (C:=coPset)) : ndisj. (** Fallback, loses lots of information but lets other rules make progress. *) Hint Resolve (subseteq_difference_l (A:=positive) (C:=coPset)) | 100 : ndisj. diff --git a/theories/propset.v b/theories/propset.v index 529dd471075eb1b5f217c1ebbcaa7c39ad729aca..70e649d9412a502642223b812203a319e3f0a53e 100644 --- a/theories/propset.v +++ b/theories/propset.v @@ -21,18 +21,13 @@ Instance propset_intersection {A} : Intersection (propset A) := λ X1 X2, {[ x | x ∈ X1 ∧ x ∈ X2 ]}. Instance propset_difference {A} : Difference (propset A) := λ X1 X2, {[ x | x ∈ X1 ∧ x ∉ X2 ]}. -Instance propset_set : Set_ A (propset A). -Proof. split; [split | |]; by repeat intro. Qed. +Instance propset_top_set {A} : TopSet A (propset A). +Proof. split; [split; [split| |]|]; by repeat intro. Qed. -Lemma elem_of_top {A} (x : A) : x ∈ (⊤ : propset A) ↔ True. -Proof. done. Qed. Lemma elem_of_PropSet {A} (P : A → Prop) x : x ∈ {[ x | P x ]} ↔ P x. Proof. done. Qed. Lemma not_elem_of_PropSet {A} (P : A → Prop) x : x ∉ {[ x | P x ]} ↔ ¬P x. Proof. done. Qed. -Lemma top_subseteq {A} (X : propset A) : X ⊆ ⊤. -Proof. done. Qed. -Hint Resolve top_subseteq : core. Definition set_to_propset `{ElemOf A C} (X : C) : propset A := {[ x | x ∈ X ]}. @@ -50,8 +45,6 @@ Instance propset_join : MJoin propset := λ A (XX : propset (propset A)), Instance propset_monad_set : MonadSet propset. Proof. by split; try apply _. Qed. -Instance set_unfold_propset_top {A} (x : A) : SetUnfoldElemOf x (⊤ : propset A) True. -Proof. by constructor. Qed. Instance set_unfold_PropSet {A} (P : A → Prop) x Q : SetUnfoldSimpl (P x) Q → SetUnfoldElemOf x (PropSet P) Q. Proof. intros HPQ. constructor. apply HPQ. Qed. diff --git a/theories/sets.v b/theories/sets.v index aaaa9ce9d55e88e41a11fd778ac8353bc57e0a07..9ccac38bd6e4994649156ba5b09f8ddc5c871615 100644 --- a/theories/sets.v +++ b/theories/sets.v @@ -242,6 +242,10 @@ Section set_unfold. Qed. End set_unfold. +Instance set_unfold_top `{TopSet A C} (x : A) : + SetUnfoldElemOf x (⊤ : C) True. +Proof. constructor. split; [done|intros; apply elem_of_top']. Qed. + Section set_unfold_monad. Context `{MonadSet M}. @@ -793,6 +797,19 @@ Section set. End set. +(** * Sets with [∪], [∩], [∖], [∅], [{[_]}], and [⊤] *) +Section top_set. + Context `{TopSet A C}. + Implicit Types x y : A. + Implicit Types X Y : C. + + Lemma elem_of_top x : x ∈@{C} ⊤ ↔ True. + Proof. split; [done|intros; apply elem_of_top']. Qed. + Lemma top_subseteq X : X ⊆ ⊤. + Proof. intros x. by rewrite elem_of_top. Qed. +End top_set. + + (** * Conversion of option and list *) Section option_and_list_to_set. Context `{SemiSet A C}.