diff --git a/theories/list.v b/theories/list.v index c817ee5584582f1a849002e8aca87f1e1bc5797c..4aa9139452f6f33d1e65ef14e9ef0a958c356be9 100644 --- a/theories/list.v +++ b/theories/list.v @@ -102,6 +102,17 @@ Fixpoint replicate {A} (n : nat) (x : A) : list A := (** The function [reverse l] returns the elements of [l] in reverse order. *) Definition reverse {A} (l : list A) : list A := rev_append l []. +Fixpoint last' {A} (x : A) (l : list A) : A := + match l with + | [] => x + | x :: l => last' x l + end. +Definition last {A} (l : list A) : option A := + match l with + | [] => None + | x :: l => Some (last' x l) + end. + (** The function [resize n y l] takes the first [n] elements of [l] in case [length l ≤ n], and otherwise appends elements with value [x] to [l] to obtain a list of length [n]. *) diff --git a/theories/natmap.v b/theories/natmap.v new file mode 100644 index 0000000000000000000000000000000000000000..de543be9739d60d65ee3714c7faa6eabd60e2071 --- /dev/null +++ b/theories/natmap.v @@ -0,0 +1,230 @@ +(* Copyright (c) 2012-2013, Robbert Krebbers. *) +(* This file is distributed under the terms of the BSD license. *) +(** This files implements finite maps whose keys range over Coq's data type of +unary natural numbers [nat]. *) +Require Import fin_maps. + +Notation natmap_raw A := (list (option A)). +Definition natmap_wf {A} (l : natmap_raw A) := + match last l with + | None => True + | Some x => is_Some x + end. +Instance natmap_wf_pi {A} (l : natmap_raw A) : ProofIrrel (natmap_wf l). +Proof. unfold natmap_wf. case_match; apply _. Qed. + +Lemma natmap_wf_inv {A} (o : option A) (l : natmap_raw A) : + natmap_wf (o :: l) → natmap_wf l. +Proof. by destruct l. Qed. +Lemma natmap_wf_lookup {A} (l : natmap_raw A) : + natmap_wf l → l ≠[] → ∃ i x, mjoin (l !! i) = Some x. +Proof. + intros Hwf Hl. induction l as [|[x|] l IH]; simpl. + * done. + * exists 0. simpl. eauto. + * destruct IH as (i&x&?); eauto using natmap_wf_inv. + { intro. subst. inversion Hwf. } + by exists (S i) x. +Qed. + +Definition natmap (A : Type) : Type := sig (@natmap_wf A). + +Instance natmap_empty {A} : Empty (natmap A) := [] ↾ I. +Instance natmap_lookup {A} : Lookup nat A (natmap A) := + λ i m, mjoin (`m !! i). + +Fixpoint natmap_singleton_raw {A} (i : nat) (x : A) : natmap_raw A := + match i with + | 0 => [Some x] + | S i => None :: natmap_singleton_raw i x + end. +Lemma natmap_singleton_wf {A} (i : nat) (x : A) : + natmap_wf (natmap_singleton_raw i x). +Proof. + unfold natmap_wf, last. + induction i as [|i]; simpl; repeat case_match; simplify_equality; eauto. + by destruct i. +Qed. +Lemma natmap_lookup_singleton_raw {A} (i : nat) (x : A) : + mjoin (natmap_singleton_raw i x !! i) = Some x. +Proof. induction i; simpl; auto. Qed. +Lemma natmap_lookup_singleton_raw_ne {A} (i j : nat) (x : A) : + i ≠j → mjoin (natmap_singleton_raw i x !! j) = None. +Proof. revert j; induction i; intros [|?]; simpl; auto with congruence. Qed. +Hint Rewrite @natmap_lookup_singleton_raw : natmap. + +Definition natmap_cons_canon {A} (o : option A) (l : natmap_raw A) := + match o, l with + | None, [] => [] + | _, _ => o :: l + end. +Lemma natmap_cons_canon_wf {A} (o : option A) (l : natmap_raw A) : + natmap_wf l → natmap_wf (natmap_cons_canon o l). +Proof. unfold natmap_wf, last. destruct o, l; simpl; eauto. Qed. +Lemma natmap_cons_canon_O {A} (o : option A) (l : natmap_raw A) : + mjoin (natmap_cons_canon o l !! 0) = o. +Proof. by destruct o, l. Qed. +Lemma natmap_cons_canon_S {A} (o : option A) (l : natmap_raw A) i : + natmap_cons_canon o l !! S i = l !! i. +Proof. by destruct o, l. Qed. +Hint Rewrite @natmap_cons_canon_O @natmap_cons_canon_S : natmap. + +Definition natmap_alter_raw {A} (f : option A → option A) : + nat → natmap_raw A → natmap_raw A := + fix go i l {struct l} := + match l with + | [] => + match f None with + | Some x => natmap_singleton_raw i x + | None => [] + end + | o :: l => + match i with + | 0 => natmap_cons_canon (f o) l + | S i => natmap_cons_canon o (go i l) + end + end. +Lemma natmap_alter_wf {A} (f : option A → option A) i l : + natmap_wf l → natmap_wf (natmap_alter_raw f i l). +Proof. + revert i. induction l; [intro | intros [|?]]; simpl; repeat case_match; + eauto using natmap_singleton_wf, natmap_cons_canon_wf, natmap_wf_inv. +Qed. +Instance natmap_alter {A} : PartialAlter nat A (natmap A) := λ f i m, + natmap_alter_raw f i (`m)↾natmap_alter_wf _ _ _ (proj2_sig m). +Lemma natmap_lookup_alter_raw {A} (f : option A → option A) i l : + mjoin (natmap_alter_raw f i l !! i) = f (mjoin (l !! i)). +Proof. + revert i. induction l; intros [|?]; simpl; repeat case_match; simpl; + autorewrite with natmap; auto. +Qed. +Lemma natmap_lookup_alter_raw_ne {A} (f : option A → option A) i j l : + i ≠j → mjoin (natmap_alter_raw f i l !! j) = mjoin (l !! j). +Proof. + revert i j. induction l; intros [|?] [|?] ?; simpl; + repeat case_match; simpl; autorewrite with natmap; auto with congruence. + rewrite natmap_lookup_singleton_raw_ne; congruence. +Qed. + +Definition natmap_merge_aux {A B} (f : option A → option B) : + natmap_raw A → natmap_raw B := + fix go l := + match l with + | [] => [] + | o :: l => natmap_cons_canon (f o) (go l) + end. +Lemma natmap_merge_aux_wf {A B} (f : option A → option B) l : + natmap_wf l → natmap_wf (natmap_merge_aux f l). +Proof. induction l; simpl; eauto using natmap_cons_canon_wf, natmap_wf_inv. Qed. +Lemma natmap_lookup_merge_aux {A B} (f : option A → option B) l i : + f None = None → + mjoin (natmap_merge_aux f l !! i) = f (mjoin (l !! i)). +Proof. + revert i. induction l; intros [|?]; simpl; autorewrite with natmap; auto. +Qed. +Hint Rewrite @natmap_lookup_merge_aux : natmap. + +Definition natmap_merge_raw {A B C} (f : option A → option B → option C) : + natmap_raw A → natmap_raw B → natmap_raw C := + fix go l1 l2 := + match l1, l2 with + | [], l2 => natmap_merge_aux (f None) l2 + | l1, [] => natmap_merge_aux (flip f None) l1 + | o1 :: l1, o2 :: l2 => natmap_cons_canon (f o1 o2) (go l1 l2) + end. +Lemma natmap_merge_wf {A B C} (f : option A → option B → option C) l1 l2 : + natmap_wf l1 → natmap_wf l2 → natmap_wf (natmap_merge_raw f l1 l2). +Proof. + revert l2. induction l1; intros [|??]; simpl; + eauto using natmap_merge_aux_wf, natmap_cons_canon_wf, natmap_wf_inv. +Qed. +Lemma natmap_lookup_merge_raw {A B C} (f : option A → option B → option C) l1 l2 i : + f None None = None → + mjoin (natmap_merge_raw f l1 l2 !! i) = f (mjoin (l1 !! i)) (mjoin (l2 !! i)). +Proof. + intros. revert i l2. induction l1; intros [|?] [|??]; simpl; + autorewrite with natmap; auto. +Qed. +Instance natmap_merge: Merge natmap := λ A B C f m1 m2, + natmap_merge_raw f _ _ ↾ natmap_merge_wf _ _ _ (proj2_sig m1) (proj2_sig m2). + +Fixpoint natmap_to_list_raw {A} (i : nat) (l : natmap_raw A) : list (nat * A) := + match l with + | [] => [] + | None :: l => natmap_to_list_raw (S i) l + | Some x :: l => (i,x) :: natmap_to_list_raw (S i) l + end. +Lemma natmap_elem_of_to_list_raw_aux {A} j (l : natmap_raw A) i x : + (i,x) ∈ natmap_to_list_raw j l ↔ ∃ i', i = i' + j ∧ mjoin (l !! i') = Some x. +Proof. + split. + * revert j. induction l as [|[y|] l IH]; intros j; simpl. + + by rewrite elem_of_nil. + + rewrite elem_of_cons. intros [?|?]; simplify_equality. + - by exists 0. + - destruct (IH (S j)) as (i'&?&?); auto. + exists (S i'); simpl; auto with lia. + + intros. destruct (IH (S j)) as (i'&?&?); auto. + exists (S i'); simpl; auto with lia. + * intros (i'&?&Hi'). subst. revert i' j Hi'. + induction l as [|[y|] l IH]; intros i j ?; simpl. + + done. + + destruct i as [|i]; simplify_equality; [left|]. + right. rewrite NPeano.Nat.add_succ_comm. by apply (IH i (S j)). + + destruct i as [|i]; simplify_equality. + rewrite NPeano.Nat.add_succ_comm. by apply (IH i (S j)). +Qed. +Lemma natmap_elem_of_to_list_raw {A} (l : natmap_raw A) i x : + (i,x) ∈ natmap_to_list_raw 0 l ↔ mjoin (l !! i) = Some x. +Proof. + rewrite natmap_elem_of_to_list_raw_aux. setoid_rewrite plus_0_r. naive_solver. +Qed. +Lemma natmap_to_list_raw_nodup {A} i (l : natmap_raw A) : + NoDup (natmap_to_list_raw i l). +Proof. + revert i. induction l as [|[?|] ? IH]; simpl; try constructor; auto. + rewrite natmap_elem_of_to_list_raw_aux. intros (?&?&?). lia. +Qed. +Instance natmap_to_list {A} : FinMapToList nat A (natmap A) := λ m, + natmap_to_list_raw 0 (`m). + +Definition natmap_map_raw {A B} (f : A → B) : natmap_raw A → natmap_raw B := + fmap (fmap f). +Lemma natmap_map_wf {A B} (f : A → B) l : + natmap_wf l → natmap_wf (natmap_map_raw f l). +Proof. + unfold natmap_wf, last. + induction l; simpl; repeat case_match; simplify_equality; eauto. + simpl. by rewrite fmap_is_Some. +Qed. +Lemma natmap_lookup_map_raw {A B} (f : A → B) i l : + mjoin (natmap_map_raw f l !! i) = f <$> mjoin (l !! i). +Proof. unfold natmap_map_raw. rewrite list_lookup_fmap. by destruct (l !! i). Qed. +Instance natmap_map: FMap natmap := λ A B f m, + natmap_map_raw f _ ↾ natmap_map_wf _ _ (proj2_sig m). + +Instance: FinMap nat natmap. +Proof. + split. + * unfold lookup, natmap_lookup. intros A [l1 Hl1] [l2 Hl2] E. + apply (sig_eq_pi _). revert l2 Hl1 Hl2 E. simpl. + induction l1 as [|[x|] l1 IH]; intros [|[y|] l2] Hl1 Hl2 E; simpl in *. + + done. + + by specialize (E 0). + + destruct (natmap_wf_lookup (None :: l2)) as [i [??]]; auto with congruence. + + by specialize (E 0). + + f_equal. apply (E 0). apply IH; eauto using natmap_wf_inv. + intros i. apply (E (S i)). + + by specialize (E 0). + + destruct (natmap_wf_lookup (None :: l1)) as [i [??]]; auto with congruence. + + by specialize (E 0). + + f_equal. apply IH; eauto using natmap_wf_inv. + intros i. apply (E (S i)). + * done. + * intros ?? [??] ?. apply natmap_lookup_alter_raw. + * intros ?? [??] ??. apply natmap_lookup_alter_raw_ne. + * intros ??? [??] ?. apply natmap_lookup_map_raw. + * intros ? [??]. by apply natmap_to_list_raw_nodup. + * intros ? [??] ??. by apply natmap_elem_of_to_list_raw. + * intros ????? [??] [??] ?. by apply natmap_lookup_merge_raw. +Qed. diff --git a/theories/option.v b/theories/option.v index af77b0034bbe287eced6df3f8d0202a6c1a7be8b..fc9d13771288a801798d9f37c295a0a395b33777 100644 --- a/theories/option.v +++ b/theories/option.v @@ -47,6 +47,19 @@ Qed. Inductive is_Some {A} : option A → Prop := make_is_Some x : is_Some (Some x). +Instance is_Some_pi {A} (x : option A) : ProofIrrel (is_Some x). +Proof. + intros [?] p2. by refine + match p2 in is_Some o return + match o with + | Some y => (make_is_Some y =) + | _ => λ _, False + end p2 + with + | make_is_Some y => _ + end. +Qed. + Lemma make_is_Some_alt `(x : option A) a : x = Some a → is_Some x. Proof. intros. by subst. Qed. Hint Resolve make_is_Some_alt.