diff --git a/tests/solve_ndisj.ref b/tests/solve_ndisj.ref index 64a2dc8e334bfc8384132fbf5279262a9c644181..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391 100644 --- a/tests/solve_ndisj.ref +++ b/tests/solve_ndisj.ref @@ -1,3 +0,0 @@ -The command has indeed failed with message: -Ltac call to "solve_ndisj" failed. -No applicable tactic. diff --git a/tests/solve_ndisj.v b/tests/solve_ndisj.v index 7a58ba3acafebc142888767f88d952357e1468b1..3774753969a307d0d8196c80d6c094c64f82b544 100644 --- a/tests/solve_ndisj.v +++ b/tests/solve_ndisj.v @@ -1,7 +1,5 @@ From stdpp Require Import namespaces strings. -Set Ltac Backtrace. - Lemma test1 (N1 N2 : namespace) : N1 ## N2 → ↑N1 ⊆@{coPset} ⊤ ∖ ↑N2. Proof. solve_ndisj. Qed. @@ -20,9 +18,4 @@ Proof. solve_ndisj. Qed. Lemma test5 (N1 N2 : namespace) : ⊤ ∖ ↑N1 ∖ ↑N2 ⊆@{coPset} ⊤ ∖ ↑N1.@"x" ∖ ↑N2 ∖ ↑N1.@"y". -Proof. - Fail solve_ndisj. (* FIXME: it should be able to solve this. *) - apply namespace_subseteq_difference. - { apply ndot_preserve_disjoint_r. set_solver. } - solve_ndisj. -Qed. +Proof. solve_ndisj. Qed. diff --git a/theories/namespaces.v b/theories/namespaces.v index 38862b12ea38778ce606143cbc2f769e7c9ad2f9..04f9e931143bac93cd0465fcf847f923f23aedde 100644 --- a/theories/namespaces.v +++ b/theories/namespaces.v @@ -66,35 +66,37 @@ Section namespace. Lemma ndot_preserve_disjoint_r N E x : E ## ↑N → E ## ↑N.@x. Proof. intros. by apply symmetry, ndot_preserve_disjoint_l. Qed. - - Lemma namespace_subseteq_difference E1 E2 E3 : - E1 ## E3 → E1 ⊆ E2 → E1 ⊆ E2 ∖ E3. - Proof. set_solver. Qed. - - Lemma namespace_subseteq_difference_l E1 E2 E3 : E1 ⊆ E3 → E1 ∖ E2 ⊆ E3. - Proof. set_solver. Qed. - - Lemma ndisj_difference_l E N1 N2 : ↑N2 ⊆ (↑N1 : coPset) → E ∖ ↑N1 ## ↑N2. - Proof. set_solver. Qed. End namespace. -(* The hope is that registering these will suffice to solve most goals +(** The hope is that registering these will suffice to solve most goals of the forms: - [N1 ## N2] - [↑N1 ⊆ E ∖ ↑N2 ∖ .. ∖ ↑Nn] - [E1 ∖ ↑N1 ⊆ E2 ∖ ↑N2 ∖ .. ∖ ↑Nn] *) Create HintDb ndisj. -Hint Resolve namespace_subseteq_difference : ndisj. -Hint Extern 0 (_ ## _) => apply ndot_ne_disjoint; congruence : ndisj. -Hint Resolve ndot_preserve_disjoint_l ndot_preserve_disjoint_r : ndisj. -Hint Resolve nclose_subseteq' ndisj_difference_l : ndisj. -Hint Resolve namespace_subseteq_difference_l | 100 : ndisj. + +(** Rules for goals of the form [_ ⊆ _] *) +(** If-and-only-if rules. Well, not quite, but for the fragment we are +considering they are. *) +Hint Resolve (subseteq_difference_r (A:=positive) (C:=coPset)) : ndisj. Hint Resolve (empty_subseteq (A:=positive) (C:=coPset)) : ndisj. Hint Resolve (union_least (A:=positive) (C:=coPset)) : ndisj. +(** Fallback, loses lots of information but lets other rules make progress. *) +Hint Resolve (subseteq_difference_l (A:=positive) (C:=coPset)) | 100 : ndisj. +Hint Resolve nclose_subseteq' | 100 : ndisj. + +(** Rules for goals of the form [_ ## _] *) +(** The base rule that we want to ultimately get down to. *) +Hint Extern 0 (_ ## _) => apply ndot_ne_disjoint; congruence : ndisj. +(** Fallback, loses lots of information but lets other rules make progress. +Tests show trying [disjoint_difference_l1] first gives better performance. *) +Hint Resolve (disjoint_difference_l1 (A:=positive) (C:=coPset)) | 50 : ndisj. +Hint Resolve (disjoint_difference_l2 (A:=positive) (C:=coPset)) | 100 : ndisj. +Hint Resolve ndot_preserve_disjoint_l ndot_preserve_disjoint_r | 100 : ndisj. Ltac solve_ndisj := repeat match goal with | H : _ ∪ _ ⊆ _ |- _ => apply union_subseteq in H as [??] end; - solve [eauto 10 with ndisj]. + solve [eauto 12 with ndisj]. Hint Extern 1000 => solve_ndisj : solve_ndisj. diff --git a/theories/sets.v b/theories/sets.v index 90aeda1f5ab5d5a33569d0e4255630ceaee3116f..015b98d6843358dcdcfeedd90145161a93d1c9da 100644 --- a/theories/sets.v +++ b/theories/sets.v @@ -653,9 +653,23 @@ Section set. Lemma difference_mono_r X1 X2 Y : X1 ⊆ X2 → X1 ∖ Y ⊆ X2 ∖ Y. Proof. set_solver. Qed. + Lemma subseteq_difference_r X Y1 Y2 : + X ## Y2 → X ⊆ Y1 → X ⊆ Y1 ∖ Y2. + Proof. set_solver. Qed. + Lemma subseteq_difference_l X1 X2 Y : X1 ⊆ Y → X1 ∖ X2 ⊆ Y. + Proof. set_solver. Qed. + (** Disjointness *) Lemma disjoint_intersection X Y : X ## Y ↔ X ∩ Y ≡ ∅. Proof. set_solver. Qed. + Lemma disjoint_difference_l1 X1 X2 Y : Y ⊆ X2 → X1 ∖ X2 ## Y. + Proof. set_solver. Qed. + Lemma disjoint_difference_l2 X1 X2 Y : X1 ## Y → X1 ∖ X2 ## Y. + Proof. set_solver. Qed. + Lemma disjoint_difference_r1 X Y1 Y2 : X ⊆ Y2 → X ## Y1 ∖ Y2. + Proof. set_solver. Qed. + Lemma disjoint_difference_r2 X Y1 Y2 : X ## Y1 → X ## Y1 ∖ Y2. + Proof. set_solver. Qed. Section leibniz. Context `{!LeibnizEquiv C}.