diff --git a/theories/stringmap.v b/theories/stringmap.v
new file mode 100644
index 0000000000000000000000000000000000000000..6f542b7f99402588d2076929f49e13c94d9042d0
--- /dev/null
+++ b/theories/stringmap.v
@@ -0,0 +1,168 @@
+(* Copyright (c) 2012-2014, Robbert Krebbers. *)
+(* This file is distributed under the terms of the BSD license. *)
+(** This files implements an efficient implementation of finite maps whose keys
+range over Coq's data type of strings [string]. The implementation uses radix-2
+search trees (uncompressed Patricia trees) as implemented in the file [pmap]
+and guarantees logarithmic-time operations. *)
+Require Export fin_maps.
+Require Import Ascii String list pmap mapset.
+
+Instance assci_eq_dec (a1 a2 : ascii) : Decision (a1 = a2).
+Proof. solve_decision. Defined.
+Instance string_eq_dec (s1 s2 : string) : Decision (s1 = s2).
+Proof. solve_decision. Defined.
+
+(** * Encoding and decoding *)
+(** In order to reuse or existing implementation of radix-2 search trees over
+positive binary naturals [positive], we define an injection [string_to_pos]
+from [string] into [positive]. *)
+Fixpoint digits_to_pos (βs : list bool) : positive :=
+  match βs with
+  | [] => xH
+  | false :: βs => (digits_to_pos βs)~0
+  | true :: βs => (digits_to_pos βs)~1
+  end%positive.
+Definition ascii_to_digits (a : Ascii.ascii) : list bool :=
+  match a with
+  | Ascii.Ascii β1 β2 β3 β4 β5 β6 β7 β8 => [β1;β2;β3;β4;β5;β6;β7;β8]
+  end.
+Fixpoint string_to_pos (s : string) : positive :=
+  match s with
+  | EmptyString => xH
+  | String a s => string_to_pos s ++ digits_to_pos (ascii_to_digits a)
+  end%positive.
+Fixpoint digits_of_pos (p : positive) : list bool :=
+  match p with
+  | xH => []
+  | p~0 => false :: digits_of_pos p
+  | p~1 => true :: digits_of_pos p
+  end%positive.
+Fixpoint ascii_of_digits (βs : list bool) : ascii :=
+  match βs with
+  | [] => zero
+  | β :: βs => Ascii.shift β (ascii_of_digits βs)
+  end.
+Fixpoint string_of_digits (βs : list bool) : string :=
+  match βs with
+  | β1 :: β2 :: β3 :: β4 :: β5 :: β6 :: β7 :: β8 :: βs =>
+     String (ascii_of_digits [β1;β2;β3;β4;β5;β6;β7;β8]) (string_of_digits βs)
+  | _ => EmptyString
+  end.
+Definition string_of_pos (p : positive) : string :=
+  string_of_digits (digits_of_pos p).
+Lemma string_of_to_pos s : string_of_pos (string_to_pos s) = s.
+Proof.
+  unfold string_of_pos.
+  by induction s as [|[[] [] [] [] [] [] [] []]]; simpl; f_equal.
+Qed.
+Instance: Injective (=) (=) string_to_pos.
+Proof.
+  intros s1 s2 Hs. by rewrite <-(string_of_to_pos s1), Hs, string_of_to_pos.
+Qed.
+
+(** * The data structure *)
+(** We pack a [Pmap] together with a proof that ensures that all keys correspond
+to actual strings. *)
+Definition stringmap_wf {A} : Pmap A → Prop :=
+  map_Forall (λ p _, string_to_pos (string_of_pos p) = p).
+Record stringmap A := StringMap {
+  stringmap_car : Pmap A;
+  stringmap_prf : bool_decide (stringmap_wf stringmap_car)
+}.
+Arguments StringMap {_} _ _.
+Arguments stringmap_car {_} _.
+Lemma stringmap_eq {A} (m1 m2 : stringmap A) :
+  m1 = m2 ↔ stringmap_car m1 = stringmap_car m2.
+Proof.
+  split; [by intros ->|intros]. destruct m1, m2; simplify_equality'.
+  f_equal; apply proof_irrel.
+Qed.
+Instance stringmap_eq_eq {A} `{∀ x y : A, Decision (x = y)}
+  (m1 m2 : stringmap A) : Decision (m1 = m2).
+Proof.
+ refine (cast_if (decide (stringmap_car m1 = stringmap_car m2)));
+  abstract (by rewrite stringmap_eq).
+Defined.
+
+(** * Operations on the data structure *)
+Instance stringmap_lookup {A} : Lookup string A (stringmap A) := λ s m,
+  let (m,_) := m in m !! string_to_pos s.
+Instance stringmap_empty {A} : Empty (stringmap A) := StringMap ∅ I.
+Lemma stringmap_partial_alter_wf {A} (f : option A → option A) m s :
+  stringmap_wf m → stringmap_wf (partial_alter f (string_to_pos s) m).
+Proof.
+  intros Hm p x. destruct (decide (string_to_pos s = p)) as [<-|?].
+  * by rewrite string_of_to_pos.
+  * rewrite lookup_partial_alter_ne by done. by apply Hm.
+Qed.
+Instance stringmap_partial_alter {A} :
+    PartialAlter string A (stringmap A) := λ f s m,
+  let (m,Hm) := m in StringMap (partial_alter f (string_to_pos s) m)
+    (bool_decide_pack _ (stringmap_partial_alter_wf f m s
+    (bool_decide_unpack _ Hm))).
+Lemma stringmap_fmap_wf {A B} (f : A → B) m :
+  stringmap_wf m → stringmap_wf (f <$> m).
+Proof. intros ? p x. rewrite lookup_fmap, fmap_Some; intros (?&?&?); eauto. Qed.
+Instance stringmap_fmap : FMap stringmap := λ A B f m,
+  let (m,Hm) := m in StringMap (f <$> m)
+    (bool_decide_pack _ (stringmap_fmap_wf f m (bool_decide_unpack _ Hm))).
+Lemma stringmap_omap_wf {A B} (f : A → option B) m :
+  stringmap_wf m → stringmap_wf (omap f m).
+Proof. intros ? p x; rewrite lookup_omap, bind_Some; intros (?&?&?); eauto. Qed.
+Instance stringmap_omap : OMap stringmap := λ A B f m,
+  let (m,Hm) := m in StringMap (omap f m)
+    (bool_decide_pack _ (stringmap_omap_wf f m (bool_decide_unpack _ Hm))).
+Lemma stringmap_merge_wf {A B C} (f : option A → option B → option C) m1 m2 :
+  let f' o1 o2 := match o1, o2 with None, None => None | _, _ => f o1 o2 end in
+  stringmap_wf m1 → stringmap_wf m2 → stringmap_wf (merge f' m1 m2).
+Proof.
+  intros f' Hm1 Hm2 p z; rewrite lookup_merge by done; intros.
+  destruct (m1 !! _) eqn:?, (m2 !! _) eqn:?; naive_solver.
+Qed.
+Instance stringmap_merge : Merge stringmap := λ A B C f m1 m2,
+  let (m1,Hm1) := m1 in let (m2,Hm2) := m2 in
+  let f' o1 o2 := match o1, o2 with None, None => None | _, _ => f o1 o2 end in
+  StringMap (merge f' m1 m2) (bool_decide_pack _ (stringmap_merge_wf f _ _
+    (bool_decide_unpack _ Hm1) (bool_decide_unpack _ Hm2))).
+Instance stringmap_to_list {A} : FinMapToList string A (stringmap A) := λ m,
+  let (m,_) := m in prod_map string_of_pos id <$> map_to_list m.
+
+(** * Instantiation of the finite map interface *)
+Instance: FinMap string stringmap.
+Proof.
+  split.
+  * unfold lookup; intros A [m1 Hm1] [m2 Hm2] H.
+    apply stringmap_eq, map_eq; intros i; simpl in *.
+    apply bool_decide_unpack in Hm1; apply bool_decide_unpack in Hm2.
+    apply option_eq; intros x; split; intros Hi.
+    + generalize Hi. rewrite <-(Hm1 i x) by done; eauto using option_eq_1.
+    + generalize Hi. rewrite <-(Hm2 i x) by done; eauto using option_eq_1.
+  * done.
+  * intros A f [m Hm] s; apply (lookup_partial_alter f m).
+  * intros A f [m Hm] s s' Hs; apply (lookup_partial_alter_ne f m).
+    by contradict Hs; apply (injective string_to_pos).
+  * intros A B f [m Hm] s; apply (lookup_fmap f m).
+  * intros A [m Hm]; unfold map_to_list; simpl.
+    apply bool_decide_unpack, map_Forall_to_list in Hm; revert Hm.
+    induction (NoDup_map_to_list m) as [|[p x] l Hpx];
+      inversion 1 as [|??? Hm']; simplify_equality'; constructor; eauto.
+    rewrite elem_of_list_fmap; intros ([p' x']&?&?); simplify_equality.
+    cut (string_to_pos (string_of_pos p') = p'); [congruence|].
+    rewrite Forall_forall in Hm'. eapply (Hm' (_,_)); eauto.
+  * intros A [m Hm] s x; unfold map_to_list, lookup; simpl.
+    apply bool_decide_unpack in Hm; rewrite elem_of_list_fmap; split.
+    + intros ([p' x']&?&Hp'); simplify_equality'.
+      apply elem_of_map_to_list in Hp'. by rewrite (Hm p' x').
+    + intros. exists (string_to_pos s,x); simpl.
+      by rewrite elem_of_map_to_list, string_of_to_pos.
+  * intros A B f [m Hm] s; apply (lookup_omap f m).
+  * intros A B C f ? [m1 Hm1] [m2 Hm2] s; unfold merge, lookup; simpl.
+    set (f' o1 o2 := match o1, o2 with None, None => None | _, _ => f o1 o2 end).
+    rewrite lookup_merge by done. by destruct (m1 !! _), (m2 !! _).
+Qed.
+
+(** * Finite sets *)
+(** We construct sets of [strings]s satisfying extensional equality. *)
+Notation stringset := (mapset (stringmap unit)).
+Instance stringmap_dom {A} : Dom (stringmap A) stringset := mapset_dom.
+Instance: FinMapDom positive Pmap Pset := mapset_dom_spec.