diff --git a/theories/mapset.v b/theories/mapset.v index a510fa58c25c9fd0a60f9d5f534156cefb4deefd..b75e6140f5bc76e5c6bba672f10caa291650cce3 100644 --- a/theories/mapset.v +++ b/theories/mapset.v @@ -34,16 +34,6 @@ Proof. f_equal. apply map_eq. intros i. apply option_eq. intros []. by apply E. Qed. -Global Instance mapset_eq_dec `{∀ m1 m2 : M unit, Decision (m1 = m2)} - (X1 X2 : mapset M) : Decision (X1 = X2) | 1. -Proof. - refine - match X1, X2 with Mapset m1, Mapset m2 => cast_if (decide (m1 = m2)) end; - abstract congruence. -Defined. -Global Instance mapset_elem_of_dec x (X : mapset M) : Decision (x ∈ X) | 1. -Proof. solve_decision. Defined. - Instance: Collection K (mapset M). Proof. split; [split | | ]. @@ -77,6 +67,30 @@ Proof. apply NoDup_fst_map_to_list. Qed. +Section deciders. + Context `{∀ m1 m2 : M unit, Decision (m1 = m2)}. + Global Instance mapset_eq_dec (X1 X2 : mapset M) : Decision (X1 = X2) | 1. + Proof. + refine + match X1, X2 with Mapset m1, Mapset m2 => cast_if (decide (m1 = m2)) end; + abstract congruence. + Defined. + Global Instance mapset_equiv_dec (X1 X2 : mapset M) : Decision (X1 ≡ X2) | 1. + Proof. refine (cast_if (decide (X1 = X2))); abstract (by fold_leibniz). Defined. + Global Instance mapset_elem_of_dec x (X : mapset M) : Decision (x ∈ X) | 1. + Proof. solve_decision. Defined. + Global Instance mapset_disjoint_dec (X1 X2 : mapset M) : Decision (X1 ⊥ X2). + Proof. + refine (cast_if (decide (X1 ∩ X2 = ∅))); + abstract (by rewrite disjoint_intersection_L). + Defined. + Global Instance mapset_subseteq_dec (X1 X2 : mapset M) : Decision (X1 ⊆ X2). + Proof. + refine (cast_if (decide (X1 ∪ X2 = X2))); + abstract (by rewrite subseteq_union_L). + Defined. +End deciders. + Definition mapset_map_with {A B} (f : bool → A → option B) (X : mapset M) : M A → M B := let (mX) := X in merge (λ x y,