diff --git a/CHANGELOG.md b/CHANGELOG.md index e82c2830a212c7319b1ae96b3b477973e0123231..b7136e10718edb70998351ea6d43f5c2a1c9c573 100644 --- a/CHANGELOG.md +++ b/CHANGELOG.md @@ -14,6 +14,10 @@ API-breaking change is listed. - Add lemma about `zip_with`: `lookup_zip_with_None` and add lemmas for `zip`: `length_zip`, `zip_nil_inv`, `lookup_zip_Some`,`lookup_zip_None`. (by Kimaya Bedarkar) - Add `elem_of_seq` and `seq_nil`. (by Kimaya Bedarkar) + `length_zip`, `zip_nil_inv`, `lookup_zip_Some`,`lookup_zip_None`. (by Kimaya Bedarkar) +- Add lemma `StronglySorted_app`. (by Marijn van Wezel) +- Add lemmas `StronglySorted_app_iff` and `StronglySorted_app`. (by Marijn van + Wezel) The following `sed` script should perform most of the renaming (on macOS, replace `sed` by `gsed`, installed via e.g. `brew install gnu-sed`). diff --git a/stdpp/sorting.v b/stdpp/sorting.v index c5d4d95f04b4139094ae2dd6ebf20ca64bf90d42..f888675e2c3b9a1fc1bfbb67ef370cf229e108a3 100644 --- a/stdpp/sorting.v +++ b/stdpp/sorting.v @@ -48,25 +48,48 @@ Inductive TlRel {A} (R : relation A) (a : A) : list A → Prop := Section sorted. Context {A} (R : relation A). - Lemma elem_of_StronglySorted_app l1 l2 x1 x2 : - StronglySorted R (l1 ++ l2) → x1 ∈ l1 → x2 ∈ l2 → R x1 x2. + Lemma StronglySorted_app_iff l1 l2 : + StronglySorted R (l1 ++ l2) ↔ + (∀ x1 x2, x1 ∈ l1 → x2 ∈ l2 → R x1 x2) ∧ + StronglySorted R l1 ∧ + StronglySorted R l2. Proof. - induction l1 as [|x1' l1 IH]; simpl; [by rewrite elem_of_nil|]. - intros [? Hall]%StronglySorted_inv [->|?]%elem_of_cons ?; [|by auto]. - rewrite Forall_app, !Forall_forall in Hall. naive_solver. + induction l1 as [|x1' l1 IH]; simpl; split. + - intros Hs. repeat split; [|constructor|naive_solver]. + by setoid_rewrite elem_of_nil. + - naive_solver. + - intros [Hs Hall]%StronglySorted_inv. split. + * intros ? ? Hinl1 Hinl2. + apply elem_of_cons in Hinl1 as [Hinl1|Hinl1]. + + subst. apply Forall_app in Hall as [_ Hall]. + rewrite Forall_forall in Hall. by apply Hall. + + apply IH in Hs as (HR & ? & ?). by apply HR. + * repeat split; [apply SSorted_cons|]; apply IH in Hs. + + naive_solver. + + apply Forall_app in Hall; naive_solver. + + naive_solver. + - intros (HR & [? ?]%StronglySorted_inv & ?). apply SSorted_cons. + * apply IH; [|done..]. repeat split; [|done..]. + intros; apply HR; [|done]. apply elem_of_cons. naive_solver. + * rewrite Forall_app; split; [done|]. + rewrite Forall_forall. intros; apply HR; [|done]. + apply elem_of_cons. naive_solver. Qed. + Lemma StronglySorted_app l1 l2 : + (∀ x1 x2, x1 ∈ l1 → x2 ∈ l2 → R x1 x2) → + StronglySorted R l1 → + StronglySorted R l2 → + StronglySorted R (l1 ++ l2). + Proof. by rewrite StronglySorted_app_iff. Qed. + Lemma elem_of_StronglySorted_app l1 l2 x1 x2 : + StronglySorted R (l1 ++ l2) → x1 ∈ l1 → x2 ∈ l2 → R x1 x2. + Proof. rewrite StronglySorted_app_iff. naive_solver. Qed. Lemma StronglySorted_app_inv_l l1 l2 : StronglySorted R (l1 ++ l2) → StronglySorted R l1. - Proof. - induction l1 as [|x1' l1 IH]; simpl; - [|inv 1]; decompose_Forall; constructor; auto. - Qed. + Proof. rewrite StronglySorted_app_iff. naive_solver. Qed. Lemma StronglySorted_app_inv_r l1 l2 : StronglySorted R (l1 ++ l2) → StronglySorted R l2. - Proof. - induction l1 as [|x1' l1 IH]; simpl; - [|inv 1]; decompose_Forall; auto. - Qed. + Proof. rewrite StronglySorted_app_iff. naive_solver. Qed. Lemma Sorted_StronglySorted `{!Transitive R} l : Sorted R l → StronglySorted R l.