diff --git a/theories/sets.v b/theories/sets.v
index a6740fab42381292fa4ade49b80143bc5d7080a3..b4d5cde2bc35d07cd0ebd485499f5dc3f9c29886 100644
--- a/theories/sets.v
+++ b/theories/sets.v
@@ -1,35 +1,40 @@
 (* Copyright (c) 2012-2015, Robbert Krebbers. *)
 (* This file is distributed under the terms of the BSD license. *)
 (** This file implements sets as functions into Prop. *)
-From stdpp Require Export prelude.
+From stdpp Require Export tactics.
 
 Record set (A : Type) : Type := mkSet { set_car : A → Prop }.
+Add Printing Constructor set.
 Arguments mkSet {_} _.
 Arguments set_car {_} _ _.
-Instance set_all {A} : Top (set A) := mkSet (λ _, True).
-Instance set_empty {A} : Empty (set A) := mkSet (λ _, False).
-Instance set_singleton {A} : Singleton A (set A) := λ x, mkSet (x =).
+Notation "{[ x | P ]}" := (mkSet (λ x, P))
+  (at level 1, format "{[  x  |  P  ]}") : C_scope.
+
 Instance set_elem_of {A} : ElemOf A (set A) := λ x X, set_car X x.
-Instance set_union {A} : Union (set A) := λ X1 X2, mkSet (λ x, x ∈ X1 ∨ x ∈ X2).
+
+Instance set_all {A} : Top (set A) := {[ _ | True ]}.
+Instance set_empty {A} : Empty (set A) := {[ _ | False ]}.
+Instance set_singleton {A} : Singleton A (set A) := λ y, {[ x | y = x ]}.
+Instance set_union {A} : Union (set A) := λ X1 X2, {[ x | x ∈ X1 ∨ x ∈ X2 ]}.
 Instance set_intersection {A} : Intersection (set A) := λ X1 X2,
-  mkSet (λ x, x ∈ X1 ∧ x ∈ X2).
+  {[ x | x ∈ X1 ∧ x ∈ X2 ]}.
 Instance set_difference {A} : Difference (set A) := λ X1 X2,
-  mkSet (λ x, x ∈ X1 ∧ x ∉ X2).
+  {[ x | x ∈ X1 ∧ x ∉ X2 ]}.
 Instance set_collection : Collection A (set A).
-Proof. by split; [split | |]; repeat intro. Qed.
+Proof. split; [split | |]; by repeat intro. Qed.
 
-Lemma mkSet_elem_of {A} (f : A → Prop) x : (x ∈ mkSet f) = f x.
+Lemma elem_of_mkSet {A} (P : A → Prop) x : (x ∈ {[ x | P x ]}) = P x.
 Proof. done. Qed.
-Lemma mkSet_not_elem_of {A} (f : A → Prop) x : (x ∉ mkSet f) = (¬f x).
+Lemma not_elem_of_mkSet {A} (P : A → Prop) x : (x ∉ {[ x | P x ]}) = (¬P x).
 Proof. done. Qed.
 
 Instance set_ret : MRet set := λ A (x : A), {[ x ]}.
 Instance set_bind : MBind set := λ A B (f : A → set B) (X : set A),
   mkSet (λ b, ∃ a, b ∈ f a ∧ a ∈ X).
 Instance set_fmap : FMap set := λ A B (f : A → B) (X : set A),
-  mkSet (λ b, ∃ a, b = f a ∧ a ∈ X).
+  {[ b | ∃ a, b = f a ∧ a ∈ X ]}.
 Instance set_join : MJoin set := λ A (XX : set (set A)),
-  mkSet (λ a, ∃ X, a ∈ X ∧ X ∈ XX).
+  {[ a | ∃ X, a ∈ X ∧ X ∈ XX ]}.
 Instance set_collection_monad : CollectionMonad set.
 Proof. by split; try apply _. Qed.