diff --git a/stdpp/gmultiset.v b/stdpp/gmultiset.v index 6cf5d9404f92739bcdd700deb23e98cfb2b2a597..4e2e529bc07709c77037d52c0b9bb048522ec746 100644 --- a/stdpp/gmultiset.v +++ b/stdpp/gmultiset.v @@ -63,6 +63,13 @@ Section definitions. let (X) := X in dom X. End definitions. +Section more_definitions. + Context `{Countable A} `{Countable B}. + + Definition gmultiset_map f (X : gmultiset A) : gmultiset B := + list_to_set_disj (f <$> elements X). +End more_definitions. + Global Typeclasses Opaque gmultiset_elem_of gmultiset_subseteq. Global Typeclasses Opaque gmultiset_elements gmultiset_size gmultiset_empty. Global Typeclasses Opaque gmultiset_singleton gmultiset_union gmultiset_difference. @@ -783,9 +790,6 @@ Section map. Implicit Type f : A → B. - Definition gmultiset_map f (X : gmultiset A) : gmultiset B := - list_to_set_disj (f <$> elements X). - Lemma elem_of_gmultiset_map f X y : y ∈ gmultiset_map f X ↔ ∃ x, y = f x ∧ x ∈ X. Proof.