From 60c8d50184d095144be8b8c460c8f9736630c375 Mon Sep 17 00:00:00 2001 From: Robbert Krebbers <mail@robbertkrebbers.nl> Date: Fri, 5 Jun 2015 01:36:52 +0200 Subject: [PATCH] Add fin_map_dom lemmas for Leibniz equality. --- theories/fin_map_dom.v | 23 +++++++++++++++++++++++ 1 file changed, 23 insertions(+) diff --git a/theories/fin_map_dom.v b/theories/fin_map_dom.v index a209f4cb..6a86cb41 100644 --- a/theories/fin_map_dom.v +++ b/theories/fin_map_dom.v @@ -111,4 +111,27 @@ Proof. rewrite !elem_of_dom, lookup_fmap, <-!not_eq_None_Some. destruct (m !! i); naive_solver. Qed. + +Context `{!LeibnizEquiv D}. +Lemma dom_empty_L {A} : dom D (@empty (M A) _) = ∅. +Proof. unfold_leibniz; apply dom_empty. Qed. +Lemma dom_empty_inv_L {A} (m : M A) : dom D m = ∅ → m = ∅. +Proof. by intros; apply dom_empty_inv; unfold_leibniz. Qed. +Lemma dom_alter_L {A} f (m : M A) i : dom D (alter f i m) = dom D m. +Proof. unfold_leibniz; apply dom_alter. Qed. +Lemma dom_insert_L {A} (m : M A) i x : dom D (<[i:=x]>m) = {[ i ]} ∪ dom D m. +Proof. unfold_leibniz; apply dom_insert. Qed. +Lemma dom_singleton_L {A} (i : K) (x : A) : dom D {[(i, x)]} = {[ i ]}. +Proof. unfold_leibniz; apply dom_singleton. Qed. +Lemma dom_delete_L {A} (m : M A) i : dom D (delete i m) = dom D m ∖ {[ i ]}. +Proof. unfold_leibniz; apply dom_delete. Qed. +Lemma dom_union_L {A} (m1 m2 : M A) : dom D (m1 ∪ m2) = dom D m1 ∪ dom D m2. +Proof. unfold_leibniz; apply dom_union. Qed. +Lemma dom_intersection_L {A} (m1 m2 : M A) : + dom D (m1 ∩ m2) = dom D m1 ∩ dom D m2. +Proof. unfold_leibniz; apply dom_intersection. Qed. +Lemma dom_difference_L {A} (m1 m2 : M A) : dom D (m1 ∖ m2) = dom D m1 ∖ dom D m2. +Proof. unfold_leibniz; apply dom_difference. Qed. +Lemma dom_fmap_L {A B} (f : A → B) m : dom D (f <$> m) = dom D m. +Proof. unfold_leibniz; apply dom_fmap. Qed. End fin_map_dom. -- GitLab