diff --git a/theories/list_numbers.v b/theories/list_numbers.v index 4a8b2af4fcfb92a5c817a0f7a523650082098fa8..b976599c9aa9e967b8116a1e933b28654b04eb8c 100644 --- a/theories/list_numbers.v +++ b/theories/list_numbers.v @@ -73,8 +73,8 @@ Section seq. by rewrite IH, Nat.add_succ_r. Qed. - Lemma elem_of_seq start sz x : - x ∈ seq start sz ↔ (start ≤ x < start + sz)%nat. + Lemma elem_of_seq j n k : + k ∈ seq j n ↔ j ≤ k < j + n. Proof. rewrite elem_of_list_In, in_seq. done. Qed. Lemma Forall_seq (P : nat → Prop) i n : @@ -156,13 +156,13 @@ Section seqZ. intros. simpl. lia. Qed. - Lemma elem_of_seqZ start sz x : - x ∈ seqZ start sz ↔ start ≤ x < start + sz. + Lemma elem_of_seqZ m n k : + k ∈ seqZ m n ↔ m ≤ k < m + n. Proof. rewrite elem_of_list_lookup. setoid_rewrite lookup_seqZ. split; intros. - - destruct H as [i ?]. lia. - - exists (Z.to_nat (x - start)). lia. + - destruct H as [??]. lia. + - exists (Z.to_nat (k - m)). lia. Qed. Lemma Forall_seqZ (P : Z → Prop) m n :