diff --git a/tests/gmap.ref b/tests/gmap.ref index a4d42549233b5c0153c1b455eb21f2651d09f7d4..8b1fa98fcf41db2dd1a8077a4957ed1ff9032285 100644 --- a/tests/gmap.ref +++ b/tests/gmap.ref @@ -70,3 +70,9 @@ Failed to progress. ============================ bool_decide (∅ ⊆ {[1; 2; 3]}) = true +The command has indeed failed with message: +Nothing to inject. +The command has indeed failed with message: +Nothing to inject. +The command has indeed failed with message: +Failed to progress. diff --git a/tests/gmap.v b/tests/gmap.v index 6cb7029b63ea9553c3255497fe63bd09b68fb38d..987c0fe699f9c45b55eb46191ac38d0721faeb2e 100644 --- a/tests/gmap.v +++ b/tests/gmap.v @@ -68,3 +68,17 @@ Proof. Show. reflexivity. Qed. + +Lemma should_not_unfold (m1 m2 : gmap nat nat) k x : + dom (gset nat) m1 = dom (gset nat) m2 → + <[k:=x]> m1 = <[k:=x]> m2 → + True. +Proof. + (** Make sure that [injection]/[simplify_eq] does not unfold constructs on + [gmap] and [gset]. *) + intros Hdom Hinsert. + Fail injection Hdom. + Fail injection Hinsert. + Fail progress simplify_eq. + done. +Qed. diff --git a/theories/gmap.v b/theories/gmap.v index 97726848b7b816d38e1ffb547545094017bf71b6..9b49181e25bfa288ea31a9e22d947d7e0939e256 100644 --- a/theories/gmap.v +++ b/theories/gmap.v @@ -251,7 +251,11 @@ Section gset. Global Instance gset_elem_of_dec : RelDecision (∈@{gset K}) | 1 := _. Global Instance gset_disjoint_dec : RelDecision (##@{gset K}) := _. Global Instance gset_subseteq_dec : RelDecision (⊆@{gset K}) := _. - Global Instance gset_dom {A} : Dom (gmap K A) (gset K) := mapset_dom. + + (** We put in an eta expansion to avoid [injection] from unfolding equalities + like [dom (gset _) m1 = dom (gset _) m2]. *) + Global Instance gset_dom {A} : Dom (gmap K A) (gset K) := λ m, + let '(GMap m Hm) := m in mapset_dom (GMap m Hm). Global Arguments gset_elem_of : simpl never. Global Arguments gset_empty : simpl never. @@ -273,7 +277,11 @@ Section gset. Global Instance gset_semi_set : SemiSet K (gset K) | 1 := _. Global Instance gset_set : Set_ K (gset K) | 1 := _. Global Instance gset_fin_set : FinSet K (gset K) := _. - Global Instance gset_dom_spec : FinMapDom K (gmap K) (gset K) := mapset_dom_spec. + Global Instance gset_dom_spec : FinMapDom K (gmap K) (gset K). + Proof. + pose proof (mapset_dom_spec (M:=gmap K)) as [?? Hdom]; split; auto. + intros A m. specialize (Hdom A m). by destruct m. + Qed. (** If you are looking for a lemma showing that [gset] is extensional, see [sets.set_eq]. *)