diff --git a/theories/collections.v b/theories/collections.v index db4d470ec4760e04b0b4f7daf0a89038fac32a0d..60dc37189c9f07deb6e69b110a7fa2101020ebc5 100644 --- a/theories/collections.v +++ b/theories/collections.v @@ -645,6 +645,11 @@ Section collection. intros ? x; split; rewrite !elem_of_union, elem_of_difference; [|intuition]. destruct (decide (x ∈ X)); intuition. Qed. + Lemma subseteq_disjoint_union X Y : X ⊆ Y ↔ ∃ Z, Y ≡ X ∪ Z ∧ X ⊥ Z. + Proof. + split; [|set_solver]. + exists (Y ∖ X); split; [auto using union_difference|set_solver]. + Qed. Lemma non_empty_difference X Y : X ⊂ Y → Y ∖ X ≢ ∅. Proof. intros [HXY1 HXY2] Hdiff. destruct HXY2. set_solver. Qed. Lemma empty_difference_subseteq X Y : X ∖ Y ≡ ∅ → X ⊆ Y. @@ -657,6 +662,8 @@ Section collection. Proof. unfold_leibniz. apply non_empty_difference. Qed. Lemma empty_difference_subseteq_L X Y : X ∖ Y = ∅ → X ⊆ Y. Proof. unfold_leibniz. apply empty_difference_subseteq. Qed. + Lemma subseteq_disjoint_union_L X Y : X ⊆ Y ↔ ∃ Z, Y = X ∪ Z ∧ X ⊥ Z. + Proof. unfold_leibniz. apply subseteq_disjoint_union. Qed. End dec. End collection.