diff --git a/theories/collections.v b/theories/collections.v index 7169530309df438b8df9387ae050eec204223fd0..45282d1aff4b46f54b91285dd56ff2ebf19eb81f 100644 --- a/theories/collections.v +++ b/theories/collections.v @@ -93,14 +93,27 @@ Section simple_collection. End dec. End simple_collection. -Definition of_option `{Singleton A C} `{Empty C} (x : option A) : C := +Definition of_option `{Singleton A C, Empty C} (x : option A) : C := match x with None => ∅ | Some a => {[ a ]} end. +Fixpoint of_list `{Singleton A C, Empty C, Union C} (l : list A) : C := + match l with [] => ∅ | x :: l => {[ x ]} ∪ of_list l end. -Lemma elem_of_of_option `{SimpleCollection A C} (x : A) o : - x ∈ of_option o ↔ o = Some x. -Proof. - destruct o; simpl; rewrite ?elem_of_empty, ?elem_of_singleton; naive_solver. -Qed. +Section of_option_list. + Context `{SimpleCollection A C}. + Lemma elem_of_of_option (x : A) o : x ∈ of_option o ↔ o = Some x. + Proof. + destruct o; simpl; + rewrite ?elem_of_empty, ?elem_of_singleton; naive_solver. + Qed. + Lemma elem_of_of_list (x : A) l : x ∈ of_list l ↔ x ∈ l. + Proof. + split. + * induction l; simpl; [by rewrite elem_of_empty|]. + rewrite elem_of_union, elem_of_singleton; + intros [->|?]; constructor (auto). + * induction 1; simpl; rewrite elem_of_union, elem_of_singleton; auto. + Qed. +End of_option_list. Global Instance collection_guard `{CollectionMonad M} : MGuard M := λ P dec A x, match dec with left H => x H | _ => ∅ end.