diff --git a/theories/gmultiset.v b/theories/gmultiset.v index 371db3e28ccc760003defa28270c846e3d5ab7f6..3d164a8e8394e9075b4409ad8ce0a2a9e0e643bb 100644 --- a/theories/gmultiset.v +++ b/theories/gmultiset.v @@ -470,7 +470,7 @@ Section more_lemmas. Lemma gmultiset_subset_subseteq X Y : X ⊂ Y → X ⊆ Y. Proof. apply strict_include. Qed. - Hint Resolve gmultiset_subset_subseteq : core. + Local Hint Resolve gmultiset_subset_subseteq : core. Lemma gmultiset_empty_subseteq X : ∅ ⊆ X. Proof. multiset_solver. Qed. diff --git a/theories/list.v b/theories/list.v index 21923526acd9688bcd69e2f939f5c58d5ae63227..d8faeaf085f458044b8cd1454d23d20c1cf7651c 100644 --- a/theories/list.v +++ b/theories/list.v @@ -3113,7 +3113,7 @@ End Forall2_proper. Section Forall3. Context {A B C} (P : A → B → C → Prop). - Hint Extern 0 (Forall3 _ _ _ _) => constructor : core. + Local Hint Extern 0 (Forall3 _ _ _ _) => constructor : core. Lemma Forall3_app l1 l2 k1 k2 k1' k2' : Forall3 P l1 k1 k1' → Forall3 P l2 k2 k2' → diff --git a/theories/relations.v b/theories/relations.v index 81737ed495012993dd8bd1764db78ef5637ed3a1..46b8d580bdc4f7941afe92a8697e7e7ab9dcb1bc 100644 --- a/theories/relations.v +++ b/theories/relations.v @@ -81,7 +81,7 @@ Global Hint Unfold nf red : core. Section closure. Context `{R : relation A}. - Hint Constructors rtc nsteps bsteps tc : core. + Local Hint Constructors rtc nsteps bsteps tc : core. Lemma rtc_transitive x y z : rtc R x y → rtc R y z → rtc R x z. Proof. induction 1; eauto. Qed. @@ -271,7 +271,7 @@ End more_closure. Section properties. Context `{R : relation A}. - Hint Constructors rtc nsteps bsteps tc : core. + Local Hint Constructors rtc nsteps bsteps tc : core. Lemma nf_wn x : nf R x → wn R x. Proof. intros. exists x; eauto. Qed.