diff --git a/theories/gmultiset.v b/theories/gmultiset.v
index f6a8a17158c3358a25b78bd5ab55e594ae247785..730e3061f92ef27f2f53ee0e559811c5cc7301f1 100644
--- a/theories/gmultiset.v
+++ b/theories/gmultiset.v
@@ -397,6 +397,9 @@ Section more_lemmas.
   Lemma list_to_set_disj_app l1 l2 :
     list_to_set_disj (l1 ++ l2) =@{gmultiset A} list_to_set_disj l1 ⊎ list_to_set_disj l2.
   Proof. induction l1; multiset_solver. Qed.
+  Lemma elem_of_list_to_set_disj x l :
+    x ∈@{gmultiset A} list_to_set_disj l ↔ x ∈ l.
+  Proof. induction l; set_solver. Qed.
   Global Instance list_to_set_disj_perm :
     Proper ((≡ₚ) ==> (=)) (list_to_set_disj (C:=gmultiset A)).
   Proof. induction 1; multiset_solver. Qed.
@@ -603,6 +606,12 @@ Section more_lemmas.
   Lemma gmultiset_difference_subset X Y : X ≠ ∅ → X ⊆ Y → Y ∖ X ⊂ Y.
   Proof. multiset_solver. Qed.
 
+  Lemma gmultiset_difference_disj_union_r X Y Z : X ∖ Y = (X ⊎ Z) ∖ (Y ⊎ Z).
+  Proof. multiset_solver. Qed.
+
+  Lemma gmultiset_difference_disj_union_l X Y Z : X ∖ Y = (Z ⊎ X) ∖ (Z ⊎ Y).
+  Proof. multiset_solver. Qed.
+
   (** Mononicity *)
   Lemma gmultiset_elements_submseteq X Y : X ⊆ Y → elements X ⊆+ elements Y.
   Proof.