From 0e2a06feb9b23a8973928017031cc18fab78b31a Mon Sep 17 00:00:00 2001 From: Robbert Krebbers <mail@robbertkrebbers.nl> Date: Fri, 4 Dec 2015 20:57:55 +0100 Subject: [PATCH] Finite maps and finite sets over any countable type. --- theories/countable.v | 5 ++ theories/gmap.v | 119 +++++++++++++++++++++++++++++++++++++++++++ 2 files changed, 124 insertions(+) create mode 100644 theories/gmap.v diff --git a/theories/countable.v b/theories/countable.v index 628aa552..b2129f59 100644 --- a/theories/countable.v +++ b/theories/countable.v @@ -14,6 +14,11 @@ Definition encode_nat `{Countable A} (x : A) : nat := pred (Pos.to_nat (encode x)). Definition decode_nat `{Countable A} (i : nat) : option A := decode (Pos.of_nat (S i)). +Instance encode_injective `{Countable A} : Injective (=) (=) encode. +Proof. + intros x y Hxy; apply (injective Some). + by rewrite <-(decode_encode x), Hxy, decode_encode. +Qed. Lemma decode_encode_nat `{Countable A} x : decode_nat (encode_nat x) = Some x. Proof. pose proof (Pos2Nat.is_pos (encode x)). diff --git a/theories/gmap.v b/theories/gmap.v new file mode 100644 index 00000000..68530c02 --- /dev/null +++ b/theories/gmap.v @@ -0,0 +1,119 @@ +(* Copyright (c) 2012-2015, Robbert Krebbers. *) +(* This file is distributed under the terms of the BSD license. *) +(** This file implements finite maps and finite sets with keys of any countable +type. The implementation is based on [Pmap]s, radix-2 search trees. *) +Require Export prelude.countable prelude.fin_maps prelude.fin_map_dom. +Require Import prelude.pmap prelude.mapset. + +(** * The data structure *) +(** We pack a [Pmap] together with a proof that ensures that all keys correspond +to codes of actual elements of the countable type. *) +Definition gmap_wf `{Countable K} {A} : Pmap A → Prop := + map_Forall (λ p _, encode <$> decode p = Some p). +Record gmap K `{Countable K} A := GMap { + gmap_car : Pmap A; + gmap_prf : bool_decide (gmap_wf gmap_car) +}. +Arguments GMap {_ _ _ _} _ _. +Arguments gmap_car {_ _ _ _} _. +Lemma gmap_eq `{Countable K} {A} (m1 m2 : gmap K A) : + m1 = m2 ↔ gmap_car m1 = gmap_car m2. +Proof. + split; [by intros ->|intros]. destruct m1, m2; simplify_equality'. + f_equal; apply proof_irrel. +Qed. +Instance gmap_eq_eq `{Countable K} `{∀ x y : A, Decision (x = y)} + (m1 m2 : gmap K A) : Decision (m1 = m2). +Proof. + refine (cast_if (decide (gmap_car m1 = gmap_car m2))); + abstract (by rewrite gmap_eq). +Defined. + +(** * Operations on the data structure *) +Instance gmap_lookup `{Countable K} {A} : Lookup K A (gmap K A) := λ i m, + let (m,_) := m in m !! encode i. +Instance gmap_empty `{Countable K} {A} : Empty (gmap K A) := GMap ∅ I. +Lemma gmap_partial_alter_wf `{Countable K} {A} (f : option A → option A) m i : + gmap_wf m → gmap_wf (partial_alter f (encode i) m). +Proof. + intros Hm p x. destruct (decide (encode i = p)) as [<-|?]. + * rewrite decode_encode; eauto. + * rewrite lookup_partial_alter_ne by done. by apply Hm. +Qed. +Instance gmap_partial_alter `{Countable K} {A} : + PartialAlter K A (gmap K A) := λ f i m, + let (m,Hm) := m in GMap (partial_alter f (encode i) m) + (bool_decide_pack _ (gmap_partial_alter_wf f m i + (bool_decide_unpack _ Hm))). +Lemma gmap_fmap_wf `{Countable K} {A B} (f : A → B) m : + gmap_wf m → gmap_wf (f <$> m). +Proof. intros ? p x. rewrite lookup_fmap, fmap_Some; intros (?&?&?); eauto. Qed. +Instance gmap_fmap `{Countable K} : FMap (gmap K) := λ A B f m, + let (m,Hm) := m in GMap (f <$> m) + (bool_decide_pack _ (gmap_fmap_wf f m (bool_decide_unpack _ Hm))). +Lemma gmap_omap_wf `{Countable K} {A B} (f : A → option B) m : + gmap_wf m → gmap_wf (omap f m). +Proof. intros ? p x; rewrite lookup_omap, bind_Some; intros (?&?&?); eauto. Qed. +Instance gmap_omap `{Countable K} : OMap (gmap K) := λ A B f m, + let (m,Hm) := m in GMap (omap f m) + (bool_decide_pack _ (gmap_omap_wf f m (bool_decide_unpack _ Hm))). +Lemma gmap_merge_wf `{Countable K} {A B C} + (f : option A → option B → option C) m1 m2 : + let f' o1 o2 := match o1, o2 with None, None => None | _, _ => f o1 o2 end in + gmap_wf m1 → gmap_wf m2 → gmap_wf (merge f' m1 m2). +Proof. + intros f' Hm1 Hm2 p z; rewrite lookup_merge by done; intros. + destruct (m1 !! _) eqn:?, (m2 !! _) eqn:?; naive_solver. +Qed. +Instance gmap_merge `{Countable K} : Merge (gmap K) := λ A B C f m1 m2, + let (m1,Hm1) := m1 in let (m2,Hm2) := m2 in + let f' o1 o2 := match o1, o2 with None, None => None | _, _ => f o1 o2 end in + GMap (merge f' m1 m2) (bool_decide_pack _ (gmap_merge_wf f _ _ + (bool_decide_unpack _ Hm1) (bool_decide_unpack _ Hm2))). +Instance gmap_to_list `{Countable K} {A} : FinMapToList K A (gmap K A) := λ m, + let (m,_) := m in omap (λ ix : positive * A, + let (i,x) := ix in (,x) <$> decode i) (map_to_list m). + +(** * Instantiation of the finite map interface *) +Instance gmap_finmap `{Countable K} : FinMap K (gmap K). +Proof. + split. + * unfold lookup; intros A [m1 Hm1] [m2 Hm2] Hm. + apply gmap_eq, map_eq; intros i; simpl in *. + apply bool_decide_unpack in Hm1; apply bool_decide_unpack in Hm2. + apply option_eq; intros x; split; intros Hi. + + pose proof (Hm1 i x Hi); simpl in *. + by destruct (decode i); simplify_equality'; rewrite <-Hm. + + pose proof (Hm2 i x Hi); simpl in *. + by destruct (decode i); simplify_equality'; rewrite Hm. + * done. + * intros A f [m Hm] i; apply (lookup_partial_alter f m). + * intros A f [m Hm] i j Hs; apply (lookup_partial_alter_ne f m). + by contradict Hs; apply (injective encode). + * intros A B f [m Hm] i; apply (lookup_fmap f m). + * intros A [m Hm]; unfold map_to_list; simpl. + apply bool_decide_unpack, map_Forall_to_list in Hm; revert Hm. + induction (NoDup_map_to_list m) as [|[p x] l Hpx]; + inversion 1 as [|??? Hm']; simplify_equality'; [by constructor|]. + destruct (decode p) as [i|] eqn:?; simplify_equality'; constructor; eauto. + rewrite elem_of_list_omap; intros ([p' x']&?&?); simplify_equality'. + feed pose proof (proj1 (Forall_forall _ _) Hm' (p',x')); simpl in *; auto. + by destruct (decode p') as [i'|]; simplify_equality'. + * intros A [m Hm] i x; unfold map_to_list, lookup; simpl. + apply bool_decide_unpack in Hm; rewrite elem_of_list_omap; split. + + intros ([p' x']&Hp'&?); apply elem_of_map_to_list in Hp'. + feed pose proof (Hm p' x'); simpl in *; auto. + by destruct (decode p') as [i'|] eqn:?; simplify_equality'. + + intros; exists (encode i,x); simpl. + by rewrite elem_of_map_to_list, decode_encode. + * intros A B f [m Hm] i; apply (lookup_omap f m). + * intros A B C f ? [m1 Hm1] [m2 Hm2] i; unfold merge, lookup; simpl. + set (f' o1 o2 := match o1, o2 with None,None => None | _, _ => f o1 o2 end). + by rewrite lookup_merge by done; destruct (m1 !! _), (m2 !! _). +Qed. + +(** * Finite sets *) +Notation gset K := (mapset (gmap K)). +Instance gset_dom `{Countable K} {A} : Dom (gmap K A) (gset K) := mapset_dom. +Instance gset_dom_spec `{Countable K} : + FinMapDom K (gmap K) (gset K) := mapset_dom_spec. -- GitLab