From 060c2b8f103e655290c17c94196a4dd40fb13bde Mon Sep 17 00:00:00 2001 From: Robbert Krebbers <mail@robbertkrebbers.nl> Date: Mon, 22 Feb 2016 21:43:44 +0100 Subject: [PATCH] Let set_solver not use eauto by default. In most cases there is a lot of duplicate proof search performed by both naive_solver and eauto. Especially since naive_solver calls its tactic (in the case of set_solver this used to be eauto) quite eagerly this made it very slow. Note that set_solver is this too slow and should be improved. --- theories/collections.v | 10 +++++----- 1 file changed, 5 insertions(+), 5 deletions(-) diff --git a/theories/collections.v b/theories/collections.v index c229818e..f2979bd8 100644 --- a/theories/collections.v +++ b/theories/collections.v @@ -262,7 +262,7 @@ Tactic Notation "set_solver" "-" hyp_list(Hs) "/" tactic3(tac) := clear Hs; set_solver tac. Tactic Notation "set_solver" "+" hyp_list(Hs) "/" tactic3(tac) := revert Hs; clear; set_solver tac. -Tactic Notation "set_solver" := set_solver eauto. +Tactic Notation "set_solver" := set_solver idtac. Tactic Notation "set_solver" "-" hyp_list(Hs) := clear Hs; set_solver. Tactic Notation "set_solver" "+" hyp_list(Hs) := revert Hs; clear; set_solver. @@ -537,10 +537,10 @@ Section collection_monad. Global Instance collection_fmap_mono {A B} : Proper (pointwise_relation _ (=) ==> (⊆) ==> (⊆)) (@fmap M _ A B). - Proof. intros f g ? X Y ?; set_solver. Qed. + Proof. intros f g ? X Y ?; set_solver eauto. Qed. Global Instance collection_fmap_proper {A B} : Proper (pointwise_relation _ (=) ==> (≡) ==> (≡)) (@fmap M _ A B). - Proof. intros f g ? X Y [??]; split; set_solver. Qed. + Proof. intros f g ? X Y [??]; split; set_solver eauto. Qed. Global Instance collection_bind_mono {A B} : Proper (((=) ==> (⊆)) ==> (⊆) ==> (⊆)) (@mbind M _ A B). Proof. unfold respectful; intros f g Hfg X Y ?; set_solver. Qed. @@ -575,12 +575,12 @@ Section collection_monad. l ∈ mapM f k ↔ Forall2 (λ x y, x ∈ f y) l k. Proof. split. - - revert l. induction k; set_solver. + - revert l. induction k; set_solver eauto. - induction 1; set_solver. Qed. Lemma collection_mapM_length {A B} (f : A → M B) l k : l ∈ mapM f k → length l = length k. - Proof. revert l; induction k; set_solver. Qed. + Proof. revert l; induction k; set_solver eauto. Qed. Lemma elem_of_mapM_fmap {A B} (f : A → B) (g : B → M A) l k : Forall (λ x, ∀ y, y ∈ g x → f y = x) l → k ∈ mapM g l → fmap f k = l. Proof. -- GitLab