diff --git a/theories/collections.v b/theories/collections.v index c229818e1366958356f273342de9b8850ffdc121..f2979bd81e02d81b3e71a789000581d3d2e63018 100644 --- a/theories/collections.v +++ b/theories/collections.v @@ -262,7 +262,7 @@ Tactic Notation "set_solver" "-" hyp_list(Hs) "/" tactic3(tac) := clear Hs; set_solver tac. Tactic Notation "set_solver" "+" hyp_list(Hs) "/" tactic3(tac) := revert Hs; clear; set_solver tac. -Tactic Notation "set_solver" := set_solver eauto. +Tactic Notation "set_solver" := set_solver idtac. Tactic Notation "set_solver" "-" hyp_list(Hs) := clear Hs; set_solver. Tactic Notation "set_solver" "+" hyp_list(Hs) := revert Hs; clear; set_solver. @@ -537,10 +537,10 @@ Section collection_monad. Global Instance collection_fmap_mono {A B} : Proper (pointwise_relation _ (=) ==> (⊆) ==> (⊆)) (@fmap M _ A B). - Proof. intros f g ? X Y ?; set_solver. Qed. + Proof. intros f g ? X Y ?; set_solver eauto. Qed. Global Instance collection_fmap_proper {A B} : Proper (pointwise_relation _ (=) ==> (≡) ==> (≡)) (@fmap M _ A B). - Proof. intros f g ? X Y [??]; split; set_solver. Qed. + Proof. intros f g ? X Y [??]; split; set_solver eauto. Qed. Global Instance collection_bind_mono {A B} : Proper (((=) ==> (⊆)) ==> (⊆) ==> (⊆)) (@mbind M _ A B). Proof. unfold respectful; intros f g Hfg X Y ?; set_solver. Qed. @@ -575,12 +575,12 @@ Section collection_monad. l ∈ mapM f k ↔ Forall2 (λ x y, x ∈ f y) l k. Proof. split. - - revert l. induction k; set_solver. + - revert l. induction k; set_solver eauto. - induction 1; set_solver. Qed. Lemma collection_mapM_length {A B} (f : A → M B) l k : l ∈ mapM f k → length l = length k. - Proof. revert l; induction k; set_solver. Qed. + Proof. revert l; induction k; set_solver eauto. Qed. Lemma elem_of_mapM_fmap {A B} (f : A → B) (g : B → M A) l k : Forall (λ x, ∀ y, y ∈ g x → f y = x) l → k ∈ mapM g l → fmap f k = l. Proof.