collections.v 20.1 KB
Newer Older
Robbert Krebbers's avatar
Robbert Krebbers committed
1
(* Copyright (c) 2012-2014, Robbert Krebbers. *)
2 3 4 5 6 7
(* This file is distributed under the terms of the BSD license. *)
(** This file collects definitions and theorems on collections. Most
importantly, it implements some tactics to automatically solve goals involving
collections. *)
Require Export base tactics orders.

8 9 10
Instance collection_subseteq `{ElemOf A C} : SubsetEq C := λ X Y,
   x, x  X  x  Y.

11
(** * Basic theorems *)
12 13
Section simple_collection.
  Context `{SimpleCollection A C}.
Robbert Krebbers's avatar
Robbert Krebbers committed
14

15
  Lemma elem_of_empty x : x    False.
16
  Proof. split. apply not_elem_of_empty. done. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
17 18 19 20 21
  Lemma elem_of_union_l x X Y : x  X  x  X  Y.
  Proof. intros. apply elem_of_union. auto. Qed.
  Lemma elem_of_union_r x X Y : x  Y  x  X  Y.
  Proof. intros. apply elem_of_union. auto. Qed.

22
  Global Instance: BoundedJoinSemiLattice C.
23
  Proof. firstorder auto. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
24 25

  Lemma elem_of_subseteq X Y : X  Y   x, x  X  x  Y.
26
  Proof. done. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
27 28
  Lemma elem_of_equiv X Y : X  Y   x, x  X  x  Y.
  Proof. firstorder. Qed.
29 30
  Lemma elem_of_equiv_alt X Y :
    X  Y  ( x, x  X  x  Y)  ( x, x  Y  x  X).
Robbert Krebbers's avatar
Robbert Krebbers committed
31
  Proof. firstorder. Qed.
32 33 34
  Lemma elem_of_equiv_empty X : X     x, x  X.
  Proof. firstorder. Qed.

35 36 37
  Lemma elem_of_subseteq_singleton x X : x  X  {[ x ]}  X.
  Proof.
    split.
38
    * intros ??. rewrite elem_of_singleton. by intros ->.
39 40
    * intros Ex. by apply (Ex x), elem_of_singleton.
  Qed.
41
  Global Instance singleton_proper : Proper ((=) ==> ()) singleton.
42
  Proof. by repeat intro; subst. Qed.
43
  Global Instance elem_of_proper: Proper ((=) ==> () ==> iff) () | 5.
44
  Proof. intros ???; subst. firstorder. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
45

46
  Lemma elem_of_union_list Xs x : x   Xs   X, X  Xs  x  X.
47 48
  Proof.
    split.
49 50 51 52
    * induction Xs; simpl; intros HXs; [by apply elem_of_empty in HXs|].
      setoid_rewrite elem_of_cons. apply elem_of_union in HXs. naive_solver.
    * intros [X []]. induction 1; simpl; [by apply elem_of_union_l |].
      intros. apply elem_of_union_r; auto.
53 54 55 56 57 58 59 60 61
  Qed.

  Lemma non_empty_singleton x : {[ x ]}  .
  Proof. intros [E _]. by apply (elem_of_empty x), E, elem_of_singleton. Qed.
  Lemma not_elem_of_singleton x y : x  {[ y ]}  x  y.
  Proof. by rewrite elem_of_singleton. Qed.
  Lemma not_elem_of_union x X Y : x  X  Y  x  X  x  Y.
  Proof. rewrite elem_of_union. tauto. Qed.

62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82
  Section leibniz.
    Context `{!LeibnizEquiv C}.
    Lemma elem_of_equiv_L X Y : X = Y   x, x  X  x  Y.
    Proof. unfold_leibniz. apply elem_of_equiv. Qed.
    Lemma elem_of_equiv_alt_L X Y :
      X = Y  ( x, x  X  x  Y)  ( x, x  Y  x  X).
    Proof. unfold_leibniz. apply elem_of_equiv_alt. Qed.
    Lemma elem_of_equiv_empty_L X : X =    x, x  X.
    Proof. unfold_leibniz. apply elem_of_equiv_empty. Qed.
    Lemma non_empty_singleton_L x : {[ x ]}  .
    Proof. unfold_leibniz. apply non_empty_singleton. Qed.
  End leibniz.

  Section dec.
    Context `{ X Y : C, Decision (X  Y)}.
    Global Instance elem_of_dec_slow (x : A) (X : C) : Decision (x  X) | 100.
    Proof.
      refine (cast_if (decide_rel () {[ x ]} X));
        by rewrite elem_of_subseteq_singleton.
    Defined.
  End dec.
83 84
End simple_collection.

85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118
(** * Tactics *)
(** Given a hypothesis [H : _ ∈ _], the tactic [destruct_elem_of H] will
recursively split [H] for [(∪)], [(∩)], [(∖)], [map], [∅], [{[_]}]. *)
Tactic Notation "decompose_elem_of" hyp(H) :=
  let rec go H :=
  lazymatch type of H with
  | _   => apply elem_of_empty in H; destruct H
  | ?x  {[ ?y ]} =>
    apply elem_of_singleton in H; try first [subst y | subst x]
  | _  _  _ =>
    let H1 := fresh in let H2 := fresh in apply elem_of_union in H;
    destruct H as [H1|H2]; [go H1 | go H2]
  | _  _  _ =>
    let H1 := fresh in let H2 := fresh in apply elem_of_intersection in H;
    destruct H as [H1 H2]; go H1; go H2
  | _  _  _ =>
    let H1 := fresh in let H2 := fresh in apply elem_of_difference in H;
    destruct H as [H1 H2]; go H1; go H2
  | ?x  _ <$> _ =>
    let H1 := fresh in apply elem_of_fmap in H;
    destruct H as [? [? H1]]; try (subst x); go H1
  | _  _ = _ =>
    let H1 := fresh in let H2 := fresh in apply elem_of_bind in H;
    destruct H as [? [H1 H2]]; go H1; go H2
  | ?x  mret ?y =>
    apply elem_of_ret in H; try first [subst y | subst x]
  | _  mjoin _ = _ =>
    let H1 := fresh in let H2 := fresh in apply elem_of_join in H;
    destruct H as [? [H1 H2]]; go H1; go H2
  | _ => idtac
  end in go H.
Tactic Notation "decompose_elem_of" :=
  repeat_on_hyps (fun H => decompose_elem_of H).

119 120
Ltac decompose_empty := repeat
  match goal with
121 122 123 124
  | H :    |- _ => clear H
  | H :  =  |- _ => clear H
  | H :   _ |- _ => symmetry in H
  | H :  = _ |- _ => symmetry in H
125 126 127
  | H : _  _   |- _ => apply empty_union in H; destruct H
  | H : _  _   |- _ => apply non_empty_union in H; destruct H
  | H : {[ _ ]}   |- _ => destruct (non_empty_singleton _ H)
128 129 130
  | H : _  _ =  |- _ => apply empty_union_L in H; destruct H
  | H : _  _   |- _ => apply non_empty_union_L in H; destruct H
  | H : {[ _ ]} =  |- _ => destruct (non_empty_singleton_L _ H)
131 132
  end.

133 134 135 136
(** The first pass of our collection tactic consists of eliminating all
occurrences of [(∪)], [(∩)], [(∖)], [(<$>)], [∅], [{[_]}], [(≡)], and [(⊆)],
by rewriting these into logically equivalent propositions. For example we
rewrite [A → x ∈ X ∪ ∅] into [A → x ∈ X ∨ False]. *)
137 138 139 140
Ltac unfold_elem_of :=
  repeat_on_hyps (fun H =>
    repeat match type of H with
    | context [ _  _ ] => setoid_rewrite elem_of_subseteq in H
Robbert Krebbers's avatar
Robbert Krebbers committed
141
    | context [ _  _ ] => setoid_rewrite subset_spec in H
142
    | context [ _   ] => setoid_rewrite elem_of_equiv_empty in H
143
    | context [ _  _ ] => setoid_rewrite elem_of_equiv_alt in H
144 145
    | context [ _ =  ] => setoid_rewrite elem_of_equiv_empty_L in H
    | context [ _ = _ ] => setoid_rewrite elem_of_equiv_alt_L in H
146 147 148 149 150
    | context [ _   ] => setoid_rewrite elem_of_empty in H
    | context [ _  {[ _ ]} ] => setoid_rewrite elem_of_singleton in H
    | context [ _  _  _ ] => setoid_rewrite elem_of_union in H
    | context [ _  _  _ ] => setoid_rewrite elem_of_intersection in H
    | context [ _  _  _ ] => setoid_rewrite elem_of_difference in H
151 152 153 154
    | context [ _  _ <$> _ ] => setoid_rewrite elem_of_fmap in H
    | context [ _  mret _ ] => setoid_rewrite elem_of_ret in H
    | context [ _  _ = _ ] => setoid_rewrite elem_of_bind in H
    | context [ _  mjoin _ ] => setoid_rewrite elem_of_join in H
155 156
    end);
  repeat match goal with
Robbert Krebbers's avatar
Robbert Krebbers committed
157
  | |- context [ _  _ ] => setoid_rewrite elem_of_subseteq
Robbert Krebbers's avatar
Robbert Krebbers committed
158
  | |- context [ _  _ ] => setoid_rewrite subset_spec
159
  | |- context [ _   ] => setoid_rewrite elem_of_equiv_empty
Robbert Krebbers's avatar
Robbert Krebbers committed
160
  | |- context [ _  _ ] => setoid_rewrite elem_of_equiv_alt
161 162
  | |- context [ _ =  ] => setoid_rewrite elem_of_equiv_empty_L
  | |- context [ _ = _ ] => setoid_rewrite elem_of_equiv_alt_L
163
  | |- context [ _   ] => setoid_rewrite elem_of_empty
164
  | |- context [ _  {[ _ ]} ] => setoid_rewrite elem_of_singleton
Robbert Krebbers's avatar
Robbert Krebbers committed
165 166 167
  | |- context [ _  _  _ ] => setoid_rewrite elem_of_union
  | |- context [ _  _  _ ] => setoid_rewrite elem_of_intersection
  | |- context [ _  _  _ ] => setoid_rewrite elem_of_difference
168 169 170 171
  | |- context [ _  _ <$> _ ] => setoid_rewrite elem_of_fmap
  | |- context [ _  mret _ ] => setoid_rewrite elem_of_ret
  | |- context [ _  _ = _ ] => setoid_rewrite elem_of_bind
  | |- context [ _  mjoin _ ] => setoid_rewrite elem_of_join
Robbert Krebbers's avatar
Robbert Krebbers committed
172 173
  end.

174 175 176
(** The tactic [solve_elem_of tac] composes the above tactic with [intuition].
For goals that do not involve [≡], [⊆], [map], or quantifiers this tactic is
generally powerful enough. This tactic either fails or proves the goal. *)
177
Tactic Notation "solve_elem_of" tactic3(tac) :=
Robbert Krebbers's avatar
Robbert Krebbers committed
178
  simpl in *;
179
  decompose_empty;
180 181 182 183 184 185 186 187 188
  unfold_elem_of;
  solve [intuition (simplify_equality; tac)].
Tactic Notation "solve_elem_of" := solve_elem_of auto.

(** For goals with quantifiers we could use the above tactic but with
[firstorder] instead of [intuition] as finishing tactic. However, [firstorder]
fails or loops on very small goals generated by [solve_elem_of] already. We
use the [naive_solver] tactic as a substitute. This tactic either fails or
proves the goal. *)
189
Tactic Notation "esolve_elem_of" tactic3(tac) :=
190
  simpl in *;
191
  decompose_empty;
192 193 194
  unfold_elem_of;
  naive_solver tac.
Tactic Notation "esolve_elem_of" := esolve_elem_of eauto.
195 196
 
(** * More theorems *)
Robbert Krebbers's avatar
Robbert Krebbers committed
197 198 199 200
Section collection.
  Context `{Collection A C}.

  Global Instance: LowerBoundedLattice C.
201
  Proof. split. apply _. firstorder auto. solve_elem_of. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
202 203 204 205 206 207 208 209 210 211 212 213 214 215

  Lemma intersection_singletons x : {[x]}  {[x]}  {[x]}.
  Proof. esolve_elem_of. Qed.
  Lemma difference_twice X Y : (X  Y)  Y  X  Y.
  Proof. esolve_elem_of. Qed.
  Lemma empty_difference X Y : X  Y  X  Y  .
  Proof. esolve_elem_of. Qed.
  Lemma difference_diag X : X  X  .
  Proof. esolve_elem_of. Qed.
  Lemma difference_union_distr_l X Y Z : (X  Y)  Z  X  Z  Y  Z.
  Proof. esolve_elem_of. Qed.
  Lemma difference_intersection_distr_l X Y Z : (X  Y)  Z  X  Z  Y  Z.
  Proof. esolve_elem_of. Qed.

216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235
  Section leibniz.
    Context `{!LeibnizEquiv C}.
    Lemma intersection_singletons_L x : {[x]}  {[x]} = {[x]}.
    Proof. unfold_leibniz. apply intersection_singletons. Qed.
    Lemma difference_twice_L X Y : (X  Y)  Y = X  Y.
    Proof. unfold_leibniz. apply difference_twice. Qed.
    Lemma empty_difference_L X Y : X  Y  X  Y = .
    Proof. unfold_leibniz. apply empty_difference. Qed.
    Lemma difference_diag_L X : X  X = .
    Proof. unfold_leibniz. apply difference_diag. Qed.
    Lemma difference_union_distr_l_L X Y Z : (X  Y)  Z = X  Z  Y  Z.
    Proof. unfold_leibniz. apply difference_union_distr_l. Qed.
    Lemma difference_intersection_distr_l_L X Y Z :
      (X  Y)  Z = X  Z  Y  Z.
    Proof. unfold_leibniz. apply difference_intersection_distr_l. Qed.
  End leibniz.

  Section dec.
    Context `{ X Y : C, Decision (X  Y)}.
    Lemma not_elem_of_intersection x X Y : x  X  Y  x  X  x  Y.
236
    Proof. rewrite elem_of_intersection. destruct (decide (x  X)); tauto. Qed.
237
    Lemma not_elem_of_difference x X Y : x  X  Y  x  X  x  Y.
238
    Proof. rewrite elem_of_difference. destruct (decide (x  Y)); tauto. Qed.
239 240
    Lemma union_difference X Y : X  Y  Y  X  Y  X.
    Proof.
241 242
      split; intros x; rewrite !elem_of_union, elem_of_difference; [|intuition].
      destruct (decide (x  X)); intuition.
243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260
    Qed.
    Lemma non_empty_difference X Y : X  Y  Y  X  .
    Proof.
      intros [HXY1 HXY2] Hdiff. destruct HXY2. intros x.
      destruct (decide (x  X)); esolve_elem_of.
    Qed.

    Context `{!LeibnizEquiv C}.
    Lemma union_difference_L X Y : X  Y  Y = X  Y  X.
    Proof. unfold_leibniz. apply union_difference. Qed.
    Lemma non_empty_difference_L X Y : X  Y  Y  X  .
    Proof. unfold_leibniz. apply non_empty_difference. Qed.
  End dec.
End collection.

Section collection_ops.
  Context `{CollectionOps A C}.

Robbert Krebbers's avatar
Robbert Krebbers committed
261 262 263 264 265
  Lemma elem_of_intersection_with_list (f : A  A  option A) Xs Y x :
    x  intersection_with_list f Y Xs   xs y,
      Forall2 () xs Xs  y  Y  foldr (λ x, (= f x)) (Some y) xs = Some x.
  Proof.
    split.
266 267 268 269
    * revert x. induction Xs; simpl; intros x HXs; [eexists [], x; intuition|].
      rewrite elem_of_intersection_with in HXs; destruct HXs as (x1&x2&?&?&?).
      destruct (IHXs x2) as (xs & y & hy & ? & ?); trivial.
      eexists (x1 :: xs), y. intuition (simplify_option_equality; auto).
Robbert Krebbers's avatar
Robbert Krebbers committed
270 271 272 273 274 275 276 277 278 279 280
    * intros (xs & y & Hxs & ? & Hx). revert x Hx.
      induction Hxs; intros; simplify_option_equality; [done |].
      rewrite elem_of_intersection_with. naive_solver.
  Qed.

  Lemma intersection_with_list_ind (P Q : A  Prop) f Xs Y :
    ( y, y  Y  P y) 
    Forall (λ X,  x, x  X  Q x) Xs 
    ( x y z, Q x  P y  f x y = Some z  P z) 
     x, x  intersection_with_list f Y Xs  P x.
  Proof.
281
    intros HY HXs Hf. induction Xs; simplify_option_equality; [done |].
Robbert Krebbers's avatar
Robbert Krebbers committed
282 283 284
    intros x Hx. rewrite elem_of_intersection_with in Hx.
    decompose_Forall. destruct Hx as (? & ? & ? & ? & ?). eauto.
  Qed.
285
End collection_ops.
Robbert Krebbers's avatar
Robbert Krebbers committed
286

287
(** * Sets without duplicates up to an equivalence *)
288
Section NoDup.
289
  Context `{SimpleCollection A B} (R : relation A) `{!Equivalence R}.
Robbert Krebbers's avatar
Robbert Krebbers committed
290 291

  Definition elem_of_upto (x : A) (X : B) :=  y, y  X  R x y.
292
  Definition set_NoDup (X : B) :=  x y, x  X  y  X  R x y  x = y.
Robbert Krebbers's avatar
Robbert Krebbers committed
293 294

  Global Instance: Proper (() ==> iff) (elem_of_upto x).
Robbert Krebbers's avatar
Robbert Krebbers committed
295
  Proof. intros ??? E. unfold elem_of_upto. by setoid_rewrite E. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
296 297 298
  Global Instance: Proper (R ==> () ==> iff) elem_of_upto.
  Proof.
    intros ?? E1 ?? E2. split; intros [z [??]]; exists z.
299 300
    * rewrite <-E1, <-E2; intuition.
    * rewrite E1, E2; intuition.
Robbert Krebbers's avatar
Robbert Krebbers committed
301
  Qed.
302
  Global Instance: Proper (() ==> iff) set_NoDup.
Robbert Krebbers's avatar
Robbert Krebbers committed
303 304 305
  Proof. firstorder. Qed.

  Lemma elem_of_upto_elem_of x X : x  X  elem_of_upto x X.
306
  Proof. unfold elem_of_upto. esolve_elem_of. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
307
  Lemma elem_of_upto_empty x : ¬elem_of_upto x .
308
  Proof. unfold elem_of_upto. esolve_elem_of. Qed.
309
  Lemma elem_of_upto_singleton x y : elem_of_upto x {[ y ]}  R x y.
310
  Proof. unfold elem_of_upto. esolve_elem_of. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
311

312 313
  Lemma elem_of_upto_union X Y x :
    elem_of_upto x (X  Y)  elem_of_upto x X  elem_of_upto x Y.
314
  Proof. unfold elem_of_upto. esolve_elem_of. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
315
  Lemma not_elem_of_upto x X : ¬elem_of_upto x X   y, y  X  ¬R x y.
316
  Proof. unfold elem_of_upto. esolve_elem_of. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
317

318 319 320 321 322 323 324
  Lemma set_NoDup_empty: set_NoDup .
  Proof. unfold set_NoDup. solve_elem_of. Qed.
  Lemma set_NoDup_add x X :
    ¬elem_of_upto x X  set_NoDup X  set_NoDup ({[ x ]}  X).
  Proof. unfold set_NoDup, elem_of_upto. esolve_elem_of. Qed.
  Lemma set_NoDup_inv_add x X :
    x  X  set_NoDup ({[ x ]}  X)  ¬elem_of_upto x X.
325 326
  Proof.
    intros Hin Hnodup [y [??]].
327
    rewrite (Hnodup x y) in Hin; solve_elem_of.
328
  Qed.
329 330 331 332 333
  Lemma set_NoDup_inv_union_l X Y : set_NoDup (X  Y)  set_NoDup X.
  Proof. unfold set_NoDup. solve_elem_of. Qed.
  Lemma set_NoDup_inv_union_r X Y : set_NoDup (X  Y)  set_NoDup Y.
  Proof. unfold set_NoDup. solve_elem_of. Qed.
End NoDup.
Robbert Krebbers's avatar
Robbert Krebbers committed
334

335
(** * Quantifiers *)
Robbert Krebbers's avatar
Robbert Krebbers committed
336
Section quantifiers.
337
  Context `{SimpleCollection A B} (P : A  Prop).
Robbert Krebbers's avatar
Robbert Krebbers committed
338

339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363
  Definition set_Forall X :=  x, x  X  P x.
  Definition set_Exists X :=  x, x  X  P x.

  Lemma set_Forall_empty : set_Forall .
  Proof. unfold set_Forall. solve_elem_of. Qed.
  Lemma set_Forall_singleton x : set_Forall {[ x ]}  P x.
  Proof. unfold set_Forall. solve_elem_of. Qed.
  Lemma set_Forall_union X Y : set_Forall X  set_Forall Y  set_Forall (X  Y).
  Proof. unfold set_Forall. solve_elem_of. Qed.
  Lemma set_Forall_union_inv_1 X Y : set_Forall (X  Y)  set_Forall X.
  Proof. unfold set_Forall. solve_elem_of. Qed.
  Lemma set_Forall_union_inv_2 X Y : set_Forall (X  Y)  set_Forall Y.
  Proof. unfold set_Forall. solve_elem_of. Qed.

  Lemma set_Exists_empty : ¬set_Exists .
  Proof. unfold set_Exists. esolve_elem_of. Qed.
  Lemma set_Exists_singleton x : set_Exists {[ x ]}  P x.
  Proof. unfold set_Exists. esolve_elem_of. Qed.
  Lemma set_Exists_union_1 X Y : set_Exists X  set_Exists (X  Y).
  Proof. unfold set_Exists. esolve_elem_of. Qed.
  Lemma set_Exists_union_2 X Y : set_Exists Y  set_Exists (X  Y).
  Proof. unfold set_Exists. esolve_elem_of. Qed.
  Lemma set_Exists_union_inv X Y :
    set_Exists (X  Y)  set_Exists X  set_Exists Y.
  Proof. unfold set_Exists. esolve_elem_of. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
364 365
End quantifiers.

366 367
Section more_quantifiers.
  Context `{Collection A B}.
368

369 370 371 372 373 374
  Lemma set_Forall_weaken (P Q : A  Prop) (Hweaken :  x, P x  Q x) X :
    set_Forall P X  set_Forall Q X.
  Proof. unfold set_Forall. naive_solver. Qed.
  Lemma set_Exists_weaken (P Q : A  Prop) (Hweaken :  x, P x  Q x) X :
    set_Exists P X  set_Exists Q X.
  Proof. unfold set_Exists. naive_solver. Qed.
375 376
End more_quantifiers.

377 378 379
(** * Fresh elements *)
(** We collect some properties on the [fresh] operation. In particular we
generalize [fresh] to generate lists of fresh elements. *)
380
Section fresh.
381
  Context `{FreshSpec A C} .
382

383 384 385 386
  Definition fresh_sig (X : C) : { x : A | x  X } :=
    exist ( X) (fresh X) (is_fresh X).

  Global Instance fresh_proper: Proper (() ==> (=)) fresh.
387
  Proof. intros ???. by apply fresh_proper_alt, elem_of_equiv. Qed.
388

389 390 391 392 393 394
  Fixpoint fresh_list (n : nat) (X : C) : list A :=
    match n with
    | 0 => []
    | S n => let x := fresh X in x :: fresh_list n ({[ x ]}  X)
    end.

395 396
  Global Instance fresh_list_proper: Proper ((=) ==> () ==> (=)) fresh_list.
  Proof.
397 398
    intros ? n ->. induction n as [|n IH]; intros ?? E; f_equal'; [by rewrite E|].
    apply IH. by rewrite E.
399
  Qed.
400 401
  Lemma fresh_list_length n X : length (fresh_list n X) = n.
  Proof. revert X. induction n; simpl; auto. Qed.
402
  Lemma fresh_list_is_fresh n X x : x  fresh_list n X  x  X.
403
  Proof.
404 405 406
    revert X. induction n as [|n IH]; intros X; simpl; [by rewrite elem_of_nil|].
    rewrite elem_of_cons; intros [->| Hin]; [apply is_fresh|].
    apply IH in Hin; solve_elem_of.
407 408 409
  Qed.
  Lemma fresh_list_nodup n X : NoDup (fresh_list n X).
  Proof.
410 411
    revert X. induction n; simpl; constructor; auto.
    intros Hin. apply fresh_list_is_fresh in Hin. solve_elem_of.
412 413
  Qed.
End fresh.
414 415

Definition option_collection `{Singleton A C} `{Empty C} (x : option A) : C :=
416
  match x with None =>  | Some a => {[ a ]} end.
417

418
(** * Properties of implementations of collections that form a monad *)
419 420 421 422
Section collection_monad.
  Context `{CollectionMonad M}.

  Global Instance collection_guard: MGuard M := λ P dec A x,
423
    match dec with left H => x H | _ =>  end.
424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457

  Global Instance collection_fmap_proper {A B} (f : A  B) :
    Proper (() ==> ()) (fmap f).
  Proof. intros X Y E. esolve_elem_of. Qed.
  Global Instance collection_ret_proper {A} :
    Proper ((=) ==> ()) (@mret M _ A).
  Proof. intros X Y E. esolve_elem_of. Qed.
  Global Instance collection_bind_proper {A B} (f : A  M B) :
    Proper (() ==> ()) (mbind f).
  Proof. intros X Y E. esolve_elem_of. Qed.
  Global Instance collection_join_proper {A} :
    Proper (() ==> ()) (@mjoin M _ A).
  Proof. intros X Y E. esolve_elem_of. Qed.

  Lemma collection_fmap_compose {A B C} (f : A  B) (g : B  C) X :
    g  f <$> X  g <$> (f <$> X).
  Proof. esolve_elem_of. Qed.
  Lemma elem_of_fmap_1 {A B} (f : A  B) (X : M A) (y : B) :
    y  f <$> X   x, y = f x  x  X.
  Proof. esolve_elem_of. Qed.
  Lemma elem_of_fmap_2 {A B} (f : A  B) (X : M A) (x : A) :
    x  X  f x  f <$> X.
  Proof. esolve_elem_of. Qed.
  Lemma elem_of_fmap_2_alt {A B} (f : A  B) (X : M A) (x : A) (y : B) :
    x  X  y = f x  y  f <$> X.
  Proof. esolve_elem_of. Qed.

  Lemma elem_of_mapM {A B} (f : A  M B) l k :
    l  mapM f k  Forall2 (λ x y, x  f y) l k.
  Proof.
    split.
    * revert l. induction k; esolve_elem_of.
    * induction 1; esolve_elem_of.
  Qed.
458
  Lemma collection_mapM_length {A B} (f : A  M B) l k :
459 460 461 462
    l  mapM f k  length l = length k.
  Proof. revert l; induction k; esolve_elem_of. Qed.

  Lemma elem_of_mapM_fmap {A B} (f : A  B) (g : B  M A) l k :
463
    Forall (λ x,  y, y  g x  f y = x) l  k  mapM g l  fmap f k = l.
464
  Proof.
465 466
    intros Hl. revert k. induction Hl; simpl; intros;
      decompose_elem_of; f_equal'; auto.
467 468 469
  Qed.

  Lemma elem_of_mapM_Forall {A B} (f : A  M B) (P : B  Prop) l k :
470
    l  mapM f k  Forall (λ x,  y, y  f x  P y) k  Forall P l.
Robbert Krebbers's avatar
Robbert Krebbers committed
471
  Proof. rewrite elem_of_mapM. apply Forall2_Forall_l. Qed.
472 473
  Lemma elem_of_mapM_Forall2_l {A B C} (f : A  M B) (P: B  C  Prop) l1 l2 k :
    l1  mapM f k  Forall2 (λ x y,  z, z  f x  P z y) k l2 
Robbert Krebbers's avatar
Robbert Krebbers committed
474 475 476 477 478
    Forall2 P l1 l2.
  Proof.
    rewrite elem_of_mapM. intros Hl1. revert l2.
    induction Hl1; inversion_clear 1; constructor; auto.
  Qed.
479
End collection_monad.