option.v 6.03 KB
Newer Older
Robbert Krebbers's avatar
Robbert Krebbers committed
1
2
3
4
5
6
7
8
Require Export base decidable orders.

Lemma None_ne_Some `(a : A) : None  Some a.
Proof. congruence. Qed.
Lemma Some_ne_None `(a : A) : Some a  None.
Proof. congruence. Qed.
Lemma eq_None_ne_Some `(x : option A) a : x = None  x  Some a.
Proof. congruence. Qed.
9
Instance Some_inj {A} : Injective (=) (=) (@Some A).
Robbert Krebbers's avatar
Robbert Krebbers committed
10
11
12
13
14
15
16
17
Proof. congruence. Qed.

Definition option_case {A B} (f : A  B) (b : B) (x : option A) :=
  match x with
  | None => b
  | Some a => f a
  end.

18
19
20
21
22
23
Definition maybe {A} (a : A) (x : option A) :=
  match x with
  | None => a
  | Some a => a
  end.

Robbert Krebbers's avatar
Robbert Krebbers committed
24
25
26
27
Lemma option_eq {A} (x y : option A) :
  x = y   a, x = Some a  y = Some a.
Proof.
  split.
28
29
30
31
32
33
  * intros. now subst.
  * intros E. destruct x, y.
    + now apply E.
    + symmetry. now apply E.
    + now apply E.
    + easy.
Robbert Krebbers's avatar
Robbert Krebbers committed
34
35
36
37
38
Qed.

Definition is_Some `(x : option A) :=  a, x = Some a.
Hint Extern 10 (is_Some _) => solve [eexists; eauto].

39
Ltac simplify_is_Some := repeat intro; repeat
Robbert Krebbers's avatar
Robbert Krebbers committed
40
  match goal with
41
  | _ => progress simplify_eqs
Robbert Krebbers's avatar
Robbert Krebbers committed
42
43
  | H : is_Some _ |- _ => destruct H as [??]
  | |- is_Some _ => eauto
44
  end.
Robbert Krebbers's avatar
Robbert Krebbers committed
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Lemma Some_is_Some `(a : A) : is_Some (Some a).
Proof. simplify_is_Some. Qed.
Lemma None_not_is_Some {A} : ¬is_Some (@None A).
Proof. simplify_is_Some. Qed.

Definition is_Some_1 `(x : option A) : is_Some x  { a | x = Some a } :=
  match x with
  | None => False_rect _  ex_ind None_ne_Some
  | Some a => λ _, aeq_refl
  end.
Lemma is_Some_2 `(x : option A) a : x = Some a  is_Some x.
Proof. simplify_is_Some. Qed.

Lemma eq_None_not_Some `(x : option A) : x = None  ¬is_Some x.
Proof. destruct x; simpl; firstorder congruence. Qed.

Lemma make_eq_Some {A} (x : option A) a : 
  is_Some x  ( b, x = Some b  b = a)  x = Some a.
Proof. intros [??] H. subst. f_equal. auto. Qed.

66
67
Instance option_eq_dec `{dec :  x y : A, Decision (x = y)} (x y : option A) :
    Decision (x = y) :=
Robbert Krebbers's avatar
Robbert Krebbers committed
68
69
70
71
72
73
  match x with
  | Some a =>
    match y with
    | Some b =>
      match dec a b with
      | left H => left (f_equal _ H)
74
      | right H => right (H  injective Some _ _)
Robbert Krebbers's avatar
Robbert Krebbers committed
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
      end
    | None => right (Some_ne_None _)
    end
  | None =>
    match y with
    | Some _ => right (None_ne_Some _)
    | None => left eq_refl
    end
  end.

Inductive option_lift `(P : A  Prop) : option A  Prop :=
  | option_lift_some x : P x  option_lift P (Some x)
  | option_lift_None : option_lift P None.

Ltac option_lift_inv := repeat
  match goal with
  | H : option_lift _ (Some _) |- _ => inversion H; clear H; subst
  | H : option_lift _ None |- _ => inversion H
  end.

Lemma option_lift_inv_Some `(P : A  Prop) x : option_lift P (Some x)  P x.
Proof. intros. now option_lift_inv. Qed.

98
99
Definition option_lift_sig `(P : A  Prop) (x : option A) :
    option_lift P x  option (sig P) :=
Robbert Krebbers's avatar
Robbert Krebbers committed
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
  match x with
  | Some a => λ p, Some (exist _ a (option_lift_inv_Some P a p))
  | None => λ _, None
  end.

Definition option_lift_dsig `(P : A  Prop) `{ x : A, Decision (P x)} 
    (x : option A) : option_lift P x  option (dsig P) :=
  match x with
  | Some a => λ p, Some (dexist a (option_lift_inv_Some P a p))
  | None => λ _, None
  end.

Lemma option_lift_dsig_Some `(P : A  Prop) `{ x : A, Decision (P x)} x y px py :
  option_lift_dsig P x px = Some (ypy)  x = Some y.
Proof.
  split.
116
117
  * destruct x; simpl; intros; now simplify_eqs.
  * intros. subst. simpl. f_equal. now apply dsig_eq.
Robbert Krebbers's avatar
Robbert Krebbers committed
118
119
120
121
122
123
Qed.

Lemma option_lift_dsig_is_Some `(P : A  Prop) `{ x : A, Decision (P x)} x px :
  is_Some (option_lift_dsig P x px)  is_Some x.
Proof.
  split.
124
125
  * intros [[??] ?]. eapply is_Some_2, option_lift_dsig_Some; eauto.
  * intros [??]. subst. eapply is_Some_2. reflexivity.
Robbert Krebbers's avatar
Robbert Krebbers committed
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
Qed.

Instance option_ret: MRet option := @Some.
Instance option_bind: MBind option := λ A B f x,
  match x with
  | Some a => f a
  | None => None
  end.
Instance option_join: MJoin option := λ A x,
  match x with
  | Some x => x
  | None => None
  end.
Instance option_fmap: FMap option := @option_map.

141
142
143
144
145
146
147
148
149
150
151
152
Ltac simplify_options := repeat
  match goal with
  | _ => progress simplify_eqs
  | H : mbind (M:=option) ?f ?o = ?x |- _ =>
    change (option_bind _ _ f o = x) in H;
    destruct o; simpl in H; try discriminate
  | H : context [ ?o = _ ] |- mbind (M:=option) ?f ?o = ?x =>
    change (option_bind _ _ f o = x);
    erewrite H by eauto;
    simpl
  end.

153
154
Lemma option_fmap_is_Some {A B} (f : A  B) (x : option A) :
  is_Some x  is_Some (f <$> x).
Robbert Krebbers's avatar
Robbert Krebbers committed
155
Proof. destruct x; split; intros [??]; subst; compute; eauto; discriminate. Qed.
156
157
Lemma option_fmap_is_None {A B} (f : A  B) (x : option A) :
  x = None  f <$> x = None.
Robbert Krebbers's avatar
Robbert Krebbers committed
158
159
160
161
162
163
164
165
166
Proof. unfold fmap, option_fmap. destruct x; simpl; split; congruence. Qed.

Instance option_union: UnionWith option := λ A f x y,
  match x, y with
  | Some a, Some b => Some (f a b)
  | Some a, None => Some a
  | None, Some b => Some b
  | None, None => None
  end.
167
Instance option_intersection: IntersectionWith option := λ A f x y,
Robbert Krebbers's avatar
Robbert Krebbers committed
168
169
170
171
  match x, y with
  | Some a, Some b => Some (f a b)
  | _, _ => None
  end.
172
173
174
175
176
177
Instance option_difference: DifferenceWith option := λ A f x y,
  match x, y with
  | Some a, Some b => f a b
  | Some a, None => Some a
  | None, _ => None
  end.
Robbert Krebbers's avatar
Robbert Krebbers committed
178

179
Section option_union_intersection.
Robbert Krebbers's avatar
Robbert Krebbers committed
180
181
182
183
184
185
186
187
188
189
190
191
  Context {A} (f : A  A  A).

  Global Instance: LeftId (=) None (union_with f).
  Proof. now intros [?|]. Qed.
  Global Instance: RightId (=) None (union_with f).
  Proof. now intros [?|]. Qed.
  Global Instance: Commutative (=) f  Commutative (=) (union_with f).
  Proof. intros ? [?|] [?|]; compute; try reflexivity. now rewrite (commutative f). Qed.
  Global Instance: Associative (=) f  Associative (=) (union_with f).
  Proof. intros ? [?|] [?|] [?|]; compute; try reflexivity. now rewrite (associative f). Qed.
  Global Instance: Idempotent (=) f  Idempotent (=) (union_with f).
  Proof. intros ? [?|]; compute; try reflexivity. now rewrite (idempotent f). Qed.
192
193
194
195
196
197
198
199
End option_union_intersection.

Section option_difference.
  Context {A} (f : A  A  option A).

  Global Instance: RightId (=) None (difference_with f).
  Proof. now intros [?|]. Qed.
End option_difference.