fin_maps.v 70.4 KB
Newer Older
Robbert Krebbers's avatar
Robbert Krebbers committed
1
(* Copyright (c) 2012-2015, Robbert Krebbers. *)
2
3
4
(* This file is distributed under the terms of the BSD license. *)
(** Finite maps associate data to keys. This file defines an interface for
finite maps and collects some theory on it. Most importantly, it proves useful
5
induction principles for finite maps and implements the tactic
6
[simplify_map_eq] to simplify goals involving finite maps. *)
7
From Coq Require Import Permutation.
8
From stdpp Require Export relations orders vector.
9

10
11
(** * Axiomatization of finite maps *)
(** We require Leibniz equality to be extensional on finite maps. This of
12
13
14
15
16
course limits the space of finite map implementations, but since we are mainly
interested in finite maps with numbers as indexes, we do not consider this to
be a serious limitation. The main application of finite maps is to implement
the memory, where extensionality of Leibniz equality is very important for a
convenient use in the assertions of our axiomatic semantics. *)
17

Robbert Krebbers's avatar
Robbert Krebbers committed
18
19
(** Finiteness is axiomatized by requiring that each map can be translated
to an association list. The translation to association lists is used to
20
prove well founded recursion on finite maps. *)
21

22
23
24
(** Finite map implementations are required to implement the [merge] function
which enables us to give a generic implementation of [union_with],
[intersection_with], and [difference_with]. *)
25

26
27
Class FinMapToList (K : Type) (M : Type  Type) :=
  map_to_list :  {A}, M A  list (K * A).
Robbert Krebbers's avatar
Robbert Krebbers committed
28

29
30
Class FinMap K M `{FMap M, Lookup K M,  A, Empty (M A), PartialAlter K M,
    OMap M, Merge M, FinMapToList K M,  i j : K, Decision (i = j)} := {
31
32
  map_eq {A} (m1 m2 : M A) : ( i, m1 !! i = m2 !! i)  m1 = m2;
  lookup_empty {A} i : ( : M A) !! i = None;
33
34
35
36
  lookup_partial_alter {A} f (m : M A) i :
    partial_alter f i m !! i = f (m !! i);
  lookup_partial_alter_ne {A} f (m : M A) i j :
    i  j  partial_alter f i m !! j = m !! j;
37
  lookup_fmap {A B} (f : A  B) (m : M A) i : (f <$> m) !! i = f <$> m !! i;
38
  NoDup_map_to_list {A} (m : M A) : NoDup (map_to_list m);
39
40
  elem_of_map_to_list {A} (m : M A) i x :
    (i,x)  map_to_list m  m !! i = Some x;
41
  lookup_omap {A B} (f : A  option B) m i : omap f m !! i = m !! i = f;
42
  lookup_merge {A B C} (f: option A  option B  option C) `{!DiagNone f} m1 m2 i :
43
    merge f m1 m2 !! i = f (m1 !! i) (m2 !! i)
Robbert Krebbers's avatar
Robbert Krebbers committed
44
45
}.

46
47
48
(** * Derived operations *)
(** All of the following functions are defined in a generic way for arbitrary
finite map implementations. These generic implementations do not cause a
49
50
significant performance loss to make including them in the finite map interface
worthwhile. *)
51
52
53
54
55
56
57
58
59
60
Instance map_insert `{PartialAlter K M} : Insert K M :=
  λ A i x, partial_alter (λ _, Some x) i.
Instance map_alter `{PartialAlter K M} : Alter K M :=
  λ A f, partial_alter (fmap f).
Instance map_delete `{PartialAlter K M} : Delete K M :=
  λ A, partial_alter (λ _, None).
Instance map_singleton `{PartialAlter K M,  A, Empty (M A)} : SingletonM K M :=
  λ A i x, <[i:=x]> .

Definition map_of_list `{Insert K M, Empty (M A)} : list (K * A)  M A :=
61
  fold_right (λ p, <[p.1:=p.2]>) .
62
63
Definition map_of_collection `{Elements K C, Insert K M, Empty (M A)}
    (f : K  option A) (X : C) : M A :=
64
  map_of_list (omap (λ i, (i,) <$> f i) (elements X)).
Robbert Krebbers's avatar
Robbert Krebbers committed
65

66
67
68
69
70
71
Instance map_union_with `{Merge M} : UnionWith M :=
  λ A f, merge (union_with f).
Instance map_intersection_with `{Merge M} : IntersectionWith M :=
  λ A f, merge (intersection_with f).
Instance map_difference_with `{Merge M} : DifferenceWith M :=
  λ A f, merge (difference_with f).
Robbert Krebbers's avatar
Robbert Krebbers committed
72

73
Instance map_equiv `{Lookup K M, Equiv A} : Equiv (M A) | 18 :=
74
  λ m1 m2,  i, m1 !! i  m2 !! i.
Robbert Krebbers's avatar
Robbert Krebbers committed
75

76
77
(** The relation [intersection_forall R] on finite maps describes that the
relation [R] holds for each pair in the intersection. *)
78
Definition map_Forall `{Lookup K M} {A} (P : K  A  Prop) : M A  Prop :=
Robbert Krebbers's avatar
Robbert Krebbers committed
79
  λ m,  i x, m !! i = Some x  P i x.
80
Definition map_relation `{Lookup K M} {A B} (R : A  B  Prop)
Robbert Krebbers's avatar
Robbert Krebbers committed
81
82
    (P : A  Prop) (Q : B  Prop) (m1 : M A) (m2 : M B) : Prop :=  i,
  option_relation R P Q (m1 !! i) (m2 !! i).
83
Definition map_included `{Lookup K M} {A}
Robbert Krebbers's avatar
Robbert Krebbers committed
84
  (R : relation A) : relation (M A) := map_relation R (λ _, False) (λ _, True).
85
Definition map_disjoint `{Lookup K M} {A} : relation (M A) :=
Robbert Krebbers's avatar
Robbert Krebbers committed
86
87
88
89
90
  map_relation (λ _ _, False) (λ _, True) (λ _, True).
Infix "⊥ₘ" := map_disjoint (at level 70) : C_scope.
Hint Extern 0 (_  _) => symmetry; eassumption.
Notation "( m ⊥ₘ.)" := (map_disjoint m) (only parsing) : C_scope.
Notation "(.⊥ₘ m )" := (λ m2, m2  m) (only parsing) : C_scope.
91
Instance map_subseteq `{Lookup K M} {A} : SubsetEq (M A) :=
Robbert Krebbers's avatar
Robbert Krebbers committed
92
  map_included (=).
Robbert Krebbers's avatar
Robbert Krebbers committed
93
94
95
96
97

(** The union of two finite maps only has a meaningful definition for maps
that are disjoint. However, as working with partial functions is inconvenient
in Coq, we define the union as a total function. In case both finite maps
have a value at the same index, we take the value of the first map. *)
98
Instance map_union `{Merge M} {A} : Union (M A) := union_with (λ x _, Some x).
99
100
101
Instance map_intersection `{Merge M} {A} : Intersection (M A) :=
  intersection_with (λ x _, Some x).

102
103
(** The difference operation removes all values from the first map whose
index contains a value in the second map as well. *)
104
Instance map_difference `{Merge M} {A} : Difference (M A) :=
105
  difference_with (λ _ _, None).
Robbert Krebbers's avatar
Robbert Krebbers committed
106

107
108
(** A stronger variant of map that allows the mapped function to use the index
of the elements. Implemented by conversion to lists, so not very efficient. *)
109
110
Definition map_imap `{Insert K M,  A, Empty (M A),
    FinMapToList K M} {A B} (f : K  A  option B) (m : M A) : M B :=
111
112
  map_of_list (omap (λ ix, (fst ix,) <$> curry f ix) (map_to_list m)).

113
114
115
116
(** * Theorems *)
Section theorems.
Context `{FinMap K M}.

Robbert Krebbers's avatar
Robbert Krebbers committed
117
118
(** ** Setoids *)
Section setoid.
119
120
  Context `{Equiv A} `{!Equivalence (() : relation A)}.
  Global Instance map_equivalence : Equivalence (() : relation (M A)).
Robbert Krebbers's avatar
Robbert Krebbers committed
121
122
  Proof.
    split.
123
124
    - by intros m i.
    - by intros m1 m2 ? i.
125
    - by intros m1 m2 m3 ?? i; trans (m2 !! i).
Robbert Krebbers's avatar
Robbert Krebbers committed
126
  Qed.
127
  Global Instance lookup_proper (i: K) : Proper (() ==> ()) (lookup (M:=M) i).
Robbert Krebbers's avatar
Robbert Krebbers committed
128
129
  Proof. by intros m1 m2 Hm. Qed.
  Global Instance partial_alter_proper :
130
    Proper ((() ==> ()) ==> (=) ==> () ==> ()) (partial_alter (M:=M)).
Robbert Krebbers's avatar
Robbert Krebbers committed
131
132
133
134
135
136
  Proof.
    by intros f1 f2 Hf i ? <- m1 m2 Hm j; destruct (decide (i = j)) as [->|];
      rewrite ?lookup_partial_alter, ?lookup_partial_alter_ne by done;
      try apply Hf; apply lookup_proper.
  Qed.
  Global Instance insert_proper (i : K) :
137
    Proper (() ==> () ==> ()) (insert (M:=M) i).
Robbert Krebbers's avatar
Robbert Krebbers committed
138
  Proof. by intros ???; apply partial_alter_proper; [constructor|]. Qed.
139
140
  Global Instance singleton_proper (i : K) :
    Proper (() ==> ()) (singletonM (M:=M) i).
141
  Proof. by intros ???; apply insert_proper. Qed.
142
  Global Instance delete_proper (i: K) : Proper (() ==> ()) (delete (M:=M) i).
Robbert Krebbers's avatar
Robbert Krebbers committed
143
144
  Proof. by apply partial_alter_proper; [constructor|]. Qed.
  Global Instance alter_proper :
145
    Proper ((() ==> ()) ==> (=) ==> () ==> ()) (alter (M:=M)).
Robbert Krebbers's avatar
Robbert Krebbers committed
146
147
148
149
  Proof.
    intros ?? Hf; apply partial_alter_proper.
    by destruct 1; constructor; apply Hf.
  Qed.
150
  Lemma merge_ext f g `{!DiagNone f, !DiagNone g} :
Robbert Krebbers's avatar
Robbert Krebbers committed
151
    (() ==> () ==> ())%signature f g 
152
    (() ==> () ==> ())%signature (merge (M:=M) f) (merge g).
Robbert Krebbers's avatar
Robbert Krebbers committed
153
154
155
156
  Proof.
    by intros Hf ?? Hm1 ?? Hm2 i; rewrite !lookup_merge by done; apply Hf.
  Qed.
  Global Instance union_with_proper :
157
    Proper ((() ==> () ==> ()) ==> () ==> () ==>()) (union_with (M:=M)).
Robbert Krebbers's avatar
Robbert Krebbers committed
158
159
160
  Proof.
    intros ?? Hf ?? Hm1 ?? Hm2 i; apply (merge_ext _ _); auto.
    by do 2 destruct 1; first [apply Hf | constructor].
161
  Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
162
163
  Global Instance map_leibniz `{!LeibnizEquiv A} : LeibnizEquiv (M A).
  Proof.
164
165
    intros m1 m2 Hm; apply map_eq; intros i.
    by unfold_leibniz; apply lookup_proper.
Robbert Krebbers's avatar
Robbert Krebbers committed
166
  Qed.
167
168
169
170
171
  Lemma map_equiv_empty (m : M A) : m    m = .
  Proof.
    split; [intros Hm; apply map_eq; intros i|by intros ->].
    by rewrite lookup_empty, <-equiv_None, Hm, lookup_empty.
  Qed.
172
  Lemma map_equiv_lookup_l (m1 m2 : M A) i x :
173
    m1  m2  m1 !! i = Some x   y, m2 !! i = Some y  x  y.
174
  Proof. generalize (equiv_Some_inv_l (m1 !! i) (m2 !! i) x); naive_solver. Qed.
175
176
177
178
179
  Global Instance map_fmap_proper `{Equiv B} (f : A  B) :
    Proper (() ==> ()) f  Proper (() ==> ()) (fmap (M:=M) f).
  Proof.
    intros ? m m' ? k; rewrite !lookup_fmap. by apply option_fmap_proper.
  Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
180
181
182
End setoid.

(** ** General properties *)
183
184
185
186
187
Lemma map_eq_iff {A} (m1 m2 : M A) : m1 = m2   i, m1 !! i = m2 !! i.
Proof. split. by intros ->. apply map_eq. Qed.
Lemma map_subseteq_spec {A} (m1 m2 : M A) :
  m1  m2   i x, m1 !! i = Some x  m2 !! i = Some x.
Proof.
Robbert Krebbers's avatar
Robbert Krebbers committed
188
  unfold subseteq, map_subseteq, map_relation. split; intros Hm i;
189
190
    specialize (Hm i); destruct (m1 !! i), (m2 !! i); naive_solver.
Qed.
191
192
Global Instance:  {A} (R : relation A), PreOrder R  PreOrder (map_included R).
Proof.
Robbert Krebbers's avatar
Robbert Krebbers committed
193
  split; [intros m i; by destruct (m !! i); simpl|].
194
  intros m1 m2 m3 Hm12 Hm23 i; specialize (Hm12 i); specialize (Hm23 i).
195
  destruct (m1 !! i), (m2 !! i), (m3 !! i); simplify_eq/=;
196
    done || etrans; eauto.
197
Qed.
198
Global Instance: PartialOrder (() : relation (M A)).
199
Proof.
200
201
202
  split; [apply _|].
  intros m1 m2; rewrite !map_subseteq_spec.
  intros; apply map_eq; intros i; apply option_eq; naive_solver.
203
204
205
Qed.
Lemma lookup_weaken {A} (m1 m2 : M A) i x :
  m1 !! i = Some x  m1  m2  m2 !! i = Some x.
206
Proof. rewrite !map_subseteq_spec. auto. Qed.
207
208
209
210
211
212
Lemma lookup_weaken_is_Some {A} (m1 m2 : M A) i :
  is_Some (m1 !! i)  m1  m2  is_Some (m2 !! i).
Proof. inversion 1. eauto using lookup_weaken. Qed.
Lemma lookup_weaken_None {A} (m1 m2 : M A) i :
  m2 !! i = None  m1  m2  m1 !! i = None.
Proof.
213
214
  rewrite map_subseteq_spec, !eq_None_not_Some.
  intros Hm2 Hm [??]; destruct Hm2; eauto.
215
216
Qed.
Lemma lookup_weaken_inv {A} (m1 m2 : M A) i x y :
217
218
  m1 !! i = Some x  m1  m2  m2 !! i = Some y  x = y.
Proof. intros Hm1 ? Hm2. eapply lookup_weaken in Hm1; eauto. congruence. Qed.
219
220
221
222
223
224
225
226
227
Lemma lookup_ne {A} (m : M A) i j : m !! i  m !! j  i  j.
Proof. congruence. Qed.
Lemma map_empty {A} (m : M A) : ( i, m !! i = None)  m = .
Proof. intros Hm. apply map_eq. intros. by rewrite Hm, lookup_empty. Qed.
Lemma lookup_empty_is_Some {A} i : ¬is_Some (( : M A) !! i).
Proof. rewrite lookup_empty. by inversion 1. Qed.
Lemma lookup_empty_Some {A} i (x : A) : ¬ !! i = Some x.
Proof. by rewrite lookup_empty. Qed.
Lemma map_subset_empty {A} (m : M A) : m  .
228
229
230
Proof.
  intros [_ []]. rewrite map_subseteq_spec. intros ??. by rewrite lookup_empty.
Qed.
231
232
Lemma map_fmap_empty {A B} (f : A  B) : f <$> ( : M A) = .
Proof. by apply map_eq; intros i; rewrite lookup_fmap, !lookup_empty. Qed.
233
234

(** ** Properties of the [partial_alter] operation *)
235
236
237
Lemma partial_alter_ext {A} (f g : option A  option A) (m : M A) i :
  ( x, m !! i = x  f x = g x)  partial_alter f i m = partial_alter g i m.
Proof.
238
239
  intros. apply map_eq; intros j. by destruct (decide (i = j)) as [->|?];
    rewrite ?lookup_partial_alter, ?lookup_partial_alter_ne; auto.
240
241
Qed.
Lemma partial_alter_compose {A} f g (m : M A) i:
242
243
  partial_alter (f  g) i m = partial_alter f i (partial_alter g i m).
Proof.
244
245
  intros. apply map_eq. intros ii. by destruct (decide (i = ii)) as [->|?];
    rewrite ?lookup_partial_alter, ?lookup_partial_alter_ne.
246
Qed.
247
Lemma partial_alter_commute {A} f g (m : M A) i j :
248
  i  j  partial_alter f i (partial_alter g j m) =
249
250
    partial_alter g j (partial_alter f i m).
Proof.
251
252
253
254
  intros. apply map_eq; intros jj. destruct (decide (jj = j)) as [->|?].
  { by rewrite lookup_partial_alter_ne,
      !lookup_partial_alter, lookup_partial_alter_ne. }
  destruct (decide (jj = i)) as [->|?].
255
  - by rewrite lookup_partial_alter,
256
     !lookup_partial_alter_ne, lookup_partial_alter by congruence.
257
  - by rewrite !lookup_partial_alter_ne by congruence.
258
259
260
261
Qed.
Lemma partial_alter_self_alt {A} (m : M A) i x :
  x = m !! i  partial_alter (λ _, x) i m = m.
Proof.
262
263
  intros. apply map_eq. intros ii. by destruct (decide (i = ii)) as [->|];
    rewrite ?lookup_partial_alter, ?lookup_partial_alter_ne.
264
Qed.
265
Lemma partial_alter_self {A} (m : M A) i : partial_alter (λ _, m !! i) i m = m.
266
Proof. by apply partial_alter_self_alt. Qed.
267
Lemma partial_alter_subseteq {A} f (m : M A) i :
268
  m !! i = None  m  partial_alter f i m.
269
270
271
272
Proof.
  rewrite map_subseteq_spec. intros Hi j x Hj.
  rewrite lookup_partial_alter_ne; congruence.
Qed.
273
Lemma partial_alter_subset {A} f (m : M A) i :
274
  m !! i = None  is_Some (f (m !! i))  m  partial_alter f i m.
275
Proof.
276
277
278
279
  intros Hi Hfi. split; [by apply partial_alter_subseteq|].
  rewrite !map_subseteq_spec. inversion Hfi as [x Hx]. intros Hm.
  apply (Some_ne_None x). rewrite <-(Hm i x); [done|].
  by rewrite lookup_partial_alter.
280
281
282
Qed.

(** ** Properties of the [alter] operation *)
283
284
Lemma alter_ext {A} (f g : A  A) (m : M A) i :
  ( x, m !! i = Some x  f x = g x)  alter f i m = alter g i m.
285
Proof. intro. apply partial_alter_ext. intros [x|] ?; f_equal/=; auto. Qed.
286
Lemma lookup_alter {A} (f : A  A) m i : alter f i m !! i = f <$> m !! i.
287
Proof. unfold alter. apply lookup_partial_alter. Qed.
288
Lemma lookup_alter_ne {A} (f : A  A) m i j : i  j  alter f i m !! j = m !! j.
289
Proof. unfold alter. apply lookup_partial_alter_ne. Qed.
290
291
292
293
294
295
296
297
298
Lemma alter_compose {A} (f g : A  A) (m : M A) i:
  alter (f  g) i m = alter f i (alter g i m).
Proof.
  unfold alter, map_alter. rewrite <-partial_alter_compose.
  apply partial_alter_ext. by intros [?|].
Qed.
Lemma alter_commute {A} (f g : A  A) (m : M A) i j :
  i  j  alter f i (alter g j m) = alter g j (alter f i m).
Proof. apply partial_alter_commute. Qed.
299
300
301
302
Lemma lookup_alter_Some {A} (f : A  A) m i j y :
  alter f i m !! j = Some y 
    (i = j   x, m !! j = Some x  y = f x)  (i  j  m !! j = Some y).
Proof.
303
  destruct (decide (i = j)) as [->|?].
304
  - rewrite lookup_alter. naive_solver (simplify_option_eq; eauto).
305
  - rewrite lookup_alter_ne by done. naive_solver.
306
307
308
309
Qed.
Lemma lookup_alter_None {A} (f : A  A) m i j :
  alter f i m !! j = None  m !! j = None.
Proof.
310
311
  by destruct (decide (i = j)) as [->|?];
    rewrite ?lookup_alter, ?fmap_None, ?lookup_alter_ne.
312
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
313
314
Lemma alter_id {A} (f : A  A) m i :
  ( x, m !! i = Some x  f x = x)  alter f i m = m.
315
Proof.
Robbert Krebbers's avatar
Robbert Krebbers committed
316
  intros Hi; apply map_eq; intros j; destruct (decide (i = j)) as [->|?].
317
  { rewrite lookup_alter; destruct (m !! j); f_equal/=; auto. }
Robbert Krebbers's avatar
Robbert Krebbers committed
318
  by rewrite lookup_alter_ne by done.
319
320
321
322
323
324
325
326
327
328
329
Qed.

(** ** Properties of the [delete] operation *)
Lemma lookup_delete {A} (m : M A) i : delete i m !! i = None.
Proof. apply lookup_partial_alter. Qed.
Lemma lookup_delete_ne {A} (m : M A) i j : i  j  delete i m !! j = m !! j.
Proof. apply lookup_partial_alter_ne. Qed.
Lemma lookup_delete_Some {A} (m : M A) i j y :
  delete i m !! j = Some y  i  j  m !! j = Some y.
Proof.
  split.
330
  - destruct (decide (i = j)) as [->|?];
331
      rewrite ?lookup_delete, ?lookup_delete_ne; intuition congruence.
332
  - intros [??]. by rewrite lookup_delete_ne.
333
Qed.
334
335
336
Lemma lookup_delete_is_Some {A} (m : M A) i j :
  is_Some (delete i m !! j)  i  j  is_Some (m !! j).
Proof. unfold is_Some; setoid_rewrite lookup_delete_Some; naive_solver. Qed.
337
338
339
Lemma lookup_delete_None {A} (m : M A) i j :
  delete i m !! j = None  i = j  m !! j = None.
Proof.
340
341
  destruct (decide (i = j)) as [->|?];
    rewrite ?lookup_delete, ?lookup_delete_ne; tauto.
342
343
344
Qed.
Lemma delete_empty {A} i : delete i ( : M A) = .
Proof. rewrite <-(partial_alter_self ) at 2. by rewrite lookup_empty. Qed.
345
Lemma delete_singleton {A} i (x : A) : delete i {[i := x]} = .
346
347
348
349
350
351
352
Proof. setoid_rewrite <-partial_alter_compose. apply delete_empty. Qed.
Lemma delete_commute {A} (m : M A) i j :
  delete i (delete j m) = delete j (delete i m).
Proof. destruct (decide (i = j)). by subst. by apply partial_alter_commute. Qed.
Lemma delete_insert_ne {A} (m : M A) i j x :
  i  j  delete i (<[j:=x]>m) = <[j:=x]>(delete i m).
Proof. intro. by apply partial_alter_commute. Qed.
353
Lemma delete_notin {A} (m : M A) i : m !! i = None  delete i m = m.
354
Proof.
355
356
  intros. apply map_eq. intros j. by destruct (decide (i = j)) as [->|?];
    rewrite ?lookup_delete, ?lookup_delete_ne.
357
358
359
360
361
362
363
364
365
366
Qed.
Lemma delete_partial_alter {A} (m : M A) i f :
  m !! i = None  delete i (partial_alter f i m) = m.
Proof.
  intros. unfold delete, map_delete. rewrite <-partial_alter_compose.
  unfold compose. by apply partial_alter_self_alt.
Qed.
Lemma delete_insert {A} (m : M A) i x :
  m !! i = None  delete i (<[i:=x]>m) = m.
Proof. apply delete_partial_alter. Qed.
367
368
Lemma insert_delete {A} (m : M A) i x : <[i:=x]>(delete i m) = <[i:=x]> m.
Proof. symmetry; apply (partial_alter_compose (λ _, Some x)). Qed.
369
Lemma delete_subseteq {A} (m : M A) i : delete i m  m.
370
371
372
Proof.
  rewrite !map_subseteq_spec. intros j x. rewrite lookup_delete_Some. tauto.
Qed.
373
Lemma delete_subseteq_compat {A} (m1 m2 : M A) i :
374
  m1  m2  delete i m1  delete i m2.
375
376
377
378
Proof.
  rewrite !map_subseteq_spec. intros ? j x.
  rewrite !lookup_delete_Some. intuition eauto.
Qed.
379
Lemma delete_subset_alt {A} (m : M A) i x : m !! i = Some x  delete i m  m.
380
Proof.
381
382
383
  split; [apply delete_subseteq|].
  rewrite !map_subseteq_spec. intros Hi. apply (None_ne_Some x).
  by rewrite <-(lookup_delete m i), (Hi i x).
384
Qed.
385
Lemma delete_subset {A} (m : M A) i : is_Some (m !! i)  delete i m  m.
386
387
388
389
390
Proof. inversion 1. eauto using delete_subset_alt. Qed.

(** ** Properties of the [insert] operation *)
Lemma lookup_insert {A} (m : M A) i x : <[i:=x]>m !! i = Some x.
Proof. unfold insert. apply lookup_partial_alter. Qed.
391
Lemma lookup_insert_rev {A}  (m : M A) i x y : <[i:=x]>m !! i = Some y  x = y.
392
Proof. rewrite lookup_insert. congruence. Qed.
393
Lemma lookup_insert_ne {A} (m : M A) i j x : i  j  <[i:=x]>m !! j = m !! j.
394
Proof. unfold insert. apply lookup_partial_alter_ne. Qed.
395
396
Lemma insert_insert {A} (m : M A) i x y : <[i:=x]>(<[i:=y]>m) = <[i:=x]>m.
Proof. unfold insert, map_insert. by rewrite <-partial_alter_compose. Qed.
397
398
399
400
401
402
403
Lemma insert_commute {A} (m : M A) i j x y :
  i  j  <[i:=x]>(<[j:=y]>m) = <[j:=y]>(<[i:=x]>m).
Proof. apply partial_alter_commute. Qed.
Lemma lookup_insert_Some {A} (m : M A) i j x y :
  <[i:=x]>m !! j = Some y  (i = j  x = y)  (i  j  m !! j = Some y).
Proof.
  split.
404
  - destruct (decide (i = j)) as [->|?];
405
      rewrite ?lookup_insert, ?lookup_insert_ne; intuition congruence.
406
  - intros [[-> ->]|[??]]; [apply lookup_insert|]. by rewrite lookup_insert_ne.
407
Qed.
408
409
410
Lemma lookup_insert_is_Some {A} (m : M A) i j x :
  is_Some (<[i:=x]>m !! j)  i = j  i  j  is_Some (m !! j).
Proof. unfold is_Some; setoid_rewrite lookup_insert_Some; naive_solver. Qed.
411
412
413
Lemma lookup_insert_None {A} (m : M A) i j x :
  <[i:=x]>m !! j = None  m !! j = None  i  j.
Proof.
414
415
416
  split; [|by intros [??]; rewrite lookup_insert_ne].
  destruct (decide (i = j)) as [->|];
    rewrite ?lookup_insert, ?lookup_insert_ne; intuition congruence.
417
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
418
Lemma insert_id {A} (m : M A) i x : m !! i = Some x  <[i:=x]>m = m.
419
420
421
422
423
424
425
426
Proof.
  intros; apply map_eq; intros j; destruct (decide (i = j)) as [->|];
    by rewrite ?lookup_insert, ?lookup_insert_ne by done.
Qed.
Lemma insert_included {A} R `{!Reflexive R} (m : M A) i x :
  ( y, m !! i = Some y  R y x)  map_included R m (<[i:=x]>m).
Proof.
  intros ? j; destruct (decide (i = j)) as [->|].
427
428
  - rewrite lookup_insert. destruct (m !! j); simpl; eauto.
  - rewrite lookup_insert_ne by done. by destruct (m !! j); simpl.
429
Qed.
430
Lemma insert_subseteq {A} (m : M A) i x : m !! i = None  m  <[i:=x]>m.
431
Proof. apply partial_alter_subseteq. Qed.
432
Lemma insert_subset {A} (m : M A) i x : m !! i = None  m  <[i:=x]>m.
433
434
Proof. intro. apply partial_alter_subset; eauto. Qed.
Lemma insert_subseteq_r {A} (m1 m2 : M A) i x :
435
  m1 !! i = None  m1  m2  m1  <[i:=x]>m2.
436
Proof.
437
438
439
  rewrite !map_subseteq_spec. intros ?? j ?.
  destruct (decide (j = i)) as [->|?]; [congruence|].
  rewrite lookup_insert_ne; auto.
440
441
Qed.
Lemma insert_delete_subseteq {A} (m1 m2 : M A) i x :
442
  m1 !! i = None  <[i:=x]> m1  m2  m1  delete i m2.
443
Proof.
444
445
446
447
  rewrite !map_subseteq_spec. intros Hi Hix j y Hj.
  destruct (decide (i = j)) as [->|]; [congruence|].
  rewrite lookup_delete_ne by done.
  apply Hix; by rewrite lookup_insert_ne by done.
448
449
Qed.
Lemma delete_insert_subseteq {A} (m1 m2 : M A) i x :
450
  m1 !! i = Some x  delete i m1  m2  m1  <[i:=x]> m2.
451
Proof.
452
453
  rewrite !map_subseteq_spec.
  intros Hix Hi j y Hj. destruct (decide (i = j)) as [->|?].
454
455
  - rewrite lookup_insert. congruence.
  - rewrite lookup_insert_ne by done. apply Hi. by rewrite lookup_delete_ne.
456
457
Qed.
Lemma insert_delete_subset {A} (m1 m2 : M A) i x :
458
  m1 !! i = None  <[i:=x]> m1  m2  m1  delete i m2.
459
Proof.
460
461
462
  intros ? [Hm12 Hm21]; split; [eauto using insert_delete_subseteq|].
  contradict Hm21. apply delete_insert_subseteq; auto.
  eapply lookup_weaken, Hm12. by rewrite lookup_insert.
463
464
Qed.
Lemma insert_subset_inv {A} (m1 m2 : M A) i x :
465
  m1 !! i = None  <[i:=x]> m1  m2 
466
467
   m2', m2 = <[i:=x]>m2'  m1  m2'  m2' !! i = None.
Proof.
468
  intros Hi Hm1m2. exists (delete i m2). split_and?.
469
470
  - rewrite insert_delete, insert_id. done.
    eapply lookup_weaken, strict_include; eauto. by rewrite lookup_insert.
471
472
  - eauto using insert_delete_subset.
  - by rewrite lookup_delete.
473
Qed.
474
Lemma insert_empty {A} i (x : A) : <[i:=x]> = {[i := x]}.
475
Proof. done. Qed.
476
477
478

(** ** Properties of the singleton maps *)
Lemma lookup_singleton_Some {A} i j (x y : A) :
479
  {[i := x]} !! j = Some y  i = j  x = y.
480
Proof.
481
  rewrite <-insert_empty,lookup_insert_Some, lookup_empty; intuition congruence.
482
Qed.
483
Lemma lookup_singleton_None {A} i j (x : A) : {[i := x]} !! j = None  i  j.
484
Proof. rewrite <-insert_empty,lookup_insert_None, lookup_empty; tauto. Qed.
485
Lemma lookup_singleton {A} i (x : A) : {[i := x]} !! i = Some x.
486
Proof. by rewrite lookup_singleton_Some. Qed.
487
Lemma lookup_singleton_ne {A} i j (x : A) : i  j  {[i := x]} !! j = None.
488
Proof. by rewrite lookup_singleton_None. Qed.
489
Lemma map_non_empty_singleton {A} i (x : A) : {[i := x]}  .
490
491
492
493
Proof.
  intros Hix. apply (f_equal (!! i)) in Hix.
  by rewrite lookup_empty, lookup_singleton in Hix.
Qed.
494
Lemma insert_singleton {A} i (x y : A) : <[i:=y]>{[i := x]} = {[i := y]}.
495
Proof.
496
  unfold singletonM, map_singleton, insert, map_insert.
497
498
  by rewrite <-partial_alter_compose.
Qed.
499
Lemma alter_singleton {A} (f : A  A) i x : alter f i {[i := x]} = {[i := f x]}.
500
Proof.
501
  intros. apply map_eq. intros i'. destruct (decide (i = i')) as [->|?].
502
503
  - by rewrite lookup_alter, !lookup_singleton.
  - by rewrite lookup_alter_ne, !lookup_singleton_ne.
504
505
Qed.
Lemma alter_singleton_ne {A} (f : A  A) i j x :
506
  i  j  alter f i {[j := x]} = {[j := x]}.
507
Proof.
508
509
  intros. apply map_eq; intros i'. by destruct (decide (i = i')) as [->|?];
    rewrite ?lookup_alter, ?lookup_singleton_ne, ?lookup_alter_ne by done.
510
511
Qed.

512
513
514
515
516
(** ** Properties of the map operations *)
Lemma fmap_empty {A B} (f : A  B) : f <$>  = .
Proof. apply map_empty; intros i. by rewrite lookup_fmap, lookup_empty. Qed.
Lemma omap_empty {A B} (f : A  option B) : omap f  = .
Proof. apply map_empty; intros i. by rewrite lookup_omap, lookup_empty. Qed.
517
518
519
Lemma fmap_insert {A B} (f: A  B) m i x: f <$> <[i:=x]>m = <[i:=f x]>(f <$> m).
Proof.
  apply map_eq; intros i'; destruct (decide (i' = i)) as [->|].
520
521
  - by rewrite lookup_fmap, !lookup_insert.
  - by rewrite lookup_fmap, !lookup_insert_ne, lookup_fmap by done.
522
Qed.
523
524
525
526
527
528
Lemma fmap_delete {A B} (f: A  B) m i: f <$> delete i m = delete i (f <$> m).
Proof.
  apply map_eq; intros i'; destruct (decide (i' = i)) as [->|].
  - by rewrite lookup_fmap, !lookup_delete.
  - by rewrite lookup_fmap, !lookup_delete_ne, lookup_fmap by done.
Qed.
529
530
531
532
Lemma omap_insert {A B} (f : A  option B) m i x y :
  f x = Some y  omap f (<[i:=x]>m) = <[i:=y]>(omap f m).
Proof.
  intros; apply map_eq; intros i'; destruct (decide (i' = i)) as [->|].
533
534
  - by rewrite lookup_omap, !lookup_insert.
  - by rewrite lookup_omap, !lookup_insert_ne, lookup_omap by done.
535
Qed.
536
Lemma map_fmap_singleton {A B} (f : A  B) i x : f <$> {[i := x]} = {[i := f x]}.
537
538
539
Proof.
  by unfold singletonM, map_singleton; rewrite fmap_insert, map_fmap_empty.
Qed.
540
Lemma omap_singleton {A B} (f : A  option B) i x y :
541
  f x = Some y  omap f {[ i := x ]} = {[ i := y ]}.
542
Proof.
543
544
  intros. unfold singletonM, map_singleton.
  by erewrite omap_insert, omap_empty by eauto.
545
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
546
547
548
549
550
Lemma map_fmap_id {A} (m : M A) : id <$> m = m.
Proof. apply map_eq; intros i; by rewrite lookup_fmap, option_fmap_id. Qed.
Lemma map_fmap_compose {A B C} (f : A  B) (g : B  C) (m : M A) :
  g  f <$> m = g <$> f <$> m.
Proof. apply map_eq; intros i; by rewrite !lookup_fmap,option_fmap_compose. Qed.
551
552
553
554
555
556
Lemma map_fmap_setoid_ext `{Equiv A, Equiv B} (f1 f2 : A  B) m :
  ( i x, m !! i = Some x  f1 x  f2 x)  f1 <$> m  f2 <$> m.
Proof.
  intros Hi i; rewrite !lookup_fmap.
  destruct (m !! i) eqn:?; constructor; eauto.
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
557
558
559
560
561
562
Lemma map_fmap_ext {A B} (f1 f2 : A  B) m :
  ( i x, m !! i = Some x  f1 x = f2 x)  f1 <$> m = f2 <$> m.
Proof.
  intros Hi; apply map_eq; intros i; rewrite !lookup_fmap.
  by destruct (m !! i) eqn:?; simpl; erewrite ?Hi by eauto.
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
563
564
565
566
567
568
Lemma omap_ext {A B} (f1 f2 : A  option B) m :
  ( i x, m !! i = Some x  f1 x = f2 x)  omap f1 m = omap f2 m.
Proof.
  intros Hi; apply map_eq; intros i; rewrite !lookup_omap.
  by destruct (m !! i) eqn:?; simpl; erewrite ?Hi by eauto.
Qed.
569

570
571
(** ** Properties of conversion to lists *)
Lemma map_to_list_unique {A} (m : M A) i x y :
572
  (i,x)  map_to_list m  (i,y)  map_to_list m  x = y.
573
Proof. rewrite !elem_of_map_to_list. congruence. Qed.
574
Lemma NoDup_fst_map_to_list {A} (m : M A) : NoDup ((map_to_list m).*1).
575
Proof. eauto using NoDup_fmap_fst, map_to_list_unique, NoDup_map_to_list. Qed.
576
577
578
579
580
Lemma elem_of_map_of_list_1_help {A} (l : list (K * A)) i x :
  (i,x)  l  ( y, (i,y)  l  y = x)  map_of_list l !! i = Some x.
Proof.
  induction l as [|[j y] l IH]; csimpl; [by rewrite elem_of_nil|].
  setoid_rewrite elem_of_cons.
581
  intros [?|?] Hdup; simplify_eq; [by rewrite lookup_insert|].
582
  destruct (decide (i = j)) as [->|].
583
584
  - rewrite lookup_insert; f_equal; eauto.
  - rewrite lookup_insert_ne by done; eauto.
585
Qed.
586
Lemma elem_of_map_of_list_1 {A} (l : list (K * A)) i x :
587
  NoDup (l.*1)  (i,x)  l  map_of_list l !! i = Some x.
588
Proof.
589
590
  intros ? Hx; apply elem_of_map_of_list_1_help; eauto using NoDup_fmap_fst.
  intros y; revert Hx. rewrite !elem_of_list_lookup; intros [i' Hi'] [j' Hj'].
591
  cut (i' = j'); [naive_solver|]. apply NoDup_lookup with (l.*1) i;
592
    by rewrite ?list_lookup_fmap, ?Hi', ?Hj'.
593
594
Qed.
Lemma elem_of_map_of_list_2 {A} (l : list (K * A)) i x :
595
  map_of_list l !! i = Some x  (i,x)  l.
596
Proof.
597
598
599
  induction l as [|[j y] l IH]; simpl; [by rewrite lookup_empty|].
  rewrite elem_of_cons. destruct (decide (i = j)) as [->|];
    rewrite ?lookup_insert, ?lookup_insert_ne; intuition congruence.
600
601
Qed.
Lemma elem_of_map_of_list {A} (l : list (K * A)) i x :
602
  NoDup (l.*1)  (i,x)  l  map_of_list l !! i = Some x.
603
Proof. split; auto using elem_of_map_of_list_1, elem_of_map_of_list_2. Qed.
604
Lemma not_elem_of_map_of_list_1 {A} (l : list (K * A)) i :
605
  i  l.*1  map_of_list l !! i = None.
606
Proof.
607
608
  rewrite elem_of_list_fmap, eq_None_not_Some. intros Hi [x ?]; destruct Hi.
  exists (i,x); simpl; auto using elem_of_map_of_list_2.
609
610
Qed.
Lemma not_elem_of_map_of_list_2 {A} (l : list (K * A)) i :
611
  map_of_list l !! i = None  i  l.*1.
612
Proof.
613
  induction l as [|[j y] l IH]; csimpl; [rewrite elem_of_nil; tauto|].
614
  rewrite elem_of_cons. destruct (decide (i = j)); simplify_eq.
615
616
  - by rewrite lookup_insert.
  - by rewrite lookup_insert_ne; intuition.
617
618
Qed.
Lemma not_elem_of_map_of_list {A} (l : list (K * A)) i :
619
  i  l.*1  map_of_list l !! i = None.
620
Proof. red; auto using not_elem_of_map_of_list_1,not_elem_of_map_of_list_2. Qed.
621
Lemma map_of_list_proper {A} (l1 l2 : list (K * A)) :
622
  NoDup (l1.*1)  l1  l2  map_of_list l1 = map_of_list l2.
623
624
625
626
627
Proof.
  intros ? Hperm. apply map_eq. intros i. apply option_eq. intros x.
  by rewrite <-!elem_of_map_of_list; rewrite <-?Hperm.
Qed.
Lemma map_of_list_inj {A} (l1 l2 : list (K * A)) :
628
  NoDup (l1.*1)  NoDup (l2.*1)  map_of_list l1 = map_of_list l2  l1  l2.
629
Proof.
630
  intros ?? Hl1l2. apply NoDup_Permutation; auto using (NoDup_fmap_1 fst).
631
632
  intros [i x]. by rewrite !elem_of_map_of_list, Hl1l2.
Qed.
633
Lemma map_of_to_list {A} (m : M A) : map_of_list (map_to_list m) = m.
634
635
636
Proof.
  apply map_eq. intros i. apply option_eq. intros x.
  by rewrite <-elem_of_map_of_list, elem_of_map_to_list
637
    by auto using NoDup_fst_map_to_list.
638
639
Qed.
Lemma map_to_of_list {A} (l : list (K * A)) :
640
  NoDup (l.*1)  map_to_list (map_of_list l)  l.
641
Proof. auto using map_of_list_inj, NoDup_fst_map_to_list, map_of_to_list. Qed.
642
Lemma map_to_list_inj {A} (m1 m2 : M A) :
643
  map_to_list m1  map_to_list m2  m1 = m2.
644
Proof.
645
  intros. rewrite <-(map_of_to_list m1), <-(map_of_to_list m2).
646
  auto using map_of_list_proper, NoDup_fst_map_to_list.
647
Qed.
648
649
650
651
652
653
Lemma map_to_of_list_flip {A} (m1 : M A) l2 :
  map_to_list m1  l2  m1 = map_of_list l2.
Proof.
  intros. rewrite <-(map_of_to_list m1).
  auto using map_of_list_proper, NoDup_fst_map_to_list.
Qed.
654
655
656
657
658
659
660
661
662
663
664
665
666

Lemma map_of_list_nil {A} : map_of_list (@nil (K * A)) = .
Proof. done. Qed.
Lemma map_of_list_cons {A} (l : list (K * A)) i x :
  map_of_list ((i, x) :: l) = <[i:=x]>(map_of_list l).
Proof. done. Qed.
Lemma map_of_list_fmap {A B} (f : A  B) l :
  map_of_list (prod_map id f <$> l) = f <$> map_of_list l.
Proof.
  induction l as [|[i x] l IH]; csimpl; rewrite ?fmap_empty; auto.
  rewrite <-map_of_list_cons; simpl. by rewrite IH, <-fmap_insert.
Qed.

667
Lemma map_to_list_empty {A} : map_to_list  = @nil (K * A).
668
669
670
671
672
Proof.
  apply elem_of_nil_inv. intros [i x].
  rewrite elem_of_map_to_list. apply lookup_empty_Some.
Qed.
Lemma map_to_list_insert {A} (m : M A) i x :
673
  m !! i = None  map_to_list (<[i:=x]>m)  (i,x) :: map_to_list m.
674
Proof.
675
  intros. apply map_of_list_inj; csimpl.
Robbert Krebbers's avatar