base.v 40.9 KB
Newer Older
Robbert Krebbers's avatar
Robbert Krebbers committed
1
(* Copyright (c) 2012-2015, Robbert Krebbers. *)
2 3 4 5 6
(* This file is distributed under the terms of the BSD license. *)
(** This file collects type class interfaces, notations, and general theorems
that are used throughout the whole development. Most importantly it contains
abstract interfaces for ordered structures, collections, and various other data
structures. *)
Robbert Krebbers's avatar
Robbert Krebbers committed
7 8
Global Generalizable All Variables.
Global Set Automatic Coercions Import.
Robbert Krebbers's avatar
Robbert Krebbers committed
9
Global Set Asymmetric Patterns.
10
Global Unset Transparent Obligations.
11
From Coq Require Export Morphisms RelationClasses List Bool Utf8 Program Setoid.
12
Obligation Tactic := idtac.
Robbert Krebbers's avatar
Robbert Krebbers committed
13

14 15 16 17
(** Throughout this development we use [C_scope] for all general purpose
notations that do not belong to a more specific scope. *)
Delimit Scope C_scope with C.
Global Open Scope C_scope.
18

19
(** Change [True] and [False] into notations in order to enable overloading.
20 21
We will use this to give [True] and [False] a different interpretation for
embedded logics. *)
22 23
Notation "'True'" := True : type_scope.
Notation "'False'" := False : type_scope.
Robbert Krebbers's avatar
Robbert Krebbers committed
24 25


26
(** * Equality *)
27
(** Introduce some Haskell style like notations. *)
Robbert Krebbers's avatar
Robbert Krebbers committed
28 29 30 31 32 33 34
Notation "(=)" := eq (only parsing) : C_scope.
Notation "( x =)" := (eq x) (only parsing) : C_scope.
Notation "(= x )" := (λ y, eq y x) (only parsing) : C_scope.
Notation "(≠)" := (λ x y, x  y) (only parsing) : C_scope.
Notation "( x ≠)" := (λ y, x  y) (only parsing) : C_scope.
Notation "(≠ x )" := (λ y, y  x) (only parsing) : C_scope.

35
Hint Extern 0 (_ = _) => reflexivity.
36
Hint Extern 100 (_  _) => discriminate.
Robbert Krebbers's avatar
Robbert Krebbers committed
37

38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252
Instance: @PreOrder A (=).
Proof. split; repeat intro; congruence. Qed.

(** ** Setoid equality *)
(** We define an operational type class for setoid equality. This is based on
(Spitters/van der Weegen, 2011). *)
Class Equiv A := equiv: relation A.
Infix "≡" := equiv (at level 70, no associativity) : C_scope.
Notation "(≡)" := equiv (only parsing) : C_scope.
Notation "( X ≡)" := (equiv X) (only parsing) : C_scope.
Notation "(≡ X )" := (λ Y, Y  X) (only parsing) : C_scope.
Notation "(≢)" := (λ X Y, ¬X  Y) (only parsing) : C_scope.
Notation "X ≢ Y":= (¬X  Y) (at level 70, no associativity) : C_scope.
Notation "( X ≢)" := (λ Y, X  Y) (only parsing) : C_scope.
Notation "(≢ X )" := (λ Y, Y  X) (only parsing) : C_scope.

(** The type class [LeibnizEquiv] collects setoid equalities that coincide
with Leibniz equality. We provide the tactic [fold_leibniz] to transform such
setoid equalities into Leibniz equalities, and [unfold_leibniz] for the
reverse. *)
Class LeibnizEquiv A `{Equiv A} := leibniz_equiv x y : x  y  x = y.
Lemma leibniz_equiv_iff `{LeibnizEquiv A, !Reflexive (@equiv A _)} (x y : A) :
  x  y  x = y.
Proof. split. apply leibniz_equiv. intros ->; reflexivity. Qed.
 
Ltac fold_leibniz := repeat
  match goal with
  | H : context [ @equiv ?A _ _ _ ] |- _ =>
    setoid_rewrite (leibniz_equiv_iff (A:=A)) in H
  | |- context [ @equiv ?A _ _ _ ] =>
    setoid_rewrite (leibniz_equiv_iff (A:=A))
  end.
Ltac unfold_leibniz := repeat
  match goal with
  | H : context [ @eq ?A _ _ ] |- _ =>
    setoid_rewrite <-(leibniz_equiv_iff (A:=A)) in H
  | |- context [ @eq ?A _ _ ] =>
    setoid_rewrite <-(leibniz_equiv_iff (A:=A))
  end.

Definition equivL {A} : Equiv A := (=).

(** A [Params f n] instance forces the setoid rewriting mechanism not to
rewrite in the first [n] arguments of the function [f]. We will declare such
instances for all operational type classes in this development. *)
Instance: Params (@equiv) 2.

(** The following instance forces [setoid_replace] to use setoid equality
(for types that have an [Equiv] instance) rather than the standard Leibniz
equality. *)
Instance equiv_default_relation `{Equiv A} : DefaultRelation () | 3.
Hint Extern 0 (_  _) => reflexivity.
Hint Extern 0 (_  _) => symmetry; assumption.


(** * Type classes *)
(** ** Decidable propositions *)
(** This type class by (Spitters/van der Weegen, 2011) collects decidable
propositions. For example to declare a parameter expressing decidable equality
on a type [A] we write [`{∀ x y : A, Decision (x = y)}] and use it by writing
[decide (x = y)]. *)
Class Decision (P : Prop) := decide : {P} + {¬P}.
Arguments decide _ {_}.

(** ** Inhabited types *)
(** This type class collects types that are inhabited. *)
Class Inhabited (A : Type) : Type := populate { inhabitant : A }.
Arguments populate {_} _.

(** ** Proof irrelevant types *)
(** This type class collects types that are proof irrelevant. That means, all
elements of the type are equal. We use this notion only used for propositions,
but by universe polymorphism we can generalize it. *)
Class ProofIrrel (A : Type) : Prop := proof_irrel (x y : A) : x = y.

(** ** Common properties *)
(** These operational type classes allow us to refer to common mathematical
properties in a generic way. For example, for injectivity of [(k ++)] it
allows us to write [inj (k ++)] instead of [app_inv_head k]. *)
Class Inj {A B} (R : relation A) (S : relation B) (f : A  B) : Prop :=
  inj x y : S (f x) (f y)  R x y.
Class Inj2 {A B C} (R1 : relation A) (R2 : relation B)
    (S : relation C) (f : A  B  C) : Prop :=
  inj2 x1 x2 y1 y2 : S (f x1 x2) (f y1 y2)  R1 x1 y1  R2 x2 y2.
Class Cancel {A B} (S : relation B) (f : A  B) (g : B  A) : Prop :=
  cancel :  x, S (f (g x)) x.
Class Surj {A B} (R : relation B) (f : A  B) :=
  surj y :  x, R (f x) y.
Class IdemP {A} (R : relation A) (f : A  A  A) : Prop :=
  idemp x : R (f x x) x.
Class Comm {A B} (R : relation A) (f : B  B  A) : Prop :=
  comm x y : R (f x y) (f y x).
Class LeftId {A} (R : relation A) (i : A) (f : A  A  A) : Prop :=
  left_id x : R (f i x) x.
Class RightId {A} (R : relation A) (i : A) (f : A  A  A) : Prop :=
  right_id x : R (f x i) x.
Class Assoc {A} (R : relation A) (f : A  A  A) : Prop :=
  assoc x y z : R (f x (f y z)) (f (f x y) z).
Class LeftAbsorb {A} (R : relation A) (i : A) (f : A  A  A) : Prop :=
  left_absorb x : R (f i x) i.
Class RightAbsorb {A} (R : relation A) (i : A) (f : A  A  A) : Prop :=
  right_absorb x : R (f x i) i.
Class AntiSymm {A} (R S : relation A) : Prop :=
  anti_symm x y : S x y  S y x  R x y.
Class Total {A} (R : relation A) := total x y : R x y  R y x.
Class Trichotomy {A} (R : relation A) :=
  trichotomy x y : R x y  x = y  R y x.
Class TrichotomyT {A} (R : relation A) :=
  trichotomyT x y : {R x y} + {x = y} + {R y x}.

Arguments irreflexivity {_} _ {_} _ _.
Arguments inj {_ _ _ _} _ {_} _ _ _.
Arguments inj2 {_ _ _ _ _ _} _ {_} _ _ _ _ _.
Arguments cancel {_ _ _} _ _ {_} _.
Arguments surj {_ _ _} _ {_} _.
Arguments idemp {_ _} _ {_} _.
Arguments comm {_ _ _} _ {_} _ _.
Arguments left_id {_ _} _ _ {_} _.
Arguments right_id {_ _} _ _ {_} _.
Arguments assoc {_ _} _ {_} _ _ _.
Arguments left_absorb {_ _} _ _ {_} _.
Arguments right_absorb {_ _} _ _ {_} _.
Arguments anti_symm {_ _} _ {_} _ _ _ _.
Arguments total {_} _ {_} _ _.
Arguments trichotomy {_} _ {_} _ _.
Arguments trichotomyT {_} _ {_} _ _.

Lemma not_symmetry `{R : relation A, !Symmetric R} x y : ¬R x y  ¬R y x.
Proof. intuition. Qed.
Lemma symmetry_iff `(R : relation A) `{!Symmetric R} x y : R x y  R y x.
Proof. intuition. Qed.

Lemma not_inj `{Inj A B R R' f} x y : ¬R x y  ¬R' (f x) (f y).
Proof. intuition. Qed.
Lemma not_inj2_1 `{Inj2 A B C R R' R'' f} x1 x2 y1 y2 :
  ¬R x1 x2  ¬R'' (f x1 y1) (f x2 y2).
Proof. intros HR HR''. destruct (inj2 f x1 y1 x2 y2); auto. Qed.
Lemma not_inj2_2 `{Inj2 A B C R R' R'' f} x1 x2 y1 y2 :
  ¬R' y1 y2  ¬R'' (f x1 y1) (f x2 y2).
Proof. intros HR' HR''. destruct (inj2 f x1 y1 x2 y2); auto. Qed.

Lemma inj_iff {A B} {R : relation A} {S : relation B} (f : A  B)
  `{!Inj R S f} `{!Proper (R ==> S) f} x y : S (f x) (f y)  R x y.
Proof. firstorder. Qed.
Instance inj2_inj_1 `{Inj2 A B C R1 R2 R3 f} y : Inj R1 R3 (λ x, f x y).
Proof. repeat intro; edestruct (inj2 f); eauto. Qed.
Instance inj2_inj_2 `{Inj2 A B C R1 R2 R3 f} x : Inj R2 R3 (f x).
Proof. repeat intro; edestruct (inj2 f); eauto. Qed.

Lemma cancel_inj `{Cancel A B R1 f g, !Equivalence R1, !Proper (R2 ==> R1) f} :
  Inj R1 R2 g.
Proof.
  intros x y E. rewrite <-(cancel f g x), <-(cancel f g y), E. reflexivity.
Qed.
Lemma cancel_surj `{Cancel A B R1 f g} : Surj R1 f.
Proof. intros y. exists (g y). auto. Qed.

(** The following lemmas are specific versions of the projections of the above
type classes for Leibniz equality. These lemmas allow us to enforce Coq not to
use the setoid rewriting mechanism. *)
Lemma idemp_L {A} f `{!@IdemP A (=) f} x : f x x = x.
Proof. auto. Qed.
Lemma comm_L {A B} f `{!@Comm A B (=) f} x y : f x y = f y x.
Proof. auto. Qed.
Lemma left_id_L {A} i f `{!@LeftId A (=) i f} x : f i x = x.
Proof. auto. Qed.
Lemma right_id_L {A} i f `{!@RightId A (=) i f} x : f x i = x.
Proof. auto. Qed.
Lemma assoc_L {A} f `{!@Assoc A (=) f} x y z : f x (f y z) = f (f x y) z.
Proof. auto. Qed.
Lemma left_absorb_L {A} i f `{!@LeftAbsorb A (=) i f} x : f i x = i.
Proof. auto. Qed.
Lemma right_absorb_L {A} i f `{!@RightAbsorb A (=) i f} x : f x i = i.
Proof. auto. Qed.

(** ** Generic orders *)
(** The classes [PreOrder], [PartialOrder], and [TotalOrder] use an arbitrary
relation [R] instead of [⊆] to support multiple orders on the same type. *)
Definition strict {A} (R : relation A) : relation A := λ X Y, R X Y  ¬R Y X.
Instance: Params (@strict) 2.
Class PartialOrder {A} (R : relation A) : Prop := {
  partial_order_pre :> PreOrder R;
  partial_order_anti_symm :> AntiSymm (=) R
}.
Class TotalOrder {A} (R : relation A) : Prop := {
  total_order_partial :> PartialOrder R;
  total_order_trichotomy :> Trichotomy (strict R)
}.

(** * Logic *)
Notation "(∧)" := and (only parsing) : C_scope.
Notation "( A ∧)" := (and A) (only parsing) : C_scope.
Notation "(∧ B )" := (λ A, A  B) (only parsing) : C_scope.

Notation "(∨)" := or (only parsing) : C_scope.
Notation "( A ∨)" := (or A) (only parsing) : C_scope.
Notation "(∨ B )" := (λ A, A  B) (only parsing) : C_scope.

Notation "(↔)" := iff (only parsing) : C_scope.
Notation "( A ↔)" := (iff A) (only parsing) : C_scope.
Notation "(↔ B )" := (λ A, A  B) (only parsing) : C_scope.

Hint Extern 0 (_  _) => reflexivity.
Hint Extern 0 (_  _) => symmetry; assumption.

Lemma or_l P Q : ¬Q  P  Q  P.
Proof. tauto. Qed.
Lemma or_r P Q : ¬P  P  Q  Q.
Proof. tauto. Qed.
Lemma and_wlog_l (P Q : Prop) : (Q  P)  Q  (P  Q).
Proof. tauto. Qed.
Lemma and_wlog_r (P Q : Prop) : P  (P  Q)  (P  Q).
Proof. tauto. Qed.
Lemma impl_transitive (P Q R : Prop) : (P  Q)  (Q  R)  (P  R).
Proof. tauto. Qed.
253 254 255 256 257 258
Lemma forall_proper {A} (P Q : A  Prop) :
  ( x, P x  Q x)  ( x, P x)  ( x, Q x).
Proof. firstorder. Qed.
Lemma exist_proper {A} (P Q : A  Prop) :
  ( x, P x  Q x)  ( x, P x)  ( x, Q x).
Proof. firstorder. Qed.
259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301

Instance: Comm () (@eq A).
Proof. red; intuition. Qed.
Instance: Comm () (λ x y, @eq A y x).
Proof. red; intuition. Qed.
Instance: Comm () ().
Proof. red; intuition. Qed.
Instance: Comm () ().
Proof. red; intuition. Qed.
Instance: Assoc () ().
Proof. red; intuition. Qed.
Instance: IdemP () ().
Proof. red; intuition. Qed.
Instance: Comm () ().
Proof. red; intuition. Qed.
Instance: Assoc () ().
Proof. red; intuition. Qed.
Instance: IdemP () ().
Proof. red; intuition. Qed.
Instance: LeftId () True ().
Proof. red; intuition. Qed.
Instance: RightId () True ().
Proof. red; intuition. Qed.
Instance: LeftAbsorb () False ().
Proof. red; intuition. Qed.
Instance: RightAbsorb () False ().
Proof. red; intuition. Qed.
Instance: LeftId () False ().
Proof. red; intuition. Qed.
Instance: RightId () False ().
Proof. red; intuition. Qed.
Instance: LeftAbsorb () True ().
Proof. red; intuition. Qed.
Instance: RightAbsorb () True ().
Proof. red; intuition. Qed.
Instance: LeftId () True impl.
Proof. unfold impl. red; intuition. Qed.
Instance: RightAbsorb () True impl.
Proof. unfold impl. red; intuition. Qed.


(** * Common data types *)
(** ** Functions *)
302 303 304 305
Notation "(→)" := (λ A B, A  B) (only parsing) : C_scope.
Notation "( A →)" := (λ B, A  B) (only parsing) : C_scope.
Notation "(→ B )" := (λ A, A  B) (only parsing) : C_scope.

306
Notation "t $ r" := (t r)
307
  (at level 65, right associativity, only parsing) : C_scope.
308 309 310
Notation "($)" := (λ f x, f x) (only parsing) : C_scope.
Notation "($ x )" := (λ f, f x) (only parsing) : C_scope.

Robbert Krebbers's avatar
Robbert Krebbers committed
311 312 313 314
Infix "∘" := compose : C_scope.
Notation "(∘)" := compose (only parsing) : C_scope.
Notation "( f ∘)" := (compose f) (only parsing) : C_scope.
Notation "(∘ f )" := (λ g, compose g f) (only parsing) : C_scope.
315

Robbert Krebbers's avatar
Robbert Krebbers committed
316 317 318
Instance impl_inhabited {A} `{Inhabited B} : Inhabited (A  B) :=
  populate (λ _, inhabitant).

319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381
(** Ensure that [simpl] unfolds [id], [compose], and [flip] when fully
applied. *)
Arguments id _ _ /.
Arguments compose _ _ _ _ _ _ /.
Arguments flip _ _ _ _ _ _ /.
Arguments const _ _ _ _ /.
Typeclasses Transparent id compose flip const.

Definition fun_map {A A' B B'} (f: A'  A) (g: B  B') (h : A  B) : A'  B' :=
  g  h  f.

Instance const_proper `{R1 : relation A, R2 : relation B} (x : B) :
  Reflexive R2  Proper (R1 ==> R2) (λ _, x).
Proof. intros ? y1 y2; reflexivity. Qed.

Instance id_inj {A} : Inj (=) (=) (@id A).
Proof. intros ??; auto. Qed.
Instance compose_inj {A B C} R1 R2 R3 (f : A  B) (g : B  C) :
  Inj R1 R2 f  Inj R2 R3 g  Inj R1 R3 (g  f).
Proof. red; intuition. Qed.

Instance id_surj {A} : Surj (=) (@id A).
Proof. intros y; exists y; reflexivity. Qed.
Instance compose_surj {A B C} R (f : A  B) (g : B  C) :
  Surj (=) f  Surj R g  Surj R (g  f).
Proof.
  intros ?? x. unfold compose. destruct (surj g x) as [y ?].
  destruct (surj f y) as [z ?]. exists z. congruence.
Qed.

Instance id_comm {A B} (x : B) : Comm (=) (λ _ _ : A, x).
Proof. intros ?; reflexivity. Qed.
Instance id_assoc {A} (x : A) : Assoc (=) (λ _ _ : A, x).
Proof. intros ???; reflexivity. Qed.
Instance const1_assoc {A} : Assoc (=) (λ x _ : A, x).
Proof. intros ???; reflexivity. Qed.
Instance const2_assoc {A} : Assoc (=) (λ _ x : A, x).
Proof. intros ???; reflexivity. Qed.
Instance const1_idemp {A} : IdemP (=) (λ x _ : A, x).
Proof. intros ?; reflexivity. Qed.
Instance const2_idemp {A} : IdemP (=) (λ _ x : A, x).
Proof. intros ?; reflexivity. Qed.

(** ** Lists *)
Instance list_inhabited {A} : Inhabited (list A) := populate [].

Definition zip_with {A B C} (f : A  B  C) : list A  list B  list C :=
  fix go l1 l2 :=
  match l1, l2 with x1 :: l1, x2 :: l2 => f x1 x2 :: go l1 l2 | _ , _ => [] end.
Notation zip := (zip_with pair).

(** ** Booleans *)
(** The following coercion allows us to use Booleans as propositions. *)
Coercion Is_true : bool >-> Sortclass.
Hint Unfold Is_true.
Hint Immediate Is_true_eq_left.
Hint Resolve orb_prop_intro andb_prop_intro.
Notation "(&&)" := andb (only parsing).
Notation "(||)" := orb (only parsing).
Infix "&&*" := (zip_with (&&)) (at level 40).
Infix "||*" := (zip_with (||)) (at level 50).

Instance bool_inhabated : Inhabited bool := populate true.
382

383 384 385 386 387
Definition bool_le (β1 β2 : bool) : Prop := negb β1 || β2.
Infix "=.>" := bool_le (at level 70).
Infix "=.>*" := (Forall2 bool_le) (at level 70).
Instance: PartialOrder bool_le.
Proof. repeat split; repeat intros [|]; compute; tauto. Qed.
388

389 390 391 392 393 394 395 396
Lemma andb_True b1 b2 : b1 && b2  b1  b2.
Proof. destruct b1, b2; simpl; tauto. Qed.
Lemma orb_True b1 b2 : b1 || b2  b1  b2.
Proof. destruct b1, b2; simpl; tauto. Qed.
Lemma negb_True b : negb b  ¬b.
Proof. destruct b; simpl; tauto. Qed.
Lemma Is_true_false (b : bool) : b = false  ¬b.
Proof. now intros -> ?. Qed.
397

398 399 400 401
(** ** Unit *)
Instance unit_equiv : Equiv unit := λ _ _, True.
Instance unit_equivalence : Equivalence (@equiv unit _).
Proof. repeat split. Qed.
402 403
Instance unit_leibniz : LeibnizEquiv unit.
Proof. intros [] []; reflexivity. Qed.
404
Instance unit_inhabited: Inhabited unit := populate ().
405

406
(** ** Products *)
407 408 409 410 411 412
Notation "( x ,)" := (pair x) (only parsing) : C_scope.
Notation "(, y )" := (λ x, (x,y)) (only parsing) : C_scope.

Notation "p .1" := (fst p) (at level 10, format "p .1").
Notation "p .2" := (snd p) (at level 10, format "p .2").

413 414
Instance: Params (@pair) 2.

415 416 417 418 419 420 421 422 423
Notation curry := prod_curry.
Notation uncurry := prod_uncurry.
Definition curry3 {A B C D} (f : A  B  C  D) (p : A * B * C) : D :=
  let '(a,b,c) := p in f a b c.
Definition curry4 {A B C D E} (f : A  B  C  D  E) (p : A * B * C * D) : E :=
  let '(a,b,c,d) := p in f a b c d.

Definition prod_map {A A' B B'} (f: A  A') (g: B  B') (p : A * B) : A' * B' :=
  (f (p.1), g (p.2)).
424
Arguments prod_map {_ _ _ _} _ _ !_ /.
425

426 427 428 429
Definition prod_zip {A A' A'' B B' B''} (f : A  A'  A'') (g : B  B'  B'')
    (p : A * B) (q : A' * B') : A'' * B'' := (f (p.1) (q.1), g (p.2) (q.2)).
Arguments prod_zip {_ _ _ _ _ _} _ _ !_ !_ /.

430 431 432
Instance prod_inhabited {A B} (iA : Inhabited A)
    (iB : Inhabited B) : Inhabited (A * B) :=
  match iA, iB with populate x, populate y => populate (x,y) end.
433

434 435 436 437 438 439 440 441
Instance pair_inj : Inj2 (=) (=) (=) (@pair A B).
Proof. injection 1; auto. Qed.
Instance prod_map_inj {A A' B B'} (f : A  A') (g : B  B') :
  Inj (=) (=) f  Inj (=) (=) g  Inj (=) (=) (prod_map f g).
Proof.
  intros ?? [??] [??] ?; simpl in *; f_equal;
    [apply (inj f)|apply (inj g)]; congruence.
Qed.
442

443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458
Definition prod_relation {A B} (R1 : relation A) (R2 : relation B) :
  relation (A * B) := λ x y, R1 (x.1) (y.1)  R2 (x.2) (y.2).
Section prod_relation.
  Context `{R1 : relation A, R2 : relation B}.
  Global Instance prod_relation_refl :
    Reflexive R1  Reflexive R2  Reflexive (prod_relation R1 R2).
  Proof. firstorder eauto. Qed.
  Global Instance prod_relation_sym :
    Symmetric R1  Symmetric R2  Symmetric (prod_relation R1 R2).
  Proof. firstorder eauto. Qed.
  Global Instance prod_relation_trans :
    Transitive R1  Transitive R2  Transitive (prod_relation R1 R2).
  Proof. firstorder eauto. Qed.
  Global Instance prod_relation_equiv :
    Equivalence R1  Equivalence R2  Equivalence (prod_relation R1 R2).
  Proof. split; apply _. Qed.
459

460 461
  Global Instance pair_proper' : Proper (R1 ==> R2 ==> prod_relation R1 R2) pair.
  Proof. firstorder eauto. Qed.
462 463
  Global Instance pair_inj' : Inj2 R1 R2 (prod_relation R1 R2) pair.
  Proof. inversion_clear 1; eauto. Qed.
464 465 466 467 468
  Global Instance fst_proper' : Proper (prod_relation R1 R2 ==> R1) fst.
  Proof. firstorder eauto. Qed.
  Global Instance snd_proper' : Proper (prod_relation R1 R2 ==> R2) snd.
  Proof. firstorder eauto. Qed.
End prod_relation.
Robbert Krebbers's avatar
Robbert Krebbers committed
469

470 471
Instance prod_equiv `{Equiv A,Equiv B} : Equiv (A * B) := prod_relation () ().
Instance pair_proper `{Equiv A, Equiv B} :
472 473
  Proper (() ==> () ==> ()) (@pair A B) := _.
Instance pair_equiv_inj `{Equiv A, Equiv B} : Inj2 () () () (@pair A B) := _.
474 475 476
Instance fst_proper `{Equiv A, Equiv B} : Proper (() ==> ()) (@fst A B) := _.
Instance snd_proper `{Equiv A, Equiv B} : Proper (() ==> ()) (@snd A B) := _.
Typeclasses Opaque prod_equiv.
477

Robbert Krebbers's avatar
Robbert Krebbers committed
478 479
Instance prod_leibniz `{LeibnizEquiv A, LeibnizEquiv B} : LeibnizEquiv (A * B).
Proof. intros [??] [??] [??]; f_equal; apply leibniz_equiv; auto. Qed.
480

481
(** ** Sums *)
482 483 484 485
Definition sum_map {A A' B B'} (f: A  A') (g: B  B') (xy : A + B) : A' + B' :=
  match xy with inl x => inl (f x) | inr y => inr (g y) end.
Arguments sum_map {_ _ _ _} _ _ !_ /.

486
Instance sum_inhabited_l {A B} (iA : Inhabited A) : Inhabited (A + B) :=
487
  match iA with populate x => populate (inl x) end.
488
Instance sum_inhabited_r {A B} (iB : Inhabited A) : Inhabited (A + B) :=
489
  match iB with populate y => populate (inl y) end.
490

491 492 493 494
Instance inl_inj : Inj (=) (=) (@inl A B).
Proof. injection 1; auto. Qed.
Instance inr_inj : Inj (=) (=) (@inr A B).
Proof. injection 1; auto. Qed.
495

496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522
Instance sum_map_inj {A A' B B'} (f : A  A') (g : B  B') :
  Inj (=) (=) f  Inj (=) (=) g  Inj (=) (=) (sum_map f g).
Proof. intros ?? [?|?] [?|?] [=]; f_equal; apply (inj _); auto. Qed.

Inductive sum_relation {A B}
     (R1 : relation A) (R2 : relation B) : relation (A + B) :=
  | inl_related x1 x2 : R1 x1 x2  sum_relation R1 R2 (inl x1) (inl x2)
  | inr_related y1 y2 : R2 y1 y2  sum_relation R1 R2 (inr y1) (inr y2).

Section sum_relation.
  Context `{R1 : relation A, R2 : relation B}.
  Global Instance sum_relation_refl :
    Reflexive R1  Reflexive R2  Reflexive (sum_relation R1 R2).
  Proof. intros ?? [?|?]; constructor; reflexivity. Qed.
  Global Instance sum_relation_sym :
    Symmetric R1  Symmetric R2  Symmetric (sum_relation R1 R2).
  Proof. destruct 3; constructor; eauto. Qed.
  Global Instance sum_relation_trans :
    Transitive R1  Transitive R2  Transitive (sum_relation R1 R2).
  Proof. destruct 3; inversion_clear 1; constructor; eauto. Qed.
  Global Instance sum_relation_equiv :
    Equivalence R1  Equivalence R2  Equivalence (sum_relation R1 R2).
  Proof. split; apply _. Qed.
  Global Instance inl_proper' : Proper (R1 ==> sum_relation R1 R2) inl.
  Proof. constructor; auto. Qed.
  Global Instance inr_proper' : Proper (R2 ==> sum_relation R1 R2) inr.
  Proof. constructor; auto. Qed.
523 524 525 526
  Global Instance inl_inj' : Inj R1 (sum_relation R1 R2) inl.
  Proof. inversion_clear 1; auto. Qed.
  Global Instance inr_inj' : Inj R2 (sum_relation R1 R2) inr.
  Proof. inversion_clear 1; auto. Qed.
527 528 529 530 531
End sum_relation.

Instance sum_equiv `{Equiv A, Equiv B} : Equiv (A + B) := sum_relation () ().
Instance inl_proper `{Equiv A, Equiv B} : Proper (() ==> ()) (@inl A B) := _.
Instance inr_proper `{Equiv A, Equiv B} : Proper (() ==> ()) (@inr A B) := _.
532 533
Instance inl_equiv_inj `{Equiv A, Equiv B} : Inj () () (@inl A B) := _.
Instance inr_equiv_inj `{Equiv A, Equiv B} : Inj () () (@inr A B) := _.
534 535
Typeclasses Opaque sum_equiv.

536 537
(** ** Option *)
Instance option_inhabited {A} : Inhabited (option A) := populate None.
Robbert Krebbers's avatar
Robbert Krebbers committed
538

539 540 541 542 543
(** ** Sigma types *)
Arguments existT {_ _} _ _.
Arguments proj1_sig {_ _} _.
Notation "x ↾ p" := (exist _ x p) (at level 20) : C_scope.
Notation "` x" := (proj1_sig x) (at level 10, format "` x") : C_scope.
544

545 546 547
Lemma proj1_sig_inj {A} (P : A  Prop) x (Px : P x) y (Py : P y) :
  xPx = yPy  x = y.
Proof. injection 1; trivial. Qed.
548

549 550 551 552 553 554 555 556 557 558 559
Section sig_map.
  Context `{P : A  Prop} `{Q : B  Prop} (f : A  B) (Hf :  x, P x  Q (f x)).
  Definition sig_map (x : sig P) : sig Q := f (`x)  Hf _ (proj2_sig x).
  Global Instance sig_map_inj:
    ( x, ProofIrrel (P x))  Inj (=) (=) f  Inj (=) (=) sig_map.
  Proof.
    intros ?? [x Hx] [y Hy]. injection 1. intros Hxy.
    apply (inj f) in Hxy; subst. rewrite (proof_irrel _ Hy). auto.
  Qed.
End sig_map.
Arguments sig_map _ _ _ _ _ _ !_ /.
560

Robbert Krebbers's avatar
Robbert Krebbers committed
561

562
(** * Operations on collections *)
563
(** We define operational type classes for the traditional operations and
564
relations on collections: the empty collection [∅], the union [(∪)],
565 566
intersection [(∩)], and difference [(∖)], the singleton [{[_]}], the subset
[(⊆)] and element of [(∈)] relation, and disjointess [(⊥)]. *)
Robbert Krebbers's avatar
Robbert Krebbers committed
567 568 569
Class Empty A := empty: A.
Notation "∅" := empty : C_scope.

570 571 572
Class Top A := top : A.
Notation "⊤" := top : C_scope.

Robbert Krebbers's avatar
Robbert Krebbers committed
573
Class Union A := union: A  A  A.
574
Instance: Params (@union) 2.
Robbert Krebbers's avatar
Robbert Krebbers committed
575 576 577 578
Infix "∪" := union (at level 50, left associativity) : C_scope.
Notation "(∪)" := union (only parsing) : C_scope.
Notation "( x ∪)" := (union x) (only parsing) : C_scope.
Notation "(∪ x )" := (λ y, union y x) (only parsing) : C_scope.
579 580 581 582 583 584
Infix "∪*" := (zip_with ()) (at level 50, left associativity) : C_scope.
Notation "(∪*)" := (zip_with ()) (only parsing) : C_scope.
Infix "∪**" := (zip_with (zip_with ()))
  (at level 50, left associativity) : C_scope.
Infix "∪*∪**" := (zip_with (prod_zip () (*)))
  (at level 50, left associativity) : C_scope.
Robbert Krebbers's avatar
Robbert Krebbers committed
585

586
Definition union_list `{Empty A} `{Union A} : list A  A := fold_right () .
587 588 589
Arguments union_list _ _ _ !_ /.
Notation "⋃ l" := (union_list l) (at level 20, format "⋃  l") : C_scope.

Robbert Krebbers's avatar
Robbert Krebbers committed
590
Class Intersection A := intersection: A  A  A.
591
Instance: Params (@intersection) 2.
Robbert Krebbers's avatar
Robbert Krebbers committed
592 593 594 595 596 597
Infix "∩" := intersection (at level 40) : C_scope.
Notation "(∩)" := intersection (only parsing) : C_scope.
Notation "( x ∩)" := (intersection x) (only parsing) : C_scope.
Notation "(∩ x )" := (λ y, intersection y x) (only parsing) : C_scope.

Class Difference A := difference: A  A  A.
598
Instance: Params (@difference) 2.
Robbert Krebbers's avatar
Robbert Krebbers committed
599
Infix "∖" := difference (at level 40, left associativity) : C_scope.
Robbert Krebbers's avatar
Robbert Krebbers committed
600 601 602
Notation "(∖)" := difference (only parsing) : C_scope.
Notation "( x ∖)" := (difference x) (only parsing) : C_scope.
Notation "(∖ x )" := (λ y, difference y x) (only parsing) : C_scope.
603 604 605 606 607 608
Infix "∖*" := (zip_with ()) (at level 40, left associativity) : C_scope.
Notation "(∖*)" := (zip_with ()) (only parsing) : C_scope.
Infix "∖**" := (zip_with (zip_with ()))
  (at level 40, left associativity) : C_scope.
Infix "∖*∖**" := (zip_with (prod_zip () (*)))
  (at level 50, left associativity) : C_scope.
Robbert Krebbers's avatar
Robbert Krebbers committed
609

610 611
Class Singleton A B := singleton: A  B.
Instance: Params (@singleton) 3.
612
Notation "{[ x ]}" := (singleton x) (at level 1) : C_scope.
613
Notation "{[ x ; y ; .. ; z ]}" :=
614 615 616 617 618 619
  (union .. (union (singleton x) (singleton y)) .. (singleton z))
  (at level 1) : C_scope.
Notation "{[ x , y ]}" := (singleton (x,y))
  (at level 1, y at next level) : C_scope.
Notation "{[ x , y , z ]}" := (singleton (x,y,z))
  (at level 1, y at next level, z at next level) : C_scope.
620

621
Class SubsetEq A := subseteq: relation A.
622
Instance: Params (@subseteq) 2.
Robbert Krebbers's avatar
Robbert Krebbers committed
623 624 625
Infix "⊆" := subseteq (at level 70) : C_scope.
Notation "(⊆)" := subseteq (only parsing) : C_scope.
Notation "( X ⊆ )" := (subseteq X) (only parsing) : C_scope.
626
Notation "( ⊆ X )" := (λ Y, Y  X) (only parsing) : C_scope.
Robbert Krebbers's avatar
Robbert Krebbers committed
627 628 629 630
Notation "X ⊈ Y" := (¬X  Y) (at level 70) : C_scope.
Notation "(⊈)" := (λ X Y, X  Y) (only parsing) : C_scope.
Notation "( X ⊈ )" := (λ Y, X  Y) (only parsing) : C_scope.
Notation "( ⊈ X )" := (λ Y, Y  X) (only parsing) : C_scope.
631 632 633 634 635 636 637
Infix "⊆*" := (Forall2 ()) (at level 70) : C_scope.
Notation "(⊆*)" := (Forall2 ()) (only parsing) : C_scope.
Infix "⊆**" := (Forall2 (*)) (at level 70) : C_scope.
Infix "⊆1*" := (Forall2 (λ p q, p.1  q.1)) (at level 70) : C_scope.
Infix "⊆2*" := (Forall2 (λ p q, p.2  q.2)) (at level 70) : C_scope.
Infix "⊆1**" := (Forall2 (λ p q, p.1 * q.1)) (at level 70) : C_scope.
Infix "⊆2**" := (Forall2 (λ p q, p.2 * q.2)) (at level 70) : C_scope.
Robbert Krebbers's avatar
Robbert Krebbers committed
638

639
Hint Extern 0 (_  _) => reflexivity.
640 641 642 643 644 645 646
Hint Extern 0 (_ * _) => reflexivity.
Hint Extern 0 (_ ** _) => reflexivity.

Infix "⊂" := (strict ()) (at level 70) : C_scope.
Notation "(⊂)" := (strict ()) (only parsing) : C_scope.
Notation "( X ⊂ )" := (strict () X) (only parsing) : C_scope.
Notation "( ⊂ X )" := (λ Y, Y  X) (only parsing) : C_scope.
647 648 649 650
Notation "X ⊄  Y" := (¬X  Y) (at level 70) : C_scope.
Notation "(⊄)" := (λ X Y, X  Y) (only parsing) : C_scope.
Notation "( X ⊄ )" := (λ Y, X  Y) (only parsing) : C_scope.
Notation "( ⊄ X )" := (λ Y, Y  X) (only parsing) : C_scope.
Robbert Krebbers's avatar
Robbert Krebbers committed
651

652 653 654 655 656
Notation "X ⊆ Y ⊆ Z" := (X  Y  Y  Z) (at level 70, Y at next level) : C_scope.
Notation "X ⊆ Y ⊂ Z" := (X  Y  Y  Z) (at level 70, Y at next level) : C_scope.
Notation "X ⊂ Y ⊆ Z" := (X  Y  Y  Z) (at level 70, Y at next level) : C_scope.
Notation "X ⊂ Y ⊂ Z" := (X  Y  Y  Z) (at level 70, Y at next level) : C_scope.

657 658 659 660 661
(** The class [Lexico A] is used for the lexicographic order on [A]. This order
is used to create finite maps, finite sets, etc, and is typically different from
the order [(⊆)]. *)
Class Lexico A := lexico: relation A.

Robbert Krebbers's avatar
Robbert Krebbers committed
662
Class ElemOf A B := elem_of: A  B  Prop.
663
Instance: Params (@elem_of) 3.
Robbert Krebbers's avatar
Robbert Krebbers committed
664 665 666 667 668 669 670 671 672
Infix "∈" := elem_of (at level 70) : C_scope.
Notation "(∈)" := elem_of (only parsing) : C_scope.
Notation "( x ∈)" := (elem_of x) (only parsing) : C_scope.
Notation "(∈ X )" := (λ x, elem_of x X) (only parsing) : C_scope.
Notation "x ∉ X" := (¬x  X) (at level 80) : C_scope.
Notation "(∉)" := (λ x X, x  X) (only parsing) : C_scope.
Notation "( x ∉)" := (λ X, x  X) (only parsing) : C_scope.
Notation "(∉ X )" := (λ x, x  X) (only parsing) : C_scope.

Robbert Krebbers's avatar
Robbert Krebbers committed
673 674 675 676
Class Disjoint A := disjoint : A  A  Prop.
Instance: Params (@disjoint) 2.
Infix "⊥" := disjoint (at level 70) : C_scope.
Notation "(⊥)" := disjoint (only parsing) : C_scope.
677
Notation "( X ⊥.)" := (disjoint X) (only parsing) : C_scope.
678
Notation "(.⊥ X )" := (λ Y, Y  X) (only parsing) : C_scope.
679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703
Infix "⊥*" := (Forall2 ()) (at level 70) : C_scope.
Notation "(⊥*)" := (Forall2 ()) (only parsing) : C_scope.
Infix "⊥**" := (Forall2 (*)) (at level 70) : C_scope.
Infix "⊥1*" := (Forall2 (λ p q, p.1  q.1)) (at level 70) : C_scope.
Infix "⊥2*" := (Forall2 (λ p q, p.2  q.2)) (at level 70) : C_scope.
Infix "⊥1**" := (Forall2 (λ p q, p.1 * q.1)) (at level 70) : C_scope.
Infix "⊥2**" := (Forall2 (λ p q, p.2 * q.2)) (at level 70) : C_scope.
Hint Extern 0 (_  _) => symmetry; eassumption.
Hint Extern 0 (_ * _) => symmetry; eassumption.

Class DisjointE E A := disjointE : E  A  A  Prop.
Instance: Params (@disjointE) 4.
Notation "X ⊥{ Γ } Y" := (disjointE Γ X Y)
  (at level 70, format "X  ⊥{ Γ }  Y") : C_scope.
Notation "(⊥{ Γ } )" := (disjointE Γ) (only parsing, Γ at level 1) : C_scope.
Notation "Xs ⊥{ Γ }* Ys" := (Forall2 ({Γ}) Xs Ys)
  (at level 70, format "Xs  ⊥{ Γ }*  Ys") : C_scope.
Notation "(⊥{ Γ }* )" := (Forall2 ({Γ}))
  (only parsing, Γ at level 1) : C_scope.
Notation "X ⊥{ Γ1 , Γ2 , .. , Γ3 } Y" := (disjoint (pair .. (Γ1, Γ2) .. Γ3) X Y)
  (at level 70, format "X  ⊥{ Γ1 , Γ2 , .. , Γ3 }  Y") : C_scope.
Notation "Xs ⊥{ Γ1 , Γ2 , .. , Γ3 }* Ys" :=
  (Forall2 (disjoint (pair .. (Γ1, Γ2) .. Γ3)) Xs Ys)
  (at level 70, format "Xs  ⊥{ Γ1 ,  Γ2 , .. , Γ3 }*  Ys") : C_scope.
Hint Extern 0 (_ {_} _) => symmetry; eassumption.
704 705 706

Class DisjointList A := disjoint_list : list A  Prop.
Instance: Params (@disjoint_list) 2.
707
Notation "⊥ Xs" := (disjoint_list Xs) (at level 20, format "⊥  Xs") : C_scope.
708

709 710 711 712 713 714
Section disjoint_list.
  Context `{Disjoint A, Union A, Empty A}.
  Inductive disjoint_list_default : DisjointList A :=
    | disjoint_nil_2 :  (@nil A)
    | disjoint_cons_2 (X : A) (Xs : list A) : X   Xs   Xs   (X :: Xs).
  Global Existing Instance disjoint_list_default.
715

716
  Lemma disjoint_list_nil  :  @nil A  True.
717 718 719
  Proof. split; constructor. Qed.
  Lemma disjoint_list_cons X Xs :  (X :: Xs)  X   Xs   Xs.
  Proof. split. inversion_clear 1; auto. intros [??]. constructor; auto. Qed.
720
End disjoint_list.
721 722

Class Filter A B := filter:  (P : A  Prop) `{ x, Decision (P x)}, B  B.
723

724 725

(** * Monadic operations *)
726
(** We define operational type classes for the monadic operations bind, join 
727 728 729
and fmap. We use these type classes merely for convenient overloading of
notations and do not formalize any theory on monads (we do not even define a
class with the monad laws). *)
730 731
Class MRet (M : Type  Type) := mret:  {A}, A  M A.
Arguments mret {_ _ _} _.
732
Instance: Params (@mret) 3.
733 734
Class MBind (M : Type  Type) := mbind :  {A B}, (A  M B)  M A  M B.
Arguments mbind {_ _ _ _} _ !_ /.
735
Instance: Params (@mbind) 4.
736
Class MJoin (M : Type  Type) := mjoin:  {A}, M (M A)  M A.
737
Arguments mjoin {_ _ _} !_ /.
738
Instance: Params (@mjoin) 3.
739 740
Class FMap (M : Type  Type) := fmap :  {A B}, (A  B)  M A  M B.
Arguments fmap {_ _ _ _} _ !_ /.
741
Instance: Params (@fmap) 4.
742 743
Class OMap (M : Type  Type) := omap:  {A B}, (A  option B)  M A  M B.
Arguments omap {_ _ _ _} _ !_ /.
744
Instance: Params (@omap) 4.
745

746 747 748 749 750 751
Notation "m ≫= f" := (mbind f m) (at level 60, right associativity) : C_scope.
Notation "( m ≫=)" := (λ f, mbind f m) (only parsing) : C_scope.
Notation "(≫= f )" := (mbind f) (only parsing) : C_scope.
Notation "(≫=)" := (λ m f, mbind f m) (only parsing) : C_scope.

Notation "x ← y ; z" := (y = (λ x : _, z))
Robbert Krebbers's avatar
Robbert Krebbers committed
752
  (at level 65, only parsing, right associativity) : C_scope.
753
Infix "<$>" := fmap (at level 60, right associativity) : C_scope.
754
Notation "' ( x1 , x2 ) ← y ; z" :=
755
  (y = (λ x : _, let ' (x1, x2) := x in z))
Robbert Krebbers's avatar
Robbert Krebbers committed
756
  (at level 65, only parsing, right associativity) : C_scope.
757
Notation "' ( x1 , x2 , x3 ) ← y ; z" :=
758
  (y = (λ x : _, let ' (x1,x2,x3) := x in z))
Robbert Krebbers's avatar
Robbert Krebbers committed
759
  (at level 65, only parsing, right associativity) : C_scope.
760
Notation "' ( x1 , x2 , x3  , x4 ) ← y ; z" :=
761
  (y = (λ x : _, let ' (x1,x2,x3,x4) := x in z))
Robbert Krebbers's avatar
Robbert Krebbers committed
762
  (at level 65, only parsing, right associativity) : C_scope.
763 764
Notation "' ( x1 , x2 , x3  , x4 , x5 ) ← y ; z" :=
  (y = (λ x : _, let ' (x1,x2,x3,x4,x5) := x in z))
Robbert Krebbers's avatar
Robbert Krebbers committed
765
  (at level 65, only parsing, right associativity) : C_scope.
766 767
Notation "' ( x1 , x2 , x3  , x4 , x5 , x6 ) ← y ; z" :=
  (y = (λ x : _, let ' (x1,x2,x3,x4,x5,x6) := x in z))
Robbert Krebbers's avatar
Robbert Krebbers committed
768
  (at level 65, only parsing, right associativity) : C_scope.
769

770 771 772 773 774
Notation "ps .*1" := (fmap (M:=list) fst ps)
  (at level 10, format "ps .*1").
Notation "ps .*2" := (fmap (M:=list) snd ps)
  (at level 10, format "ps .*2").

775
Class MGuard (M : Type  Type) :=
776 777 778
  mguard:  P {dec : Decision P} {A}, (P  M A)  M A.
Arguments mguard _ _ _ !_ _ _ /.
Notation "'guard' P ; o" := (mguard P (λ _, o))
Robbert Krebbers's avatar
Robbert Krebbers committed
779
  (at level 65, only parsing, right associativity) : C_scope.
780
Notation "'guard' P 'as' H ; o" := (mguard P (λ H, o))
Robbert Krebbers's avatar
Robbert Krebbers committed
781
  (at level 65, only parsing, right associativity) : C_scope.
782

783 784

(** * Operations on maps *)
785 786
(** In this section we define operational type classes for the operations
on maps. In the file [fin_maps] we will axiomatize finite maps.
787
The function look up [m !! k] should yield the element at key [k] in [m]. *)
788
Class Lookup (K : Type) (M : Type  Type) := lookup :  {A}, K  M A  option A.
789 790 791
Instance: Params (@lookup) 4.
Notation "m !! i" := (lookup i m) (at level 20) : C_scope.
Notation "(!!)" := lookup (only parsing) : C_scope.
792
Notation "( m !!)" := (λ i, m !! i) (only parsing) : C_scope.
793
Notation "(!! i )" := (lookup i) (only parsing) : C_scope.
794
Arguments lookup _ _ _ _ !_ !_ / : simpl nomatch.
795

796
(** The singleton map *)
797 798
Class SingletonM (K : Type) (M : Type  Type) :=
  singletonM :  {A}, K  A  M A.
799
Instance: Params (@singletonM) 5.
800
Notation "{[ k := a ]}" := (singletonM k a) (at level 1) : C_scope.
801

802 803
(** The function insert [<[k:=a]>m] should update the element at key [k] with
value [a] in [m]. *)
804
Class Insert (K : Type) (M : Type  Type) := insert :  {A}, K  A  M A  M A.
Robbert Krebbers's avatar
Robbert Krebbers committed
805
Instance: Params (@insert) 5.
806 807
Notation "<[ k := a ]>" := (insert k a)
  (at level 5, right associativity, format "<[ k := a ]>") : C_scope.
808
Arguments insert _ _ _ _ !_ _ !_ / : simpl nomatch.
809

810 811 812
(** The function delete [delete k m] should delete the value at key [k] in
[m]. If the key [k] is not a member of [m], the original map should be
returned. *)
813 814 815
Class Delete (K : Type) (M : Type  Type) := delete :  {A}, K  M A  M A.
Instance: Params (@delete) 5.
Arguments delete _ _ _ _ !_ !_ / : simpl nomatch.
816 817

(** The function [alter f k m] should update the value at key [k] using the
818
function [f], which is called with the original value. *)
819 820
Class Alter (K : Type) (M : Type  Type) :=
  alter :  {A}, (A  A)  K  M A  M A.
821
Instance: Params (@alter) 5.
822
Arguments alter {_ _ _ _} _ !_ !_ / : simpl nomatch.
823 824

(** The function [alter f k m] should update the value at key [k] using the
825 826 827
function [f], which is called with the original value at key [k] or [None]
if [k] is not a member of [m]. The value at [k] should be deleted if [f] 
yields [None]. *)
828 829
Class PartialAlter (K : Type) (M : Type  Type) :=
  partial_alter :  {A}, (option A  option A)  K  M A  M A.
830
Instance: Params (@partial_alter) 4.
831
Arguments partial_alter _ _ _ _ _ !_ !_ / : simpl nomatch.
832 833 834

(** The function [dom C m] should yield the domain of [m]. That is a finite
collection of type [C] that contains the keys that are a member of [m]. *)
835 836 837
Class Dom (M : Type  Type) (C : Type) := dom :  {A}, M A  C.
Instance: Params (@dom) 4.
Arguments dom {_} _ {_ _} !_ / : simpl nomatch, clear implicits.
838 839

(** The function [merge f m1 m2] should merge the maps [m1] and [m2] by
840 841 842 843 844
constructing a new map whose value at key [k] is [f (m1 !! k) (m2 !! k)].*)
Class Merge (M : Type  Type) :=
  merge:  {A B C}, (option A  option B  option C)  M A  M B  M C.
Instance: Params (@merge) 4.
Arguments merge _ _ _ _ _ _ !_ !_ / : simpl nomatch.
845

846 847 848
(** The function [union_with f m1 m2] is supposed to yield the union of [m1]
and [m2] using the function [f] to combine values of members that are in
both [m1] and [m2]. *)
849 850
Class UnionWith (M : Type  Type) :=
  union_with :  {A}, (A  A  option A)  M A  M A  M A.
851 852
Instance: Params (@union_with) 3.
Arguments union_with {_ _ _} _ !_ !_ / : simpl nomatch.
853

854
(** Similarly for intersection and difference. *)
855 856
Class IntersectionWith (M : Type  Type) :=
  intersection_with :  {A}, (A  A  option A)  M A  M A  M A.
857 858
Instance: Params (@intersection_with) 3.
Arguments intersection_with {_ _ _} _ !_ !_ / : simpl nomatch.
859

860 861
Class DifferenceWith (M : Type  Type) :=
  difference_with :  {A}, (A  A  option A)  M A  M A  M A.
862 863
Instance: Params (@difference_with) 3.
Arguments difference_with {_ _ _} _ !_ !_ / : simpl nomatch.
Robbert Krebbers's avatar
Robbert Krebbers committed
864

865 866 867
Definition intersection_with_list `{IntersectionWith M} {A}
    (f : A  A  option A) : M A  list (M A)  M A :=
  fold_right (intersection_with f).
868 869 870
Arguments intersection_with_list _ _ _ _ _ !_ /.


871
(** * Axiomatization of collections *)
872 873
(** The class [SimpleCollection A C] axiomatizes a collection of type [C] with
elements of type [A]. *)
874 875
Class SimpleCollection A C `{ElemOf A C,
    Empty C, Singleton A C, Union C} : Prop := {
876
  not_elem_of_empty (x : A) : x  ;
877
  elem_of_singleton (x y : A) : x  {[ y ]}  x = y;
878 879
  elem_of_union X Y (x : A) : x  X  Y  x  X  x  Y
}.
880 881
Class Collection A C `{ElemOf A C, Empty C, Singleton A C,
    Union C, Intersection C, Difference C} : Prop := {
882
  collection_simple :>> SimpleCollection A C;
Robbert Krebbers's avatar
Robbert Krebbers committed
883
  elem_of_intersection X Y (x : A) : x  X  Y  x  X  x  Y;
884 885
  elem_of_difference X Y (x : A) : x  X  Y  x  X  x  Y
}.
Robbert Krebbers's avatar
Robbert Krebbers committed
886

887 888 889
(** We axiomative a finite collection as a collection whose elements can be
enumerated as a list. These elements, given by the [elements] function, may be
in any order and should not contain duplicates. *)
Robbert Krebbers's avatar
Robbert Krebbers committed
890
Class Elements A C := elements: C  list A.
891
Instance