collections.v 25.5 KB
Newer Older
Robbert Krebbers's avatar
Robbert Krebbers committed
1
(* Copyright (c) 2012-2015, Robbert Krebbers. *)
2 3 4 5
(* This file is distributed under the terms of the BSD license. *)
(** This file collects definitions and theorems on collections. Most
importantly, it implements some tactics to automatically solve goals involving
collections. *)
6
Require Export prelude.base prelude.tactics prelude.orders.
7

8 9 10
Instance collection_subseteq `{ElemOf A C} : SubsetEq C := λ X Y,
   x, x  X  x  Y.

11
(** * Basic theorems *)
12 13
Section simple_collection.
  Context `{SimpleCollection A C}.
14 15
  Implicit Types x y : A.
  Implicit Types X Y : C.
Robbert Krebbers's avatar
Robbert Krebbers committed
16

17
  Lemma elem_of_empty x : x    False.
18
  Proof. split. apply not_elem_of_empty. done. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
19 20 21 22
  Lemma elem_of_union_l x X Y : x  X  x  X  Y.
  Proof. intros. apply elem_of_union. auto. Qed.
  Lemma elem_of_union_r x X Y : x  Y  x  X  Y.
  Proof. intros. apply elem_of_union. auto. Qed.
23 24 25
  Global Instance: EmptySpec C.
  Proof. firstorder auto. Qed.
  Global Instance: JoinSemiLattice C.
26
  Proof. firstorder auto. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
27
  Lemma elem_of_subseteq X Y : X  Y   x, x  X  x  Y.
28
  Proof. done. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
29 30
  Lemma elem_of_equiv X Y : X  Y   x, x  X  x  Y.
  Proof. firstorder. Qed.
31 32
  Lemma elem_of_equiv_alt X Y :
    X  Y  ( x, x  X  x  Y)  ( x, x  Y  x  X).
Robbert Krebbers's avatar
Robbert Krebbers committed
33
  Proof. firstorder. Qed.
34 35
  Lemma elem_of_equiv_empty X : X     x, x  X.
  Proof. firstorder. Qed.
36 37 38 39 40 41
  Lemma collection_positive_l X Y : X  Y    X  .
  Proof.
    rewrite !elem_of_equiv_empty. setoid_rewrite elem_of_union. naive_solver.
  Qed.
  Lemma collection_positive_l_alt X Y : X    X  Y  .
  Proof. eauto using collection_positive_l. Qed.
42 43 44 45
  Lemma elem_of_singleton_1 x y : x  {[y]}  x = y.
  Proof. by rewrite elem_of_singleton. Qed.
  Lemma elem_of_singleton_2 x y : x = y  x  {[y]}.
  Proof. by rewrite elem_of_singleton. Qed.
46 47 48
  Lemma elem_of_subseteq_singleton x X : x  X  {[ x ]}  X.
  Proof.
    split.
49
    * intros ??. rewrite elem_of_singleton. by intros ->.
50 51
    * intros Ex. by apply (Ex x), elem_of_singleton.
  Qed.
52
  Global Instance singleton_proper : Proper ((=) ==> ()) (singleton (B:=C)).
53
  Proof. by repeat intro; subst. Qed.
54 55
  Global Instance elem_of_proper :
    Proper ((=) ==> () ==> iff) (() : A  C  Prop) | 5.
56
  Proof. intros ???; subst. firstorder. Qed.
57
  Lemma elem_of_union_list Xs x : x   Xs   X, X  Xs  x  X.
58 59
  Proof.
    split.
60 61 62 63
    * induction Xs; simpl; intros HXs; [by apply elem_of_empty in HXs|].
      setoid_rewrite elem_of_cons. apply elem_of_union in HXs. naive_solver.
    * intros [X []]. induction 1; simpl; [by apply elem_of_union_l |].
      intros. apply elem_of_union_r; auto.
64
  Qed.
65
  Lemma non_empty_singleton x : ({[ x ]} : C)  .
66 67 68 69 70 71
  Proof. intros [E _]. by apply (elem_of_empty x), E, elem_of_singleton. Qed.
  Lemma not_elem_of_singleton x y : x  {[ y ]}  x  y.
  Proof. by rewrite elem_of_singleton. Qed.
  Lemma not_elem_of_union x X Y : x  X  Y  x  X  x  Y.
  Proof. rewrite elem_of_union. tauto. Qed.

72 73 74 75 76 77 78 79 80
  Section leibniz.
    Context `{!LeibnizEquiv C}.
    Lemma elem_of_equiv_L X Y : X = Y   x, x  X  x  Y.
    Proof. unfold_leibniz. apply elem_of_equiv. Qed.
    Lemma elem_of_equiv_alt_L X Y :
      X = Y  ( x, x  X  x  Y)  ( x, x  Y  x  X).
    Proof. unfold_leibniz. apply elem_of_equiv_alt. Qed.
    Lemma elem_of_equiv_empty_L X : X =    x, x  X.
    Proof. unfold_leibniz. apply elem_of_equiv_empty. Qed.
81 82 83 84
    Lemma collection_positive_l_L X Y : X  Y =   X = .
    Proof. unfold_leibniz. apply collection_positive_l. Qed.
    Lemma collection_positive_l_alt_L X Y : X    X  Y  .
    Proof. unfold_leibniz. apply collection_positive_l_alt. Qed.
85 86 87 88 89 90 91 92 93 94 95 96
    Lemma non_empty_singleton_L x : {[ x ]}  .
    Proof. unfold_leibniz. apply non_empty_singleton. Qed.
  End leibniz.

  Section dec.
    Context `{ X Y : C, Decision (X  Y)}.
    Global Instance elem_of_dec_slow (x : A) (X : C) : Decision (x  X) | 100.
    Proof.
      refine (cast_if (decide_rel () {[ x ]} X));
        by rewrite elem_of_subseteq_singleton.
    Defined.
  End dec.
97 98
End simple_collection.

99
Definition of_option `{Singleton A C, Empty C} (x : option A) : C :=
100
  match x with None =>  | Some a => {[ a ]} end.
101 102
Fixpoint of_list `{Singleton A C, Empty C, Union C} (l : list A) : C :=
  match l with [] =>  | x :: l => {[ x ]}  of_list l end.
103

104 105 106 107 108 109 110 111 112 113 114
Section of_option_list.
  Context `{SimpleCollection A C}.
  Lemma elem_of_of_option (x : A) o : x  of_option o  o = Some x.
  Proof.
    destruct o; simpl;
      rewrite ?elem_of_empty, ?elem_of_singleton; naive_solver.
  Qed.
  Lemma elem_of_of_list (x : A) l : x  of_list l  x  l.
  Proof.
    split.
    * induction l; simpl; [by rewrite elem_of_empty|].
Robbert Krebbers's avatar
Robbert Krebbers committed
115
      rewrite elem_of_union,elem_of_singleton; intros [->|?]; constructor; auto.
116 117 118
    * induction 1; simpl; rewrite elem_of_union, elem_of_singleton; auto.
  Qed.
End of_option_list.
119 120 121

Global Instance collection_guard `{CollectionMonad M} : MGuard M :=
  λ P dec A x, match dec with left H => x H | _ =>  end.
122 123 124 125 126 127 128 129 130

Section collection_monad_base.
  Context `{CollectionMonad M}.
  Lemma elem_of_guard `{Decision P} {A} (x : A) (X : M A) :
    x  guard P; X  P  x  X.
  Proof.
    unfold mguard, collection_guard; simpl; case_match;
      rewrite ?elem_of_empty; naive_solver.
  Qed.
131 132 133
  Lemma elem_of_guard_2 `{Decision P} {A} (x : A) (X : M A) :
    P  x  X  x  guard P; X.
  Proof. by rewrite elem_of_guard. Qed.
134 135 136 137 138 139 140 141 142 143 144 145
  Lemma guard_empty `{Decision P} {A} (X : M A) : guard P; X    ¬P  X  .
  Proof.
    rewrite !elem_of_equiv_empty; setoid_rewrite elem_of_guard.
    destruct (decide P); naive_solver.
  Qed.
  Lemma bind_empty {A B} (f : A  M B) X :
    X = f    X     x, x  X  f x  .
  Proof.
    setoid_rewrite elem_of_equiv_empty; setoid_rewrite elem_of_bind.
    naive_solver.
  Qed.
End collection_monad_base.
146

147 148 149 150 151 152 153 154 155
(** * Tactics *)
(** Given a hypothesis [H : _ ∈ _], the tactic [destruct_elem_of H] will
recursively split [H] for [(∪)], [(∩)], [(∖)], [map], [∅], [{[_]}]. *)
Tactic Notation "decompose_elem_of" hyp(H) :=
  let rec go H :=
  lazymatch type of H with
  | _   => apply elem_of_empty in H; destruct H
  | ?x  {[ ?y ]} =>
    apply elem_of_singleton in H; try first [subst y | subst x]
156 157
  | ?x  {[ ?y ]} =>
    apply not_elem_of_singleton in H
158
  | _  _  _ =>
159 160 161 162
    apply elem_of_union in H; destruct H as [H|H]; [go H|go H]
  | _  _  _ =>
    let H1 := fresh H in let H2 := fresh H in apply not_elem_of_union in H;
    destruct H as [H1 H2]; go H1; go H2
163
  | _  _  _ =>
164
    let H1 := fresh H in let H2 := fresh H in apply elem_of_intersection in H;
165 166
    destruct H as [H1 H2]; go H1; go H2
  | _  _  _ =>
167
    let H1 := fresh H in let H2 := fresh H in apply elem_of_difference in H;
168 169
    destruct H as [H1 H2]; go H1; go H2
  | ?x  _ <$> _ =>
170
    apply elem_of_fmap in H; destruct H as [? [? H]]; try (subst x); go H
171
  | _  _ = _ =>
172
    let H1 := fresh H in let H2 := fresh H in apply elem_of_bind in H;
173 174 175 176
    destruct H as [? [H1 H2]]; go H1; go H2
  | ?x  mret ?y =>
    apply elem_of_ret in H; try first [subst y | subst x]
  | _  mjoin _ = _ =>
177
    let H1 := fresh H in let H2 := fresh H in apply elem_of_join in H;
178
    destruct H as [? [H1 H2]]; go H1; go H2
179
  | _  guard _; _ =>
180
    let H1 := fresh H in let H2 := fresh H in apply elem_of_guard in H;
181 182
    destruct H as [H1 H2]; go H2
  | _  of_option _ => apply elem_of_of_option in H
Robbert Krebbers's avatar
Robbert Krebbers committed
183
  | _  of_list _ => apply elem_of_of_list in H
184 185 186 187 188
  | _ => idtac
  end in go H.
Tactic Notation "decompose_elem_of" :=
  repeat_on_hyps (fun H => decompose_elem_of H).

189 190
Ltac decompose_empty := repeat
  match goal with
191 192 193 194
  | H :    |- _ => clear H
  | H :  =  |- _ => clear H
  | H :   _ |- _ => symmetry in H
  | H :  = _ |- _ => symmetry in H
195 196 197
  | H : _  _   |- _ => apply empty_union in H; destruct H
  | H : _  _   |- _ => apply non_empty_union in H; destruct H
  | H : {[ _ ]}   |- _ => destruct (non_empty_singleton _ H)
198 199 200
  | H : _  _ =  |- _ => apply empty_union_L in H; destruct H
  | H : _  _   |- _ => apply non_empty_union_L in H; destruct H
  | H : {[ _ ]} =  |- _ => destruct (non_empty_singleton_L _ H)
201
  | H : guard _ ; _   |- _ => apply guard_empty in H; destruct H
202 203
  end.

204 205 206 207
(** The first pass of our collection tactic consists of eliminating all
occurrences of [(∪)], [(∩)], [(∖)], [(<$>)], [∅], [{[_]}], [(≡)], and [(⊆)],
by rewriting these into logically equivalent propositions. For example we
rewrite [A → x ∈ X ∪ ∅] into [A → x ∈ X ∨ False]. *)
208 209 210 211
Ltac unfold_elem_of :=
  repeat_on_hyps (fun H =>
    repeat match type of H with
    | context [ _  _ ] => setoid_rewrite elem_of_subseteq in H
Robbert Krebbers's avatar
Robbert Krebbers committed
212
    | context [ _  _ ] => setoid_rewrite subset_spec in H
213
    | context [ _   ] => setoid_rewrite elem_of_equiv_empty in H
214
    | context [ _  _ ] => setoid_rewrite elem_of_equiv_alt in H
215 216
    | context [ _ =  ] => setoid_rewrite elem_of_equiv_empty_L in H
    | context [ _ = _ ] => setoid_rewrite elem_of_equiv_alt_L in H
217 218 219 220 221
    | context [ _   ] => setoid_rewrite elem_of_empty in H
    | context [ _  {[ _ ]} ] => setoid_rewrite elem_of_singleton in H
    | context [ _  _  _ ] => setoid_rewrite elem_of_union in H
    | context [ _  _  _ ] => setoid_rewrite elem_of_intersection in H
    | context [ _  _  _ ] => setoid_rewrite elem_of_difference in H
222 223 224 225
    | context [ _  _ <$> _ ] => setoid_rewrite elem_of_fmap in H
    | context [ _  mret _ ] => setoid_rewrite elem_of_ret in H
    | context [ _  _ = _ ] => setoid_rewrite elem_of_bind in H
    | context [ _  mjoin _ ] => setoid_rewrite elem_of_join in H
226
    | context [ _  guard _; _ ] => setoid_rewrite elem_of_guard in H
Robbert Krebbers's avatar
Robbert Krebbers committed
227 228
    | context [ _  of_option _ ] => setoid_rewrite elem_of_of_option in H
    | context [ _  of_list _ ] => setoid_rewrite elem_of_of_list in H
229 230
    end);
  repeat match goal with
Robbert Krebbers's avatar
Robbert Krebbers committed
231
  | |- context [ _  _ ] => setoid_rewrite elem_of_subseteq
Robbert Krebbers's avatar
Robbert Krebbers committed
232
  | |- context [ _  _ ] => setoid_rewrite subset_spec
233
  | |- context [ _   ] => setoid_rewrite elem_of_equiv_empty
Robbert Krebbers's avatar
Robbert Krebbers committed
234
  | |- context [ _  _ ] => setoid_rewrite elem_of_equiv_alt
235 236
  | |- context [ _ =  ] => setoid_rewrite elem_of_equiv_empty_L
  | |- context [ _ = _ ] => setoid_rewrite elem_of_equiv_alt_L
237
  | |- context [ _   ] => setoid_rewrite elem_of_empty
238
  | |- context [ _  {[ _ ]} ] => setoid_rewrite elem_of_singleton
Robbert Krebbers's avatar
Robbert Krebbers committed
239 240 241
  | |- context [ _  _  _ ] => setoid_rewrite elem_of_union
  | |- context [ _  _  _ ] => setoid_rewrite elem_of_intersection
  | |- context [ _  _  _ ] => setoid_rewrite elem_of_difference
242 243 244 245
  | |- context [ _  _ <$> _ ] => setoid_rewrite elem_of_fmap
  | |- context [ _  mret _ ] => setoid_rewrite elem_of_ret
  | |- context [ _  _ = _ ] => setoid_rewrite elem_of_bind
  | |- context [ _  mjoin _ ] => setoid_rewrite elem_of_join
246
  | |- context [ _  guard _; _ ] => setoid_rewrite elem_of_guard
Robbert Krebbers's avatar
Robbert Krebbers committed
247 248
  | |- context [ _  of_option _ ] => setoid_rewrite elem_of_of_option
  | |- context [ _  of_list _ ] => setoid_rewrite elem_of_of_list
Robbert Krebbers's avatar
Robbert Krebbers committed
249 250
  end.

251 252 253
(** The tactic [solve_elem_of tac] composes the above tactic with [intuition].
For goals that do not involve [≡], [⊆], [map], or quantifiers this tactic is
generally powerful enough. This tactic either fails or proves the goal. *)
254
Tactic Notation "solve_elem_of" tactic3(tac) :=
Robbert Krebbers's avatar
Robbert Krebbers committed
255
  setoid_subst;
256
  decompose_empty;
257 258 259 260 261 262 263 264 265
  unfold_elem_of;
  solve [intuition (simplify_equality; tac)].
Tactic Notation "solve_elem_of" := solve_elem_of auto.

(** For goals with quantifiers we could use the above tactic but with
[firstorder] instead of [intuition] as finishing tactic. However, [firstorder]
fails or loops on very small goals generated by [solve_elem_of] already. We
use the [naive_solver] tactic as a substitute. This tactic either fails or
proves the goal. *)
266
Tactic Notation "esolve_elem_of" tactic3(tac) :=
Robbert Krebbers's avatar
Robbert Krebbers committed
267
  setoid_subst;
268
  decompose_empty;
269 270 271
  unfold_elem_of;
  naive_solver tac.
Tactic Notation "esolve_elem_of" := esolve_elem_of eauto.
272

273
(** * More theorems *)
Robbert Krebbers's avatar
Robbert Krebbers committed
274 275
Section collection.
  Context `{Collection A C}.
276
  Implicit Types X Y : C.
Robbert Krebbers's avatar
Robbert Krebbers committed
277

278
  Global Instance: Lattice C.
279
  Proof. split. apply _. firstorder auto. solve_elem_of. Qed.
280 281
  Global Instance difference_proper :
     Proper (() ==> () ==> ()) (@difference C _).
Robbert Krebbers's avatar
Robbert Krebbers committed
282 283 284 285
  Proof.
    intros X1 X2 HX Y1 Y2 HY; apply elem_of_equiv; intros x.
    by rewrite !elem_of_difference, HX, HY.
  Qed.
286
  Lemma intersection_singletons x : ({[x]} : C)  {[x]}  {[x]}.
Robbert Krebbers's avatar
Robbert Krebbers committed
287 288 289
  Proof. esolve_elem_of. Qed.
  Lemma difference_twice X Y : (X  Y)  Y  X  Y.
  Proof. esolve_elem_of. Qed.
290
  Lemma subseteq_empty_difference X Y : X  Y  X  Y  .
Robbert Krebbers's avatar
Robbert Krebbers committed
291 292 293 294 295
  Proof. esolve_elem_of. Qed.
  Lemma difference_diag X : X  X  .
  Proof. esolve_elem_of. Qed.
  Lemma difference_union_distr_l X Y Z : (X  Y)  Z  X  Z  Y  Z.
  Proof. esolve_elem_of. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
296 297
  Lemma difference_union_distr_r X Y Z : Z  (X  Y)  (Z  X)  (Z  Y).
  Proof. esolve_elem_of. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
298 299 300
  Lemma difference_intersection_distr_l X Y Z : (X  Y)  Z  X  Z  Y  Z.
  Proof. esolve_elem_of. Qed.

301 302 303 304 305 306
  Section leibniz.
    Context `{!LeibnizEquiv C}.
    Lemma intersection_singletons_L x : {[x]}  {[x]} = {[x]}.
    Proof. unfold_leibniz. apply intersection_singletons. Qed.
    Lemma difference_twice_L X Y : (X  Y)  Y = X  Y.
    Proof. unfold_leibniz. apply difference_twice. Qed.
307 308
    Lemma subseteq_empty_difference_L X Y : X  Y  X  Y = .
    Proof. unfold_leibniz. apply subseteq_empty_difference. Qed.
309 310 311 312
    Lemma difference_diag_L X : X  X = .
    Proof. unfold_leibniz. apply difference_diag. Qed.
    Lemma difference_union_distr_l_L X Y Z : (X  Y)  Z = X  Z  Y  Z.
    Proof. unfold_leibniz. apply difference_union_distr_l. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
313 314
    Lemma difference_union_distr_r_L X Y Z : Z  (X  Y) = (Z  X)  (Z  Y).
    Proof. unfold_leibniz. apply difference_union_distr_r. Qed.
315 316 317 318 319 320
    Lemma difference_intersection_distr_l_L X Y Z :
      (X  Y)  Z = X  Z  Y  Z.
    Proof. unfold_leibniz. apply difference_intersection_distr_l. Qed.
  End leibniz.

  Section dec.
Robbert Krebbers's avatar
Robbert Krebbers committed
321
    Context `{ (x : A) (X : C), Decision (x  X)}.
322
    Lemma not_elem_of_intersection x X Y : x  X  Y  x  X  x  Y.
323
    Proof. rewrite elem_of_intersection. destruct (decide (x  X)); tauto. Qed.
324
    Lemma not_elem_of_difference x X Y : x  X  Y  x  X  x  Y.
325
    Proof. rewrite elem_of_difference. destruct (decide (x  Y)); tauto. Qed.
326 327
    Lemma union_difference X Y : X  Y  Y  X  Y  X.
    Proof.
328 329
      split; intros x; rewrite !elem_of_union, elem_of_difference; [|intuition].
      destruct (decide (x  X)); intuition.
330 331 332 333 334 335
    Qed.
    Lemma non_empty_difference X Y : X  Y  Y  X  .
    Proof.
      intros [HXY1 HXY2] Hdiff. destruct HXY2. intros x.
      destruct (decide (x  X)); esolve_elem_of.
    Qed.
336 337
    Lemma empty_difference_subseteq X Y : X  Y    X  Y.
    Proof. intros ? x ?; apply dec_stable; esolve_elem_of. Qed.
338 339 340 341 342
    Context `{!LeibnizEquiv C}.
    Lemma union_difference_L X Y : X  Y  Y = X  Y  X.
    Proof. unfold_leibniz. apply union_difference. Qed.
    Lemma non_empty_difference_L X Y : X  Y  Y  X  .
    Proof. unfold_leibniz. apply non_empty_difference. Qed.
343 344
    Lemma empty_difference_subseteq_L X Y : X  Y =   X  Y.
    Proof. unfold_leibniz. apply empty_difference_subseteq. Qed.
345 346 347 348 349 350
  End dec.
End collection.

Section collection_ops.
  Context `{CollectionOps A C}.

Robbert Krebbers's avatar
Robbert Krebbers committed
351 352 353 354 355
  Lemma elem_of_intersection_with_list (f : A  A  option A) Xs Y x :
    x  intersection_with_list f Y Xs   xs y,
      Forall2 () xs Xs  y  Y  foldr (λ x, (= f x)) (Some y) xs = Some x.
  Proof.
    split.
356 357 358 359
    * revert x. induction Xs; simpl; intros x HXs; [eexists [], x; intuition|].
      rewrite elem_of_intersection_with in HXs; destruct HXs as (x1&x2&?&?&?).
      destruct (IHXs x2) as (xs & y & hy & ? & ?); trivial.
      eexists (x1 :: xs), y. intuition (simplify_option_equality; auto).
Robbert Krebbers's avatar
Robbert Krebbers committed
360 361 362 363 364 365 366 367 368 369 370
    * intros (xs & y & Hxs & ? & Hx). revert x Hx.
      induction Hxs; intros; simplify_option_equality; [done |].
      rewrite elem_of_intersection_with. naive_solver.
  Qed.

  Lemma intersection_with_list_ind (P Q : A  Prop) f Xs Y :
    ( y, y  Y  P y) 
    Forall (λ X,  x, x  X  Q x) Xs 
    ( x y z, Q x  P y  f x y = Some z  P z) 
     x, x  intersection_with_list f Y Xs  P x.
  Proof.
371
    intros HY HXs Hf. induction Xs; simplify_option_equality; [done |].
Robbert Krebbers's avatar
Robbert Krebbers committed
372 373 374
    intros x Hx. rewrite elem_of_intersection_with in Hx.
    decompose_Forall. destruct Hx as (? & ? & ? & ? & ?). eauto.
  Qed.
375
End collection_ops.
Robbert Krebbers's avatar
Robbert Krebbers committed
376

377
(** * Sets without duplicates up to an equivalence *)
378
Section NoDup.
379
  Context `{SimpleCollection A B} (R : relation A) `{!Equivalence R}.
Robbert Krebbers's avatar
Robbert Krebbers committed
380 381

  Definition elem_of_upto (x : A) (X : B) :=  y, y  X  R x y.
382
  Definition set_NoDup (X : B) :=  x y, x  X  y  X  R x y  x = y.
Robbert Krebbers's avatar
Robbert Krebbers committed
383 384

  Global Instance: Proper (() ==> iff) (elem_of_upto x).
Robbert Krebbers's avatar
Robbert Krebbers committed
385
  Proof. intros ??? E. unfold elem_of_upto. by setoid_rewrite E. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
386 387 388
  Global Instance: Proper (R ==> () ==> iff) elem_of_upto.
  Proof.
    intros ?? E1 ?? E2. split; intros [z [??]]; exists z.
389 390
    * rewrite <-E1, <-E2; intuition.
    * rewrite E1, E2; intuition.
Robbert Krebbers's avatar
Robbert Krebbers committed
391
  Qed.
392
  Global Instance: Proper (() ==> iff) set_NoDup.
Robbert Krebbers's avatar
Robbert Krebbers committed
393 394 395
  Proof. firstorder. Qed.

  Lemma elem_of_upto_elem_of x X : x  X  elem_of_upto x X.
396
  Proof. unfold elem_of_upto. esolve_elem_of. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
397
  Lemma elem_of_upto_empty x : ¬elem_of_upto x .
398
  Proof. unfold elem_of_upto. esolve_elem_of. Qed.
399
  Lemma elem_of_upto_singleton x y : elem_of_upto x {[ y ]}  R x y.
400
  Proof. unfold elem_of_upto. esolve_elem_of. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
401

402 403
  Lemma elem_of_upto_union X Y x :
    elem_of_upto x (X  Y)  elem_of_upto x X  elem_of_upto x Y.
404
  Proof. unfold elem_of_upto. esolve_elem_of. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
405
  Lemma not_elem_of_upto x X : ¬elem_of_upto x X   y, y  X  ¬R x y.
406
  Proof. unfold elem_of_upto. esolve_elem_of. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
407

408 409 410 411 412 413 414
  Lemma set_NoDup_empty: set_NoDup .
  Proof. unfold set_NoDup. solve_elem_of. Qed.
  Lemma set_NoDup_add x X :
    ¬elem_of_upto x X  set_NoDup X  set_NoDup ({[ x ]}  X).
  Proof. unfold set_NoDup, elem_of_upto. esolve_elem_of. Qed.
  Lemma set_NoDup_inv_add x X :
    x  X  set_NoDup ({[ x ]}  X)  ¬elem_of_upto x X.
415 416
  Proof.
    intros Hin Hnodup [y [??]].
417
    rewrite (Hnodup x y) in Hin; solve_elem_of.
418
  Qed.
419 420 421 422 423
  Lemma set_NoDup_inv_union_l X Y : set_NoDup (X  Y)  set_NoDup X.
  Proof. unfold set_NoDup. solve_elem_of. Qed.
  Lemma set_NoDup_inv_union_r X Y : set_NoDup (X  Y)  set_NoDup Y.
  Proof. unfold set_NoDup. solve_elem_of. Qed.
End NoDup.
Robbert Krebbers's avatar
Robbert Krebbers committed
424

425
(** * Quantifiers *)
Robbert Krebbers's avatar
Robbert Krebbers committed
426
Section quantifiers.
427
  Context `{SimpleCollection A B} (P : A  Prop).
Robbert Krebbers's avatar
Robbert Krebbers committed
428

429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453
  Definition set_Forall X :=  x, x  X  P x.
  Definition set_Exists X :=  x, x  X  P x.

  Lemma set_Forall_empty : set_Forall .
  Proof. unfold set_Forall. solve_elem_of. Qed.
  Lemma set_Forall_singleton x : set_Forall {[ x ]}  P x.
  Proof. unfold set_Forall. solve_elem_of. Qed.
  Lemma set_Forall_union X Y : set_Forall X  set_Forall Y  set_Forall (X  Y).
  Proof. unfold set_Forall. solve_elem_of. Qed.
  Lemma set_Forall_union_inv_1 X Y : set_Forall (X  Y)  set_Forall X.
  Proof. unfold set_Forall. solve_elem_of. Qed.
  Lemma set_Forall_union_inv_2 X Y : set_Forall (X  Y)  set_Forall Y.
  Proof. unfold set_Forall. solve_elem_of. Qed.

  Lemma set_Exists_empty : ¬set_Exists .
  Proof. unfold set_Exists. esolve_elem_of. Qed.
  Lemma set_Exists_singleton x : set_Exists {[ x ]}  P x.
  Proof. unfold set_Exists. esolve_elem_of. Qed.
  Lemma set_Exists_union_1 X Y : set_Exists X  set_Exists (X  Y).
  Proof. unfold set_Exists. esolve_elem_of. Qed.
  Lemma set_Exists_union_2 X Y : set_Exists Y  set_Exists (X  Y).
  Proof. unfold set_Exists. esolve_elem_of. Qed.
  Lemma set_Exists_union_inv X Y :
    set_Exists (X  Y)  set_Exists X  set_Exists Y.
  Proof. unfold set_Exists. esolve_elem_of. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
454 455
End quantifiers.

456
Section more_quantifiers.
457
  Context `{SimpleCollection A B}.
458

459 460 461 462 463 464
  Lemma set_Forall_weaken (P Q : A  Prop) (Hweaken :  x, P x  Q x) X :
    set_Forall P X  set_Forall Q X.
  Proof. unfold set_Forall. naive_solver. Qed.
  Lemma set_Exists_weaken (P Q : A  Prop) (Hweaken :  x, P x  Q x) X :
    set_Exists P X  set_Exists Q X.
  Proof. unfold set_Exists. naive_solver. Qed.
465 466
End more_quantifiers.

467 468 469
(** * Fresh elements *)
(** We collect some properties on the [fresh] operation. In particular we
generalize [fresh] to generate lists of fresh elements. *)
470 471 472 473 474 475 476 477 478 479
Fixpoint fresh_list `{Fresh A C, Union C, Singleton A C}
    (n : nat) (X : C) : list A :=
  match n with
  | 0 => []
  | S n => let x := fresh X in x :: fresh_list n ({[ x ]}  X)
  end.
Inductive Forall_fresh `{ElemOf A C} (X : C) : list A  Prop :=
  | Forall_fresh_nil : Forall_fresh X []
  | Forall_fresh_cons x xs :
     x  xs  x  X  Forall_fresh X xs  Forall_fresh X (x :: xs).
480

481 482
Section fresh.
  Context `{FreshSpec A C}.
483
  Implicit Types X Y : C.
484

485
  Global Instance fresh_proper: Proper (() ==> (=)) (fresh (C:=C)).
486
  Proof. intros ???. by apply fresh_proper_alt, elem_of_equiv. Qed.
487 488
  Global Instance fresh_list_proper:
    Proper ((=) ==> () ==> (=)) (fresh_list (C:=C)).
489
  Proof.
490 491
    intros ? n ->. induction n as [|n IH]; intros ?? E; f_equal'; [by rewrite E|].
    apply IH. by rewrite E.
492
  Qed.
493 494 495 496 497 498 499 500 501 502 503 504 505 506 507

  Lemma Forall_fresh_NoDup X xs : Forall_fresh X xs  NoDup xs.
  Proof. induction 1; by constructor. Qed.
  Lemma Forall_fresh_elem_of X xs x : Forall_fresh X xs  x  xs  x  X.
  Proof.
    intros HX; revert x; rewrite <-Forall_forall.
    by induction HX; constructor.
  Qed.
  Lemma Forall_fresh_alt X xs :
    Forall_fresh X xs  NoDup xs   x, x  xs  x  X.
  Proof.
    split; eauto using Forall_fresh_NoDup, Forall_fresh_elem_of.
    rewrite <-Forall_forall.
    intros [Hxs Hxs']. induction Hxs; decompose_Forall_hyps; constructor; auto.
  Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
508 509 510
  Lemma Forall_fresh_subseteq X Y xs :
    Forall_fresh X xs  Y  X  Forall_fresh Y xs.
  Proof. rewrite !Forall_fresh_alt; esolve_elem_of. Qed.
511

512 513
  Lemma fresh_list_length n X : length (fresh_list n X) = n.
  Proof. revert X. induction n; simpl; auto. Qed.
514
  Lemma fresh_list_is_fresh n X x : x  fresh_list n X  x  X.
515
  Proof.
516
    revert X. induction n as [|n IH]; intros X; simpl;[by rewrite elem_of_nil|].
517 518
    rewrite elem_of_cons; intros [->| Hin]; [apply is_fresh|].
    apply IH in Hin; solve_elem_of.
519
  Qed.
520
  Lemma NoDup_fresh_list n X : NoDup (fresh_list n X).
521
  Proof.
522
    revert X. induction n; simpl; constructor; auto.
523 524 525 526 527
    intros Hin; apply fresh_list_is_fresh in Hin; solve_elem_of.
  Qed.
  Lemma Forall_fresh_list X n : Forall_fresh X (fresh_list n X).
  Proof.
    rewrite Forall_fresh_alt; eauto using NoDup_fresh_list, fresh_list_is_fresh.
528 529
  Qed.
End fresh.
530

531
(** * Properties of implementations of collections that form a monad *)
532 533 534
Section collection_monad.
  Context `{CollectionMonad M}.

535 536 537 538 539 540
  Global Instance collection_fmap_proper {A B} :
    Proper (pointwise_relation _ (=) ==> () ==> ()) (@fmap M _ A B).
  Proof. intros f g ? X Y [??]; split; esolve_elem_of. Qed.
  Global Instance collection_bind_proper {A B} :
    Proper (((=) ==> ()) ==> () ==> ()) (@mbind M _ A B).
  Proof. unfold respectful; intros f g Hfg X Y [??]; split; esolve_elem_of. Qed.
541 542
  Global Instance collection_join_proper {A} :
    Proper (() ==> ()) (@mjoin M _ A).
Robbert Krebbers's avatar
Robbert Krebbers committed
543
  Proof. intros X Y [??]; split; esolve_elem_of. Qed.
544

545 546 547 548
  Lemma collection_bind_singleton {A B} (f : A  M B) x : {[ x ]} = f  f x.
  Proof. esolve_elem_of. Qed.
  Lemma collection_guard_True {A} `{Decision P} (X : M A) : P  guard P; X  X.
  Proof. esolve_elem_of. Qed.
549
  Lemma collection_fmap_compose {A B C} (f : A  B) (g : B  C) (X : M A) :
550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568
    g  f <$> X  g <$> (f <$> X).
  Proof. esolve_elem_of. Qed.
  Lemma elem_of_fmap_1 {A B} (f : A  B) (X : M A) (y : B) :
    y  f <$> X   x, y = f x  x  X.
  Proof. esolve_elem_of. Qed.
  Lemma elem_of_fmap_2 {A B} (f : A  B) (X : M A) (x : A) :
    x  X  f x  f <$> X.
  Proof. esolve_elem_of. Qed.
  Lemma elem_of_fmap_2_alt {A B} (f : A  B) (X : M A) (x : A) (y : B) :
    x  X  y = f x  y  f <$> X.
  Proof. esolve_elem_of. Qed.

  Lemma elem_of_mapM {A B} (f : A  M B) l k :
    l  mapM f k  Forall2 (λ x y, x  f y) l k.
  Proof.
    split.
    * revert l. induction k; esolve_elem_of.
    * induction 1; esolve_elem_of.
  Qed.
569
  Lemma collection_mapM_length {A B} (f : A  M B) l k :
570 571 572
    l  mapM f k  length l = length k.
  Proof. revert l; induction k; esolve_elem_of. Qed.
  Lemma elem_of_mapM_fmap {A B} (f : A  B) (g : B  M A) l k :
573
    Forall (λ x,  y, y  g x  f y = x) l  k  mapM g l  fmap f k = l.
574
  Proof.
575 576
    intros Hl. revert k. induction Hl; simpl; intros;
      decompose_elem_of; f_equal'; auto.
577 578
  Qed.
  Lemma elem_of_mapM_Forall {A B} (f : A  M B) (P : B  Prop) l k :
579
    l  mapM f k  Forall (λ x,  y, y  f x  P y) k  Forall P l.
Robbert Krebbers's avatar
Robbert Krebbers committed
580
  Proof. rewrite elem_of_mapM. apply Forall2_Forall_l. Qed.
581 582
  Lemma elem_of_mapM_Forall2_l {A B C} (f : A  M B) (P: B  C  Prop) l1 l2 k :
    l1  mapM f k  Forall2 (λ x y,  z, z  f x  P z y) k l2 
Robbert Krebbers's avatar
Robbert Krebbers committed
583 584 585 586 587
    Forall2 P l1 l2.
  Proof.
    rewrite elem_of_mapM. intros Hl1. revert l2.
    induction Hl1; inversion_clear 1; constructor; auto.
  Qed.
588
End collection_monad.