base.v 40.3 KB
Newer Older
Robbert Krebbers's avatar
Robbert Krebbers committed
1
(* Copyright (c) 2012-2015, Robbert Krebbers. *)
2
3
4
5
6
(* This file is distributed under the terms of the BSD license. *)
(** This file collects type class interfaces, notations, and general theorems
that are used throughout the whole development. Most importantly it contains
abstract interfaces for ordered structures, collections, and various other data
structures. *)
Robbert Krebbers's avatar
Robbert Krebbers committed
7
8
Global Generalizable All Variables.
Global Set Automatic Coercions Import.
Robbert Krebbers's avatar
Robbert Krebbers committed
9
Global Set Asymmetric Patterns.
10
From Coq Require Export Morphisms RelationClasses List Bool Utf8 Program Setoid.
11
Obligation Tactic := idtac.
Robbert Krebbers's avatar
Robbert Krebbers committed
12

13
(** * General *)
14
15
16
17
18
(** Zipping lists. *)
Definition zip_with {A B C} (f : A  B  C) : list A  list B  list C :=
  fix go l1 l2 :=
  match l1, l2 with x1 :: l1, x2 :: l2 => f x1 x2 :: go l1 l2 | _ , _ => [] end.
Notation zip := (zip_with pair).
19

20
21
(** Ensure that [simpl] unfolds [id], [compose], and [flip] when fully
applied. *)
22
Arguments id _ _ /.
23
Arguments compose _ _ _ _ _ _ /.
24
Arguments flip _ _ _ _ _ _ /.
25
26
Arguments const _ _ _ _ /.
Typeclasses Transparent id compose flip const.
Robbert Krebbers's avatar
Robbert Krebbers committed
27
Instance: Params (@pair) 2.
28

29
30
31
32
(** Change [True] and [False] into notations in order to enable overloading.
We will use this in the file [assertions] to give [True] and [False] a
different interpretation in [assert_scope] used for assertions of our axiomatic
semantics. *)
33
34
Notation "'True'" := True : type_scope.
Notation "'False'" := False : type_scope.
Robbert Krebbers's avatar
Robbert Krebbers committed
35

36
37
Notation curry := prod_curry.
Notation uncurry := prod_uncurry.
38
39
40
41
Definition curry3 {A B C D} (f : A  B  C  D) (p : A * B * C) : D :=
  let '(a,b,c) := p in f a b c.
Definition curry4 {A B C D E} (f : A  B  C  D  E) (p : A * B * C * D) : E :=
  let '(a,b,c,d) := p in f a b c d.
42

43
44
(** Throughout this development we use [C_scope] for all general purpose
notations that do not belong to a more specific scope. *)
Robbert Krebbers's avatar
Robbert Krebbers committed
45
46
47
Delimit Scope C_scope with C.
Global Open Scope C_scope.

48
(** Introduce some Haskell style like notations. *)
Robbert Krebbers's avatar
Robbert Krebbers committed
49
50
51
52
53
54
55
Notation "(=)" := eq (only parsing) : C_scope.
Notation "( x =)" := (eq x) (only parsing) : C_scope.
Notation "(= x )" := (λ y, eq y x) (only parsing) : C_scope.
Notation "(≠)" := (λ x y, x  y) (only parsing) : C_scope.
Notation "( x ≠)" := (λ y, x  y) (only parsing) : C_scope.
Notation "(≠ x )" := (λ y, y  x) (only parsing) : C_scope.

56
Hint Extern 0 (_ = _) => reflexivity.
57
Hint Extern 100 (_  _) => discriminate.
Robbert Krebbers's avatar
Robbert Krebbers committed
58

59
60
61
62
Notation "(→)" := (λ A B, A  B) (only parsing) : C_scope.
Notation "( A →)" := (λ B, A  B) (only parsing) : C_scope.
Notation "(→ B )" := (λ A, A  B) (only parsing) : C_scope.

63
Notation "t $ r" := (t r)
64
  (at level 65, right associativity, only parsing) : C_scope.
65
66
67
Notation "($)" := (λ f x, f x) (only parsing) : C_scope.
Notation "($ x )" := (λ f, f x) (only parsing) : C_scope.

Robbert Krebbers's avatar
Robbert Krebbers committed
68
69
70
71
Infix "∘" := compose : C_scope.
Notation "(∘)" := compose (only parsing) : C_scope.
Notation "( f ∘)" := (compose f) (only parsing) : C_scope.
Notation "(∘ f )" := (λ g, compose g f) (only parsing) : C_scope.
72

73
74
75
76
77
78
79
80
81
82
83
84
Notation "(∧)" := and (only parsing) : C_scope.
Notation "( A ∧)" := (and A) (only parsing) : C_scope.
Notation "(∧ B )" := (λ A, A  B) (only parsing) : C_scope.

Notation "(∨)" := or (only parsing) : C_scope.
Notation "( A ∨)" := (or A) (only parsing) : C_scope.
Notation "(∨ B )" := (λ A, A  B) (only parsing) : C_scope.

Notation "(↔)" := iff (only parsing) : C_scope.
Notation "( A ↔)" := (iff A) (only parsing) : C_scope.
Notation "(↔ B )" := (λ A, A  B) (only parsing) : C_scope.

85
86
87
88
89
90
91
92
93
Hint Extern 0 (_  _) => reflexivity.
Hint Extern 0 (_  _) => symmetry; assumption.

Notation "( x ,)" := (pair x) (only parsing) : C_scope.
Notation "(, y )" := (λ x, (x,y)) (only parsing) : C_scope.

Notation "p .1" := (fst p) (at level 10, format "p .1").
Notation "p .2" := (snd p) (at level 10, format "p .2").

94
95
Definition fun_map {A A' B B'} (f : A'  A) (g : B  B')
  (h : A  B) : A'  B' := g  h  f.
96
97
98
99
100
101
102
Definition prod_map {A A' B B'} (f : A  A') (g : B  B')
  (p : A * B) : A' * B' := (f (p.1), g (p.2)).
Arguments prod_map {_ _ _ _} _ _ !_ /.
Definition prod_zip {A A' A'' B B' B''} (f : A  A'  A'') (g : B  B'  B'')
    (p : A * B) (q : A' * B') : A'' * B'' := (f (p.1) (q.1), g (p.2) (q.2)).
Arguments prod_zip {_ _ _ _ _ _} _ _ !_ !_ /.

103
104
(** Set convenient implicit arguments for [existT] and introduce notations. *)
Arguments existT {_ _} _ _.
105
Arguments proj1_sig {_ _} _.
Robbert Krebbers's avatar
Robbert Krebbers committed
106
Notation "x ↾ p" := (exist _ x p) (at level 20) : C_scope.
107
Notation "` x" := (proj1_sig x) (at level 10, format "` x") : C_scope.
Robbert Krebbers's avatar
Robbert Krebbers committed
108

109
110
111
112
(** * Type classes *)
(** ** Provable propositions *)
(** This type class collects provable propositions. It is useful to constraint
type classes by arbitrary propositions. *)
Robbert Krebbers's avatar
Robbert Krebbers committed
113
114
Class PropHolds (P : Prop) := prop_holds: P.

115
116
Hint Extern 0 (PropHolds _) => assumption : typeclass_instances.
Instance: Proper (iff ==> iff) PropHolds.
117
Proof. repeat intro; trivial. Qed.
118
119
120

Ltac solve_propholds :=
  match goal with
121
122
  | |- PropHolds (?P) => apply _
  | |- ?P => change (PropHolds P); apply _
123
124
125
126
127
128
129
  end.

(** ** Decidable propositions *)
(** This type class by (Spitters/van der Weegen, 2011) collects decidable
propositions. For example to declare a parameter expressing decidable equality
on a type [A] we write [`{∀ x y : A, Decision (x = y)}] and use it by writing
[decide (x = y)]. *)
Robbert Krebbers's avatar
Robbert Krebbers committed
130
131
132
Class Decision (P : Prop) := decide : {P} + {¬P}.
Arguments decide _ {_}.

133
134
(** ** Inhabited types *)
(** This type class collects types that are inhabited. *)
135
Class Inhabited (A : Type) : Type := populate { inhabitant : A }.
136
137
138
Arguments populate {_} _.

Instance unit_inhabited: Inhabited unit := populate ().
Robbert Krebbers's avatar
Robbert Krebbers committed
139
Instance bool_inhabated : Inhabited bool := populate true.
140
141
142
Instance list_inhabited {A} : Inhabited (list A) := populate [].
Instance prod_inhabited {A B} (iA : Inhabited A)
    (iB : Inhabited B) : Inhabited (A * B) :=
143
  match iA, iB with populate x, populate y => populate (x,y) end.
144
Instance sum_inhabited_l {A B} (iA : Inhabited A) : Inhabited (A + B) :=
145
  match iA with populate x => populate (inl x) end.
146
Instance sum_inhabited_r {A B} (iB : Inhabited A) : Inhabited (A + B) :=
147
  match iB with populate y => populate (inl y) end.
148
149
Instance option_inhabited {A} : Inhabited (option A) := populate None.

150
151
152
153
154
155
(** ** Proof irrelevant types *)
(** This type class collects types that are proof irrelevant. That means, all
elements of the type are equal. We use this notion only used for propositions,
but by universe polymorphism we can generalize it. *)
Class ProofIrrel (A : Type) : Prop := proof_irrel (x y : A) : x = y.

156
157
158
(** ** Setoid equality *)
(** We define an operational type class for setoid equality. This is based on
(Spitters/van der Weegen, 2011). *)
Robbert Krebbers's avatar
Robbert Krebbers committed
159
160
161
Class Equiv A := equiv: relation A.
Infix "≡" := equiv (at level 70, no associativity) : C_scope.
Notation "(≡)" := equiv (only parsing) : C_scope.
162
163
164
165
166
167
Notation "( X ≡)" := (equiv X) (only parsing) : C_scope.
Notation "(≡ X )" := (λ Y, Y  X) (only parsing) : C_scope.
Notation "(≢)" := (λ X Y, ¬X  Y) (only parsing) : C_scope.
Notation "X ≢ Y":= (¬X  Y) (at level 70, no associativity) : C_scope.
Notation "( X ≢)" := (λ Y, X  Y) (only parsing) : C_scope.
Notation "(≢ X )" := (λ Y, Y  X) (only parsing) : C_scope.
Robbert Krebbers's avatar
Robbert Krebbers committed
168

169
170
171
172
(** The type class [LeibnizEquiv] collects setoid equalities that coincide
with Leibniz equality. We provide the tactic [fold_leibniz] to transform such
setoid equalities into Leibniz equalities, and [unfold_leibniz] for the
reverse. *)
173
174
175
176
177
Class LeibnizEquiv A `{Equiv A} := leibniz_equiv x y : x  y  x = y.
Lemma leibniz_equiv_iff `{LeibnizEquiv A, !Reflexive (@equiv A _)} (x y : A) :
  x  y  x = y.
Proof. split. apply leibniz_equiv. intros ->; reflexivity. Qed.
 
178
179
180
Ltac fold_leibniz := repeat
  match goal with
  | H : context [ @equiv ?A _ _ _ ] |- _ =>
181
    setoid_rewrite (leibniz_equiv_iff (A:=A)) in H
182
  | |- context [ @equiv ?A _ _ _ ] =>
183
    setoid_rewrite (leibniz_equiv_iff (A:=A))
184
185
186
187
  end.
Ltac unfold_leibniz := repeat
  match goal with
  | H : context [ @eq ?A _ _ ] |- _ =>
188
    setoid_rewrite <-(leibniz_equiv_iff (A:=A)) in H
189
  | |- context [ @eq ?A _ _ ] =>
190
    setoid_rewrite <-(leibniz_equiv_iff (A:=A))
191
192
  end.

193
194
Definition equivL {A} : Equiv A := (=).

195
196
197
198
199
200
201
202
(** A [Params f n] instance forces the setoid rewriting mechanism not to
rewrite in the first [n] arguments of the function [f]. We will declare such
instances for all operational type classes in this development. *)
Instance: Params (@equiv) 2.

(** The following instance forces [setoid_replace] to use setoid equality
(for types that have an [Equiv] instance) rather than the standard Leibniz
equality. *)
Robbert Krebbers's avatar
Robbert Krebbers committed
203
Instance equiv_default_relation `{Equiv A} : DefaultRelation () | 3.
204
Hint Extern 0 (_  _) => reflexivity.
205
Hint Extern 0 (_  _) => symmetry; assumption.
Robbert Krebbers's avatar
Robbert Krebbers committed
206

207
(** ** Operations on collections *)
208
(** We define operational type classes for the traditional operations and
209
relations on collections: the empty collection [∅], the union [(∪)],
210
211
intersection [(∩)], and difference [(∖)], the singleton [{[_]}], the subset
[(⊆)] and element of [(∈)] relation, and disjointess [(⊥)]. *)
Robbert Krebbers's avatar
Robbert Krebbers committed
212
213
214
Class Empty A := empty: A.
Notation "∅" := empty : C_scope.

215
216
217
Class Top A := top : A.
Notation "⊤" := top : C_scope.

Robbert Krebbers's avatar
Robbert Krebbers committed
218
Class Union A := union: A  A  A.
219
Instance: Params (@union) 2.
Robbert Krebbers's avatar
Robbert Krebbers committed
220
221
222
223
Infix "∪" := union (at level 50, left associativity) : C_scope.
Notation "(∪)" := union (only parsing) : C_scope.
Notation "( x ∪)" := (union x) (only parsing) : C_scope.
Notation "(∪ x )" := (λ y, union y x) (only parsing) : C_scope.
224
225
226
227
228
229
Infix "∪*" := (zip_with ()) (at level 50, left associativity) : C_scope.
Notation "(∪*)" := (zip_with ()) (only parsing) : C_scope.
Infix "∪**" := (zip_with (zip_with ()))
  (at level 50, left associativity) : C_scope.
Infix "∪*∪**" := (zip_with (prod_zip () (*)))
  (at level 50, left associativity) : C_scope.
Robbert Krebbers's avatar
Robbert Krebbers committed
230

231
Definition union_list `{Empty A} `{Union A} : list A  A := fold_right () .
232
233
234
Arguments union_list _ _ _ !_ /.
Notation "⋃ l" := (union_list l) (at level 20, format "⋃  l") : C_scope.

Robbert Krebbers's avatar
Robbert Krebbers committed
235
Class Intersection A := intersection: A  A  A.
236
Instance: Params (@intersection) 2.
Robbert Krebbers's avatar
Robbert Krebbers committed
237
238
239
240
241
242
Infix "∩" := intersection (at level 40) : C_scope.
Notation "(∩)" := intersection (only parsing) : C_scope.
Notation "( x ∩)" := (intersection x) (only parsing) : C_scope.
Notation "(∩ x )" := (λ y, intersection y x) (only parsing) : C_scope.

Class Difference A := difference: A  A  A.
243
Instance: Params (@difference) 2.
Robbert Krebbers's avatar
Robbert Krebbers committed
244
245
246
247
Infix "∖" := difference (at level 40) : C_scope.
Notation "(∖)" := difference (only parsing) : C_scope.
Notation "( x ∖)" := (difference x) (only parsing) : C_scope.
Notation "(∖ x )" := (λ y, difference y x) (only parsing) : C_scope.
248
249
250
251
252
253
Infix "∖*" := (zip_with ()) (at level 40, left associativity) : C_scope.
Notation "(∖*)" := (zip_with ()) (only parsing) : C_scope.
Infix "∖**" := (zip_with (zip_with ()))
  (at level 40, left associativity) : C_scope.
Infix "∖*∖**" := (zip_with (prod_zip () (*)))
  (at level 50, left associativity) : C_scope.
Robbert Krebbers's avatar
Robbert Krebbers committed
254

255
256
Class Singleton A B := singleton: A  B.
Instance: Params (@singleton) 3.
257
Notation "{[ x ]}" := (singleton x) (at level 1) : C_scope.
258
Notation "{[ x ; y ; .. ; z ]}" :=
259
260
261
262
263
264
  (union .. (union (singleton x) (singleton y)) .. (singleton z))
  (at level 1) : C_scope.
Notation "{[ x , y ]}" := (singleton (x,y))
  (at level 1, y at next level) : C_scope.
Notation "{[ x , y , z ]}" := (singleton (x,y,z))
  (at level 1, y at next level, z at next level) : C_scope.
265

266
Class SubsetEq A := subseteq: relation A.
267
Instance: Params (@subseteq) 2.
Robbert Krebbers's avatar
Robbert Krebbers committed
268
269
270
Infix "⊆" := subseteq (at level 70) : C_scope.
Notation "(⊆)" := subseteq (only parsing) : C_scope.
Notation "( X ⊆ )" := (subseteq X) (only parsing) : C_scope.
271
Notation "( ⊆ X )" := (λ Y, Y  X) (only parsing) : C_scope.
Robbert Krebbers's avatar
Robbert Krebbers committed
272
273
274
275
Notation "X ⊈ Y" := (¬X  Y) (at level 70) : C_scope.
Notation "(⊈)" := (λ X Y, X  Y) (only parsing) : C_scope.
Notation "( X ⊈ )" := (λ Y, X  Y) (only parsing) : C_scope.
Notation "( ⊈ X )" := (λ Y, Y  X) (only parsing) : C_scope.
276
277
278
279
280
281
282
Infix "⊆*" := (Forall2 ()) (at level 70) : C_scope.
Notation "(⊆*)" := (Forall2 ()) (only parsing) : C_scope.
Infix "⊆**" := (Forall2 (*)) (at level 70) : C_scope.
Infix "⊆1*" := (Forall2 (λ p q, p.1  q.1)) (at level 70) : C_scope.
Infix "⊆2*" := (Forall2 (λ p q, p.2  q.2)) (at level 70) : C_scope.
Infix "⊆1**" := (Forall2 (λ p q, p.1 * q.1)) (at level 70) : C_scope.
Infix "⊆2**" := (Forall2 (λ p q, p.2 * q.2)) (at level 70) : C_scope.
Robbert Krebbers's avatar
Robbert Krebbers committed
283

284
Hint Extern 0 (_  _) => reflexivity.
285
286
287
Hint Extern 0 (_ * _) => reflexivity.
Hint Extern 0 (_ ** _) => reflexivity.

288
289
Definition strict {A} (R : relation A) : relation A := λ X Y, R X Y  ¬R Y X.
Instance: Params (@strict) 2.
290
291
292
293
Infix "⊂" := (strict ()) (at level 70) : C_scope.
Notation "(⊂)" := (strict ()) (only parsing) : C_scope.
Notation "( X ⊂ )" := (strict () X) (only parsing) : C_scope.
Notation "( ⊂ X )" := (λ Y, Y  X) (only parsing) : C_scope.
294
295
296
297
Notation "X ⊄  Y" := (¬X  Y) (at level 70) : C_scope.
Notation "(⊄)" := (λ X Y, X  Y) (only parsing) : C_scope.
Notation "( X ⊄ )" := (λ Y, X  Y) (only parsing) : C_scope.
Notation "( ⊄ X )" := (λ Y, Y  X) (only parsing) : C_scope.
Robbert Krebbers's avatar
Robbert Krebbers committed
298

299
300
301
302
303
(** The class [Lexico A] is used for the lexicographic order on [A]. This order
is used to create finite maps, finite sets, etc, and is typically different from
the order [(⊆)]. *)
Class Lexico A := lexico: relation A.

Robbert Krebbers's avatar
Robbert Krebbers committed
304
Class ElemOf A B := elem_of: A  B  Prop.
305
Instance: Params (@elem_of) 3.
Robbert Krebbers's avatar
Robbert Krebbers committed
306
307
308
309
310
311
312
313
314
Infix "∈" := elem_of (at level 70) : C_scope.
Notation "(∈)" := elem_of (only parsing) : C_scope.
Notation "( x ∈)" := (elem_of x) (only parsing) : C_scope.
Notation "(∈ X )" := (λ x, elem_of x X) (only parsing) : C_scope.
Notation "x ∉ X" := (¬x  X) (at level 80) : C_scope.
Notation "(∉)" := (λ x X, x  X) (only parsing) : C_scope.
Notation "( x ∉)" := (λ X, x  X) (only parsing) : C_scope.
Notation "(∉ X )" := (λ x, x  X) (only parsing) : C_scope.

Robbert Krebbers's avatar
Robbert Krebbers committed
315
316
317
318
Class Disjoint A := disjoint : A  A  Prop.
Instance: Params (@disjoint) 2.
Infix "⊥" := disjoint (at level 70) : C_scope.
Notation "(⊥)" := disjoint (only parsing) : C_scope.
319
Notation "( X ⊥.)" := (disjoint X) (only parsing) : C_scope.
320
Notation "(.⊥ X )" := (λ Y, Y  X) (only parsing) : C_scope.
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
Infix "⊥*" := (Forall2 ()) (at level 70) : C_scope.
Notation "(⊥*)" := (Forall2 ()) (only parsing) : C_scope.
Infix "⊥**" := (Forall2 (*)) (at level 70) : C_scope.
Infix "⊥1*" := (Forall2 (λ p q, p.1  q.1)) (at level 70) : C_scope.
Infix "⊥2*" := (Forall2 (λ p q, p.2  q.2)) (at level 70) : C_scope.
Infix "⊥1**" := (Forall2 (λ p q, p.1 * q.1)) (at level 70) : C_scope.
Infix "⊥2**" := (Forall2 (λ p q, p.2 * q.2)) (at level 70) : C_scope.
Hint Extern 0 (_  _) => symmetry; eassumption.
Hint Extern 0 (_ * _) => symmetry; eassumption.

Class DisjointE E A := disjointE : E  A  A  Prop.
Instance: Params (@disjointE) 4.
Notation "X ⊥{ Γ } Y" := (disjointE Γ X Y)
  (at level 70, format "X  ⊥{ Γ }  Y") : C_scope.
Notation "(⊥{ Γ } )" := (disjointE Γ) (only parsing, Γ at level 1) : C_scope.
Notation "Xs ⊥{ Γ }* Ys" := (Forall2 ({Γ}) Xs Ys)
  (at level 70, format "Xs  ⊥{ Γ }*  Ys") : C_scope.
Notation "(⊥{ Γ }* )" := (Forall2 ({Γ}))
  (only parsing, Γ at level 1) : C_scope.
Notation "X ⊥{ Γ1 , Γ2 , .. , Γ3 } Y" := (disjoint (pair .. (Γ1, Γ2) .. Γ3) X Y)
  (at level 70, format "X  ⊥{ Γ1 , Γ2 , .. , Γ3 }  Y") : C_scope.
Notation "Xs ⊥{ Γ1 , Γ2 , .. , Γ3 }* Ys" :=
  (Forall2 (disjoint (pair .. (Γ1, Γ2) .. Γ3)) Xs Ys)
  (at level 70, format "Xs  ⊥{ Γ1 ,  Γ2 , .. , Γ3 }*  Ys") : C_scope.
Hint Extern 0 (_ {_} _) => symmetry; eassumption.
346
347
348

Class DisjointList A := disjoint_list : list A  Prop.
Instance: Params (@disjoint_list) 2.
349
Notation "⊥ Xs" := (disjoint_list Xs) (at level 20, format "⊥  Xs") : C_scope.
350

351
352
353
354
355
356
Section disjoint_list.
  Context `{Disjoint A, Union A, Empty A}.
  Inductive disjoint_list_default : DisjointList A :=
    | disjoint_nil_2 :  (@nil A)
    | disjoint_cons_2 (X : A) (Xs : list A) : X   Xs   Xs   (X :: Xs).
  Global Existing Instance disjoint_list_default.
357

358
  Lemma disjoint_list_nil  :  @nil A  True.
359
360
361
  Proof. split; constructor. Qed.
  Lemma disjoint_list_cons X Xs :  (X :: Xs)  X   Xs   Xs.
  Proof. split. inversion_clear 1; auto. intros [??]. constructor; auto. Qed.
362
End disjoint_list.
363
364

Class Filter A B := filter:  (P : A  Prop) `{ x, Decision (P x)}, B  B.
365
366
367

(** ** Monadic operations *)
(** We define operational type classes for the monadic operations bind, join 
368
369
370
and fmap. We use these type classes merely for convenient overloading of
notations and do not formalize any theory on monads (we do not even define a
class with the monad laws). *)
371
372
Class MRet (M : Type  Type) := mret:  {A}, A  M A.
Arguments mret {_ _ _} _.
373
Instance: Params (@mret) 3.
374
375
Class MBind (M : Type  Type) := mbind :  {A B}, (A  M B)  M A  M B.
Arguments mbind {_ _ _ _} _ !_ /.
376
Instance: Params (@mbind) 4.
377
Class MJoin (M : Type  Type) := mjoin:  {A}, M (M A)  M A.
378
Arguments mjoin {_ _ _} !_ /.
379
Instance: Params (@mjoin) 3.
380
381
Class FMap (M : Type  Type) := fmap :  {A B}, (A  B)  M A  M B.
Arguments fmap {_ _ _ _} _ !_ /.
382
Instance: Params (@fmap) 4.
383
384
Class OMap (M : Type  Type) := omap:  {A B}, (A  option B)  M A  M B.
Arguments omap {_ _ _ _} _ !_ /.
385
Instance: Params (@omap) 4.
386

387
388
389
390
391
392
Notation "m ≫= f" := (mbind f m) (at level 60, right associativity) : C_scope.
Notation "( m ≫=)" := (λ f, mbind f m) (only parsing) : C_scope.
Notation "(≫= f )" := (mbind f) (only parsing) : C_scope.
Notation "(≫=)" := (λ m f, mbind f m) (only parsing) : C_scope.

Notation "x ← y ; z" := (y = (λ x : _, z))
Robbert Krebbers's avatar
Robbert Krebbers committed
393
  (at level 65, only parsing, right associativity) : C_scope.
394
Infix "<$>" := fmap (at level 60, right associativity) : C_scope.
395
Notation "' ( x1 , x2 ) ← y ; z" :=
396
  (y = (λ x : _, let ' (x1, x2) := x in z))
Robbert Krebbers's avatar
Robbert Krebbers committed
397
  (at level 65, only parsing, right associativity) : C_scope.
398
Notation "' ( x1 , x2 , x3 ) ← y ; z" :=
399
  (y = (λ x : _, let ' (x1,x2,x3) := x in z))
Robbert Krebbers's avatar
Robbert Krebbers committed
400
  (at level 65, only parsing, right associativity) : C_scope.
401
Notation "' ( x1 , x2 , x3  , x4 ) ← y ; z" :=
402
  (y = (λ x : _, let ' (x1,x2,x3,x4) := x in z))
Robbert Krebbers's avatar
Robbert Krebbers committed
403
  (at level 65, only parsing, right associativity) : C_scope.
404
405
Notation "' ( x1 , x2 , x3  , x4 , x5 ) ← y ; z" :=
  (y = (λ x : _, let ' (x1,x2,x3,x4,x5) := x in z))
Robbert Krebbers's avatar
Robbert Krebbers committed
406
  (at level 65, only parsing, right associativity) : C_scope.
407
408
Notation "' ( x1 , x2 , x3  , x4 , x5 , x6 ) ← y ; z" :=
  (y = (λ x : _, let ' (x1,x2,x3,x4,x5,x6) := x in z))
Robbert Krebbers's avatar
Robbert Krebbers committed
409
  (at level 65, only parsing, right associativity) : C_scope.
410

411
412
413
414
415
Notation "ps .*1" := (fmap (M:=list) fst ps)
  (at level 10, format "ps .*1").
Notation "ps .*2" := (fmap (M:=list) snd ps)
  (at level 10, format "ps .*2").

416
Class MGuard (M : Type  Type) :=
417
418
419
  mguard:  P {dec : Decision P} {A}, (P  M A)  M A.
Arguments mguard _ _ _ !_ _ _ /.
Notation "'guard' P ; o" := (mguard P (λ _, o))
Robbert Krebbers's avatar
Robbert Krebbers committed
420
  (at level 65, only parsing, right associativity) : C_scope.
421
Notation "'guard' P 'as' H ; o" := (mguard P (λ H, o))
Robbert Krebbers's avatar
Robbert Krebbers committed
422
  (at level 65, only parsing, right associativity) : C_scope.
423

424
(** ** Operations on maps *)
425
426
(** In this section we define operational type classes for the operations
on maps. In the file [fin_maps] we will axiomatize finite maps.
427
The function look up [m !! k] should yield the element at key [k] in [m]. *)
428
Class Lookup (K A M : Type) := lookup: K  M  option A.
429
430
431
Instance: Params (@lookup) 4.
Notation "m !! i" := (lookup i m) (at level 20) : C_scope.
Notation "(!!)" := lookup (only parsing) : C_scope.
432
Notation "( m !!)" := (λ i, m !! i) (only parsing) : C_scope.
433
Notation "(!! i )" := (lookup i) (only parsing) : C_scope.
434
Arguments lookup _ _ _ _ !_ !_ / : simpl nomatch.
435

436
437
438
(** The singleton map *)
Class SingletonM K A M := singletonM: K  A  M.
Instance: Params (@singletonM) 5.
439
Notation "{[ k := a ]}" := (singletonM k a) (at level 1) : C_scope.
440

441
442
(** The function insert [<[k:=a]>m] should update the element at key [k] with
value [a] in [m]. *)
443
Class Insert (K A M : Type) := insert: K  A  M  M.
Robbert Krebbers's avatar
Robbert Krebbers committed
444
Instance: Params (@insert) 5.
445
446
Notation "<[ k := a ]>" := (insert k a)
  (at level 5, right associativity, format "<[ k := a ]>") : C_scope.
447
Arguments insert _ _ _ _ !_ _ !_ / : simpl nomatch.
448

449
450
451
(** The function delete [delete k m] should delete the value at key [k] in
[m]. If the key [k] is not a member of [m], the original map should be
returned. *)
452
Class Delete (K M : Type) := delete: K  M  M.
Robbert Krebbers's avatar
Robbert Krebbers committed
453
Instance: Params (@delete) 4.
454
Arguments delete _ _ _ !_ !_ / : simpl nomatch.
455
456

(** The function [alter f k m] should update the value at key [k] using the
457
function [f], which is called with the original value. *)
458
Class Alter (K A M : Type) := alter: (A  A)  K  M  M.
459
Instance: Params (@alter) 5.
460
Arguments alter {_ _ _ _} _ !_ !_ / : simpl nomatch.
461
462

(** The function [alter f k m] should update the value at key [k] using the
463
464
465
function [f], which is called with the original value at key [k] or [None]
if [k] is not a member of [m]. The value at [k] should be deleted if [f] 
yields [None]. *)
466
467
Class PartialAlter (K A M : Type) :=
  partial_alter: (option A  option A)  K  M  M.
468
Instance: Params (@partial_alter) 4.
469
Arguments partial_alter _ _ _ _ _ !_ !_ / : simpl nomatch.
470
471
472

(** The function [dom C m] should yield the domain of [m]. That is a finite
collection of type [C] that contains the keys that are a member of [m]. *)
473
474
475
Class Dom (M C : Type) := dom: M  C.
Instance: Params (@dom) 3.
Arguments dom {_} _ {_} !_ / : simpl nomatch, clear implicits.
476
477

(** The function [merge f m1 m2] should merge the maps [m1] and [m2] by
478
479
480
481
482
constructing a new map whose value at key [k] is [f (m1 !! k) (m2 !! k)].*)
Class Merge (M : Type  Type) :=
  merge:  {A B C}, (option A  option B  option C)  M A  M B  M C.
Instance: Params (@merge) 4.
Arguments merge _ _ _ _ _ _ !_ !_ / : simpl nomatch.
483

484
485
486
487
488
(** The function [union_with f m1 m2] is supposed to yield the union of [m1]
and [m2] using the function [f] to combine values of members that are in
both [m1] and [m2]. *)
Class UnionWith (A M : Type) :=
  union_with: (A  A  option A)  M  M  M.
489
Instance: Params (@union_with) 3.
490
Arguments union_with {_ _ _} _ !_ !_ / : simpl nomatch.
491

492
493
494
(** Similarly for intersection and difference. *)
Class IntersectionWith (A M : Type) :=
  intersection_with: (A  A  option A)  M  M  M.
495
Instance: Params (@intersection_with) 3.
496
497
Arguments intersection_with {_ _ _} _ !_ !_ / : simpl nomatch.

498
499
Class DifferenceWith (A M : Type) :=
  difference_with: (A  A  option A)  M  M  M.
500
Instance: Params (@difference_with) 3.
501
Arguments difference_with {_ _ _} _ !_ !_ / : simpl nomatch.
Robbert Krebbers's avatar
Robbert Krebbers committed
502

503
504
505
506
Definition intersection_with_list `{IntersectionWith A M}
  (f : A  A  option A) : M  list M  M := fold_right (intersection_with f).
Arguments intersection_with_list _ _ _ _ _ !_ /.

507
508
509
510
511
512
513
514
Class LookupE (E K A M : Type) := lookupE: E  K  M  option A.
Instance: Params (@lookupE) 6.
Notation "m !!{ Γ } i" := (lookupE Γ i m)
  (at level 20, format "m  !!{ Γ }  i") : C_scope.
Notation "(!!{ Γ } )" := (lookupE Γ) (only parsing, Γ at level 1) : C_scope.
Arguments lookupE _ _ _ _ _ _ !_ !_ / : simpl nomatch.

Class InsertE (E K A M : Type) := insertE: E  K  A  M  M.
Robbert Krebbers's avatar
Robbert Krebbers committed
515
Instance: Params (@insertE) 6.
516
517
518
519
Notation "<[ k := a ]{ Γ }>" := (insertE Γ k a)
  (at level 5, right associativity, format "<[ k := a ]{ Γ }>") : C_scope.
Arguments insertE _ _ _ _ _ _ !_ _ !_ / : simpl nomatch.

520
521
522
(** ** Common properties *)
(** These operational type classes allow us to refer to common mathematical
properties in a generic way. For example, for injectivity of [(k ++)] it
523
524
525
526
allows us to write [inj (k ++)] instead of [app_inv_head k]. *)
Class Inj {A B} (R : relation A) (S : relation B) (f : A  B) : Prop :=
  inj x y : S (f x) (f y)  R x y.
Class Inj2 {A B C} (R1 : relation A) (R2 : relation B)
527
    (S : relation C) (f : A  B  C) : Prop :=
528
  inj2 x1 x2 y1 y2 : S (f x1 x2) (f y1 y2)  R1 x1 y1  R2 x2 y2.
529
Class Cancel {A B} (S : relation B) (f : A  B) (g : B  A) : Prop :=
530
531
532
533
534
535
536
  cancel :  x, S (f (g x)) x.
Class Surj {A B} (R : relation B) (f : A  B) :=
  surj y :  x, R (f x) y.
Class IdemP {A} (R : relation A) (f : A  A  A) : Prop :=
  idemp x : R (f x x) x.
Class Comm {A B} (R : relation A) (f : B  B  A) : Prop :=
  comm x y : R (f x y) (f y x).
537
Class LeftId {A} (R : relation A) (i : A) (f : A  A  A) : Prop :=
538
  left_id x : R (f i x) x.
539
Class RightId {A} (R : relation A) (i : A) (f : A  A  A) : Prop :=
540
541
542
  right_id x : R (f x i) x.
Class Assoc {A} (R : relation A) (f : A  A  A) : Prop :=
  assoc x y z : R (f x (f y z)) (f (f x y) z).
543
Class LeftAbsorb {A} (R : relation A) (i : A) (f : A  A  A) : Prop :=
544
  left_absorb x : R (f i x) i.
545
Class RightAbsorb {A} (R : relation A) (i : A) (f : A  A  A) : Prop :=
546
547
548
  right_absorb x : R (f x i) i.
Class AntiSymm {A} (R S : relation A) : Prop :=
  anti_symm x y : S x y  S y x  R x y.
549
550
Class Total {A} (R : relation A) := total x y : R x y  R y x.
Class Trichotomy {A} (R : relation A) :=
551
  trichotomy x y : R x y  x = y  R y x.
552
Class TrichotomyT {A} (R : relation A) :=
553
  trichotomyT x y : {R x y} + {x = y} + {R y x}.
Robbert Krebbers's avatar
Robbert Krebbers committed
554

555
Arguments irreflexivity {_} _ {_} _ _.
556
557
Arguments inj {_ _ _ _} _ {_} _ _ _.
Arguments inj2 {_ _ _ _ _ _} _ {_} _ _ _ _ _.
558
Arguments cancel {_ _ _} _ _ {_} _.
559
560
561
Arguments surj {_ _ _} _ {_} _.
Arguments idemp {_ _} _ {_} _.
Arguments comm {_ _ _} _ {_} _ _.
Robbert Krebbers's avatar
Robbert Krebbers committed
562
563
Arguments left_id {_ _} _ _ {_} _.
Arguments right_id {_ _} _ _ {_} _.
564
Arguments assoc {_ _} _ {_} _ _ _.
565
566
Arguments left_absorb {_ _} _ _ {_} _.
Arguments right_absorb {_ _} _ _ {_} _.
567
Arguments anti_symm {_ _} _ {_} _ _ _ _.
568
569
570
Arguments total {_} _ {_} _ _.
Arguments trichotomy {_} _ {_} _ _.
Arguments trichotomyT {_} _ {_} _ _.
571

572
Instance id_inj {A} : Inj (=) (=) (@id A).
573
574
Proof. intros ??; auto. Qed.

575
576
577
(** The following lemmas are specific versions of the projections of the above
type classes for Leibniz equality. These lemmas allow us to enforce Coq not to
use the setoid rewriting mechanism. *)
578
Lemma idemp_L {A} (f : A  A  A) `{!IdemP (=) f} x : f x x = x.
579
Proof. auto. Qed.
580
Lemma comm_L {A B} (f : B  B  A) `{!Comm (=) f} x y :
581
  f x y = f y x.
582
Proof. auto. Qed.
583
Lemma left_id_L {A} (i : A) (f : A  A  A) `{!LeftId (=) i f} x : f i x = x.
584
Proof. auto. Qed.
585
Lemma right_id_L {A} (i : A) (f : A  A  A) `{!RightId (=) i f} x : f x i = x.
586
Proof. auto. Qed.
587
Lemma assoc_L {A} (f : A  A  A) `{!Assoc (=) f} x y z :
588
  f x (f y z) = f (f x y) z.
589
Proof. auto. Qed.
590
Lemma left_absorb_L {A} (i : A) (f : A  A  A) `{!LeftAbsorb (=) i f} x :
591
592
  f i x = i.
Proof. auto. Qed.
593
Lemma right_absorb_L {A} (i : A) (f : A  A  A) `{!RightAbsorb (=) i f} x :
594
595
  f x i = i.
Proof. auto. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
596

597
(** ** Axiomatization of ordered structures *)
598
599
(** The classes [PreOrder], [PartialOrder], and [TotalOrder] use an arbitrary
relation [R] instead of [⊆] to support multiple orders on the same type. *)
600
Class PartialOrder {A} (R : relation A) : Prop := {
601
  partial_order_pre :> PreOrder R;
602
  partial_order_anti_symm :> AntiSymm (=) R
603
604
}.
Class TotalOrder {A} (R : relation A) : Prop := {
605
606
  total_order_partial :> PartialOrder R;
  total_order_trichotomy :> Trichotomy (strict R)
607
608
}.

609
610
611
612
613
614
(** We do not use a setoid equality in the following interfaces to avoid the
need for proofs that the relations and operations are proper. Instead, we
define setoid equality generically [λ X Y, X ⊆ Y ∧ Y ⊆ X]. *)
Class EmptySpec A `{Empty A, SubsetEq A} : Prop := subseteq_empty X :   X.
Class JoinSemiLattice A `{SubsetEq A, Union A} : Prop := {
  join_semi_lattice_pre :>> PreOrder ();
615
616
617
  union_subseteq_l X Y : X  X  Y;
  union_subseteq_r X Y : Y  X  Y;
  union_least X Y Z : X  Z  Y  Z  X  Y  Z
Robbert Krebbers's avatar
Robbert Krebbers committed
618
}.
619
620
Class MeetSemiLattice A `{SubsetEq A, Intersection A} : Prop := {
  meet_semi_lattice_pre :>> PreOrder ();
621
622
623
  intersection_subseteq_l X Y : X  Y  X;
  intersection_subseteq_r X Y : X  Y  Y;
  intersection_greatest X Y Z : Z  X  Z  Y  Z  X  Y
Robbert Krebbers's avatar
Robbert Krebbers committed
624
}.
625
626
627
628
Class Lattice A `{SubsetEq A, Union A, Intersection A} : Prop := {
  lattice_join :>> JoinSemiLattice A;
  lattice_meet :>> MeetSemiLattice A;
  lattice_distr X Y Z : (X  Y)  (X  Z)  X  (Y  Z)
629
}.
630

631
(** ** Axiomatization of collections *)
632
633
(** The class [SimpleCollection A C] axiomatizes a collection of type [C] with
elements of type [A]. *)
634
635
Class SimpleCollection A C `{ElemOf A C,
    Empty C, Singleton A C, Union C} : Prop := {
636
  not_elem_of_empty (x : A) : x  ;
637
  elem_of_singleton (x y : A) : x  {[ y ]}  x = y;
638
639
  elem_of_union X Y (x : A) : x  X  Y  x  X  x  Y
}.
640
641
Class Collection A C `{ElemOf A C, Empty C, Singleton A C,
    Union C, Intersection C, Difference C} : Prop := {
642
  collection_simple :>> SimpleCollection A C;
Robbert Krebbers's avatar
Robbert Krebbers committed
643
  elem_of_intersection X Y (x : A) : x  X  Y  x  X  x  Y;
644
645
  elem_of_difference X Y (x : A) : x  X  Y  x  X  x  Y
}.
646
647
Class CollectionOps A C `{ElemOf A C, Empty C, Singleton A C, Union C,
    Intersection C, Difference C, IntersectionWith A C, Filter A C} : Prop := {
648
  collection_ops :>> Collection A C;
649
  elem_of_intersection_with (f : A  A  option A) X Y (x : A) :
650
    x  intersection_with f X Y   x1 x2, x1  X  x2  Y  f x1 x2 = Some x;
651
  elem_of_filter X P `{ x, Decision (P x)} x : x  filter P X  P x  x  X
Robbert Krebbers's avatar
Robbert Krebbers committed
652
653
}.

654
655
656
(** We axiomative a finite collection as a collection whose elements can be
enumerated as a list. These elements, given by the [elements] function, may be
in any order and should not contain duplicates. *)
Robbert Krebbers's avatar
Robbert Krebbers committed
657
Class Elements A C := elements: C  list A.
658
Instance: Params (@elements) 3.
659
660
661
662
663
664
665
666
667
668
669
670
671

(** We redefine the standard library's [In] and [NoDup] using type classes. *)
Inductive elem_of_list {A} : ElemOf A (list A) :=
  | elem_of_list_here (x : A) l : x  x :: l
  | elem_of_list_further (x y : A) l : x  l  x  y :: l.
Existing Instance elem_of_list.

Inductive NoDup {A} : list A  Prop :=
  | NoDup_nil_2 : NoDup []
  | NoDup_cons_2 x l : x  l  NoDup l  NoDup (x :: l).

(** Decidability of equality of the carrier set is admissible, but we add it
anyway so as to avoid cycles in type class search. *)
672
673
674
Class FinCollection A C `{ElemOf A C, Empty C, Singleton A C,
    Union C, Intersection C, Difference C,
    Elements A C,  x y : A, Decision (x = y)} : Prop := {
Robbert Krebbers's avatar
Robbert Krebbers committed
675
  fin_collection :>> Collection A C;
676
677
  elem_of_elements X x : x  elements X  x  X;
  NoDup_elements X : NoDup (elements X)
678
679
}.
Class Size C := size: C  nat.
680
Arguments size {_ _} !_ / : simpl nomatch.
681
Instance: Params (@size) 2.
Robbert Krebbers's avatar
Robbert Krebbers committed
682

683
684
685
686
687
688
689
690
(** The class [Collection M] axiomatizes a type constructor [M] that can be
used to construct a collection [M A] with elements of type [A]. The advantage
of this class, compared to [Collection], is that it also axiomatizes the
the monadic operations. The disadvantage, is that not many inhabits are
possible (we will only provide an inhabitant using unordered lists without
duplicates removed). More interesting implementations typically need
decidability of equality, or a total order on the elements, which do not fit
in a type constructor of type [Type → Type]. *)
691
692
693
Class CollectionMonad M `{ A, ElemOf A (M A),
     A, Empty (M A),  A, Singleton A (M A),  A, Union (M A),
    !MBind M, !MRet M, !FMap M, !MJoin M} : Prop := {
694
695
696
  collection_monad_simple A :> SimpleCollection A (M A);
  elem_of_bind {A B} (f : A  M B) (X : M A) (x : B) :
    x  X = f   y, x  f y  y  X;
697
  elem_of_ret {A} (x y : A) : x  mret y  x = y;
698
699
  elem_of_fmap {A B} (f : A  B) (X : M A) (x : B) :
    x  f <$> X   y, x = f y  y  X;
700
  elem_of_join {A} (X : M (M A)) (x : A) : x  mjoin X   Y, x  Y  Y  X
701
702
}.

703
704
705
(** The function [fresh X] yields an element that is not contained in [X]. We
will later prove that [fresh] is [Proper] with respect to the induced setoid
equality on collections. *)
Robbert Krebbers's avatar
Robbert Krebbers committed
706
Class Fresh A C := fresh: C  A.
707
Instance: Params (@fresh) 3.
708
709
Class FreshSpec A C `{ElemOf A C,
    Empty C, Singleton A C, Union C, Fresh A C} : Prop := {
710
  fresh_collection_simple :>> SimpleCollection A C;
711
  fresh_proper_alt X Y : ( x, x  X  x  Y)  fresh X = fresh Y;
Robbert Krebbers's avatar
Robbert Krebbers committed
712
713
714
  is_fresh (X : C) : fresh X  X
}.

715
716
717
(** * Booleans *)
(** The following coercion allows us to use Booleans as propositions. *)
Coercion Is_true : bool >-> Sortclass.
718
Hint Unfold Is_true.
719
Hint Immediate Is_true_eq_left.
720
Hint Resolve orb_prop_intro andb_prop_intro.
721
722
723
724
725
726
727
728
729
730
731
Notation "(&&)" := andb (only parsing).
Notation "(||)" := orb (only parsing).
Infix "&&*" := (zip_with (&&)) (at level 40).
Infix "||*" := (zip_with (||)) (at level 50).

Definition bool_le (β1 β2 : bool) : Prop := negb β1 || β2.
Infix "=.>" := bool_le (at level 70).
Infix "=.>*" := (Forall2 bool_le) (at level 70).
Instance: PartialOrder bool_le.
Proof. repeat split; repeat intros [|]; compute; tauto. Qed.

732
733
734
735
736
737
738
739
740
Lemma andb_True b1 b2 : b1 && b2  b1  b2.
Proof. destruct b1, b2; simpl; tauto. Qed.
Lemma orb_True b1 b2 : b1 || b2  b1  b2.
Proof. destruct b1, b2; simpl; tauto. Qed.
Lemma negb_True b : negb b  ¬b.
Proof. destruct b; simpl; tauto. Qed.
Lemma Is_true_false (b : bool) : b = false  ¬b.
Proof. now intros -> ?. Qed.

741
(** * Miscellaneous *)
742
Class Half A := half: A  A.
743
744
Notation "½" := half : C_scope.
Notation "½*" := (fmap (M:=list) half) : C_scope.
745

746
747
Lemma proj1_sig_inj {A} (P : A  Prop) x (Px : P x) y (Py : P y) :
  xPx = yPy  x = y.
748
Proof. injection 1; trivial. Qed.
749
Lemma not_symmetry `{R : relation A, !Symmetric R} x y : ¬R x y  ¬R y x.