fin_maps.v 71.5 KB
Newer Older
Robbert Krebbers's avatar
Robbert Krebbers committed
1
(* Copyright (c) 2012-2015, Robbert Krebbers. *)
2
3
4
(* This file is distributed under the terms of the BSD license. *)
(** Finite maps associate data to keys. This file defines an interface for
finite maps and collects some theory on it. Most importantly, it proves useful
5
induction principles for finite maps and implements the tactic
6
[simplify_map_eq] to simplify goals involving finite maps. *)
7
From Coq Require Import Permutation.
8
From stdpp Require Export relations orders vector.
9
10
(* FIXME: This file needs a 'Proof Using' hint, but the default we use
   everywhere makes for lots of extra ssumptions. *)
11

12
13
(** * Axiomatization of finite maps *)
(** We require Leibniz equality to be extensional on finite maps. This of
14
15
16
17
18
course limits the space of finite map implementations, but since we are mainly
interested in finite maps with numbers as indexes, we do not consider this to
be a serious limitation. The main application of finite maps is to implement
the memory, where extensionality of Leibniz equality is very important for a
convenient use in the assertions of our axiomatic semantics. *)
19

Robbert Krebbers's avatar
Robbert Krebbers committed
20
21
(** Finiteness is axiomatized by requiring that each map can be translated
to an association list. The translation to association lists is used to
22
prove well founded recursion on finite maps. *)
23

24
25
26
(** Finite map implementations are required to implement the [merge] function
which enables us to give a generic implementation of [union_with],
[intersection_with], and [difference_with]. *)
27

28
Class FinMapToList K A M := map_to_list: M  list (K * A).
Robbert Krebbers's avatar
Robbert Krebbers committed
29

30
31
Class FinMap K M `{FMap M,  A, Lookup K A (M A),  A, Empty (M A),  A,
    PartialAlter K A (M A), OMap M, Merge M,  A, FinMapToList K A (M A),
32
    EqDecision K} := {
33
34
  map_eq {A} (m1 m2 : M A) : ( i, m1 !! i = m2 !! i)  m1 = m2;
  lookup_empty {A} i : ( : M A) !! i = None;
35
36
37
38
  lookup_partial_alter {A} f (m : M A) i :
    partial_alter f i m !! i = f (m !! i);
  lookup_partial_alter_ne {A} f (m : M A) i j :
    i  j  partial_alter f i m !! j = m !! j;
39
  lookup_fmap {A B} (f : A  B) (m : M A) i : (f <$> m) !! i = f <$> m !! i;
40
  NoDup_map_to_list {A} (m : M A) : NoDup (map_to_list m);
41
42
  elem_of_map_to_list {A} (m : M A) i x :
    (i,x)  map_to_list m  m !! i = Some x;
43
  lookup_omap {A B} (f : A  option B) m i : omap f m !! i = m !! i = f;
44
  lookup_merge {A B C} (f: option A  option B  option C) `{!DiagNone f} m1 m2 i :
45
    merge f m1 m2 !! i = f (m1 !! i) (m2 !! i)
Robbert Krebbers's avatar
Robbert Krebbers committed
46
47
}.

48
49
50
(** * Derived operations *)
(** All of the following functions are defined in a generic way for arbitrary
finite map implementations. These generic implementations do not cause a
51
52
significant performance loss to make including them in the finite map interface
worthwhile. *)
53
54
55
56
57
58
59
60
61
62
Instance map_insert `{PartialAlter K A M} : Insert K A M :=
  λ i x, partial_alter (λ _, Some x) i.
Instance map_alter `{PartialAlter K A M} : Alter K A M :=
  λ f, partial_alter (fmap f).
Instance map_delete `{PartialAlter K A M} : Delete K M :=
  partial_alter (λ _, None).
Instance map_singleton `{PartialAlter K A M, Empty M} :
  SingletonM K A M := λ i x, <[i:=x]> .

Definition map_of_list `{Insert K A M, Empty M} : list (K * A)  M :=
63
  fold_right (λ p, <[p.1:=p.2]>) .
64
65
Definition map_of_collection `{Elements K C, Insert K A M, Empty M}
    (f : K  option A) (X : C) : M :=
66
  map_of_list (omap (λ i, (i,) <$> f i) (elements X)).
Robbert Krebbers's avatar
Robbert Krebbers committed
67

68
69
70
71
72
73
Instance map_union_with `{Merge M} {A} : UnionWith A (M A) :=
  λ f, merge (union_with f).
Instance map_intersection_with `{Merge M} {A} : IntersectionWith A (M A) :=
  λ f, merge (intersection_with f).
Instance map_difference_with `{Merge M} {A} : DifferenceWith A (M A) :=
  λ f, merge (difference_with f).
Robbert Krebbers's avatar
Robbert Krebbers committed
74

75
Instance map_equiv `{ A, Lookup K A (M A), Equiv A} : Equiv (M A) | 18 :=
76
  λ m1 m2,  i, m1 !! i  m2 !! i.
Robbert Krebbers's avatar
Robbert Krebbers committed
77

78
79
(** The relation [intersection_forall R] on finite maps describes that the
relation [R] holds for each pair in the intersection. *)
80
Definition map_Forall `{Lookup K A M} (P : K  A  Prop) : M  Prop :=
Robbert Krebbers's avatar
Robbert Krebbers committed
81
  λ m,  i x, m !! i = Some x  P i x.
82
Definition map_relation `{ A, Lookup K A (M A)} {A B} (R : A  B  Prop)
Robbert Krebbers's avatar
Robbert Krebbers committed
83
84
    (P : A  Prop) (Q : B  Prop) (m1 : M A) (m2 : M B) : Prop :=  i,
  option_relation R P Q (m1 !! i) (m2 !! i).
85
Definition map_included `{ A, Lookup K A (M A)} {A}
Robbert Krebbers's avatar
Robbert Krebbers committed
86
  (R : relation A) : relation (M A) := map_relation R (λ _, False) (λ _, True).
87
Definition map_disjoint `{ A, Lookup K A (M A)} {A} : relation (M A) :=
Robbert Krebbers's avatar
Robbert Krebbers committed
88
89
90
91
92
  map_relation (λ _ _, False) (λ _, True) (λ _, True).
Infix "⊥ₘ" := map_disjoint (at level 70) : C_scope.
Hint Extern 0 (_  _) => symmetry; eassumption.
Notation "( m ⊥ₘ.)" := (map_disjoint m) (only parsing) : C_scope.
Notation "(.⊥ₘ m )" := (λ m2, m2  m) (only parsing) : C_scope.
93
Instance map_subseteq `{ A, Lookup K A (M A)} {A} : SubsetEq (M A) :=
Robbert Krebbers's avatar
Robbert Krebbers committed
94
  map_included (=).
Robbert Krebbers's avatar
Robbert Krebbers committed
95
96
97
98
99

(** The union of two finite maps only has a meaningful definition for maps
that are disjoint. However, as working with partial functions is inconvenient
in Coq, we define the union as a total function. In case both finite maps
have a value at the same index, we take the value of the first map. *)
100
Instance map_union `{Merge M} {A} : Union (M A) := union_with (λ x _, Some x).
101
102
103
Instance map_intersection `{Merge M} {A} : Intersection (M A) :=
  intersection_with (λ x _, Some x).

104
105
(** The difference operation removes all values from the first map whose
index contains a value in the second map as well. *)
106
Instance map_difference `{Merge M} {A} : Difference (M A) :=
107
  difference_with (λ _ _, None).
Robbert Krebbers's avatar
Robbert Krebbers committed
108

109
110
(** A stronger variant of map that allows the mapped function to use the index
of the elements. Implemented by conversion to lists, so not very efficient. *)
111
112
Definition map_imap `{ A, Insert K A (M A),  A, Empty (M A),
     A, FinMapToList K A (M A)} {A B} (f : K  A  option B) (m : M A) : M B :=
113
114
  map_of_list (omap (λ ix, (fst ix,) <$> curry f ix) (map_to_list m)).

115
116
117
118
(** * Theorems *)
Section theorems.
Context `{FinMap K M}.

Robbert Krebbers's avatar
Robbert Krebbers committed
119
120
(** ** Setoids *)
Section setoid.
121
122
  Context `{Equiv A} `{!Equivalence (() : relation A)}.
  Global Instance map_equivalence : Equivalence (() : relation (M A)).
Robbert Krebbers's avatar
Robbert Krebbers committed
123
124
  Proof.
    split.
125
126
    - by intros m i.
    - by intros m1 m2 ? i.
127
    - by intros m1 m2 m3 ?? i; trans (m2 !! i).
Robbert Krebbers's avatar
Robbert Krebbers committed
128
  Qed.
129
130
  Global Instance lookup_proper (i : K) :
    Proper (() ==> ()) (lookup (M:=M A) i).
Robbert Krebbers's avatar
Robbert Krebbers committed
131
132
  Proof. by intros m1 m2 Hm. Qed.
  Global Instance partial_alter_proper :
133
    Proper ((() ==> ()) ==> (=) ==> () ==> ()) (partial_alter (M:=M A)).
Robbert Krebbers's avatar
Robbert Krebbers committed
134
135
136
137
138
139
  Proof.
    by intros f1 f2 Hf i ? <- m1 m2 Hm j; destruct (decide (i = j)) as [->|];
      rewrite ?lookup_partial_alter, ?lookup_partial_alter_ne by done;
      try apply Hf; apply lookup_proper.
  Qed.
  Global Instance insert_proper (i : K) :
140
    Proper (() ==> () ==> ()) (insert (M:=M A) i).
Robbert Krebbers's avatar
Robbert Krebbers committed
141
  Proof. by intros ???; apply partial_alter_proper; [constructor|]. Qed.
142
143
  Global Instance singleton_proper k :
    Proper (() ==> ()) (singletonM k : A  M A).
144
  Proof. by intros ???; apply insert_proper. Qed.
145
146
  Global Instance delete_proper (i : K) :
    Proper (() ==> ()) (delete (M:=M A) i).
Robbert Krebbers's avatar
Robbert Krebbers committed
147
148
  Proof. by apply partial_alter_proper; [constructor|]. Qed.
  Global Instance alter_proper :
149
    Proper ((() ==> ()) ==> (=) ==> () ==> ()) (alter (A:=A) (M:=M A)).
Robbert Krebbers's avatar
Robbert Krebbers committed
150
151
152
153
  Proof.
    intros ?? Hf; apply partial_alter_proper.
    by destruct 1; constructor; apply Hf.
  Qed.
154
  Lemma merge_ext f g `{!DiagNone f, !DiagNone g} :
Robbert Krebbers's avatar
Robbert Krebbers committed
155
    (() ==> () ==> ())%signature f g 
156
    (() ==> () ==> ())%signature (merge (M:=M) f) (merge g).
Robbert Krebbers's avatar
Robbert Krebbers committed
157
158
159
160
  Proof.
    by intros Hf ?? Hm1 ?? Hm2 i; rewrite !lookup_merge by done; apply Hf.
  Qed.
  Global Instance union_with_proper :
161
    Proper ((() ==> () ==> ()) ==> () ==> () ==>()) (union_with (M:=M A)).
Robbert Krebbers's avatar
Robbert Krebbers committed
162
163
164
  Proof.
    intros ?? Hf ?? Hm1 ?? Hm2 i; apply (merge_ext _ _); auto.
    by do 2 destruct 1; first [apply Hf | constructor].
165
  Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
166
167
  Global Instance map_leibniz `{!LeibnizEquiv A} : LeibnizEquiv (M A).
  Proof.
168
169
    intros m1 m2 Hm; apply map_eq; intros i.
    by unfold_leibniz; apply lookup_proper.
Robbert Krebbers's avatar
Robbert Krebbers committed
170
  Qed.
171
172
173
174
175
  Lemma map_equiv_empty (m : M A) : m    m = .
  Proof.
    split; [intros Hm; apply map_eq; intros i|by intros ->].
    by rewrite lookup_empty, <-equiv_None, Hm, lookup_empty.
  Qed.
176
  Lemma map_equiv_lookup_l (m1 m2 : M A) i x :
177
    m1  m2  m1 !! i = Some x   y, m2 !! i = Some y  x  y.
178
  Proof. generalize (equiv_Some_inv_l (m1 !! i) (m2 !! i) x); naive_solver. Qed.
179
180
181
182
183
  Global Instance map_fmap_proper `{Equiv B} (f : A  B) :
    Proper (() ==> ()) f  Proper (() ==> ()) (fmap (M:=M) f).
  Proof.
    intros ? m m' ? k; rewrite !lookup_fmap. by apply option_fmap_proper.
  Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
184
185
186
End setoid.

(** ** General properties *)
187
188
189
190
191
Lemma map_eq_iff {A} (m1 m2 : M A) : m1 = m2   i, m1 !! i = m2 !! i.
Proof. split. by intros ->. apply map_eq. Qed.
Lemma map_subseteq_spec {A} (m1 m2 : M A) :
  m1  m2   i x, m1 !! i = Some x  m2 !! i = Some x.
Proof.
Robbert Krebbers's avatar
Robbert Krebbers committed
192
  unfold subseteq, map_subseteq, map_relation. split; intros Hm i;
193
194
    specialize (Hm i); destruct (m1 !! i), (m2 !! i); naive_solver.
Qed.
195
196
Global Instance:  {A} (R : relation A), PreOrder R  PreOrder (map_included R).
Proof.
Robbert Krebbers's avatar
Robbert Krebbers committed
197
  split; [intros m i; by destruct (m !! i); simpl|].
198
  intros m1 m2 m3 Hm12 Hm23 i; specialize (Hm12 i); specialize (Hm23 i).
199
  destruct (m1 !! i), (m2 !! i), (m3 !! i); simplify_eq/=;
200
    done || etrans; eauto.
201
Qed.
202
Global Instance: PartialOrder (() : relation (M A)).
203
Proof.
204
205
206
  split; [apply _|].
  intros m1 m2; rewrite !map_subseteq_spec.
  intros; apply map_eq; intros i; apply option_eq; naive_solver.
207
208
209
Qed.
Lemma lookup_weaken {A} (m1 m2 : M A) i x :
  m1 !! i = Some x  m1  m2  m2 !! i = Some x.
210
Proof. rewrite !map_subseteq_spec. auto. Qed.
211
212
213
214
215
216
Lemma lookup_weaken_is_Some {A} (m1 m2 : M A) i :
  is_Some (m1 !! i)  m1  m2  is_Some (m2 !! i).
Proof. inversion 1. eauto using lookup_weaken. Qed.
Lemma lookup_weaken_None {A} (m1 m2 : M A) i :
  m2 !! i = None  m1  m2  m1 !! i = None.
Proof.
217
218
  rewrite map_subseteq_spec, !eq_None_not_Some.
  intros Hm2 Hm [??]; destruct Hm2; eauto.
219
220
Qed.
Lemma lookup_weaken_inv {A} (m1 m2 : M A) i x y :
221
222
  m1 !! i = Some x  m1  m2  m2 !! i = Some y  x = y.
Proof. intros Hm1 ? Hm2. eapply lookup_weaken in Hm1; eauto. congruence. Qed.
223
224
225
226
227
228
229
230
231
Lemma lookup_ne {A} (m : M A) i j : m !! i  m !! j  i  j.
Proof. congruence. Qed.
Lemma map_empty {A} (m : M A) : ( i, m !! i = None)  m = .
Proof. intros Hm. apply map_eq. intros. by rewrite Hm, lookup_empty. Qed.
Lemma lookup_empty_is_Some {A} i : ¬is_Some (( : M A) !! i).
Proof. rewrite lookup_empty. by inversion 1. Qed.
Lemma lookup_empty_Some {A} i (x : A) : ¬ !! i = Some x.
Proof. by rewrite lookup_empty. Qed.
Lemma map_subset_empty {A} (m : M A) : m  .
232
233
234
Proof.
  intros [_ []]. rewrite map_subseteq_spec. intros ??. by rewrite lookup_empty.
Qed.
235
236
Lemma map_fmap_empty {A B} (f : A  B) : f <$> ( : M A) = .
Proof. by apply map_eq; intros i; rewrite lookup_fmap, !lookup_empty. Qed.
237
238

(** ** Properties of the [partial_alter] operation *)
239
240
241
Lemma partial_alter_ext {A} (f g : option A  option A) (m : M A) i :
  ( x, m !! i = x  f x = g x)  partial_alter f i m = partial_alter g i m.
Proof.
242
243
  intros. apply map_eq; intros j. by destruct (decide (i = j)) as [->|?];
    rewrite ?lookup_partial_alter, ?lookup_partial_alter_ne; auto.
244
245
Qed.
Lemma partial_alter_compose {A} f g (m : M A) i:
246
247
  partial_alter (f  g) i m = partial_alter f i (partial_alter g i m).
Proof.
248
249
  intros. apply map_eq. intros ii. by destruct (decide (i = ii)) as [->|?];
    rewrite ?lookup_partial_alter, ?lookup_partial_alter_ne.
250
Qed.
251
Lemma partial_alter_commute {A} f g (m : M A) i j :
252
  i  j  partial_alter f i (partial_alter g j m) =
253
254
    partial_alter g j (partial_alter f i m).
Proof.
255
256
257
258
  intros. apply map_eq; intros jj. destruct (decide (jj = j)) as [->|?].
  { by rewrite lookup_partial_alter_ne,
      !lookup_partial_alter, lookup_partial_alter_ne. }
  destruct (decide (jj = i)) as [->|?].
259
  - by rewrite lookup_partial_alter,
260
     !lookup_partial_alter_ne, lookup_partial_alter by congruence.
261
  - by rewrite !lookup_partial_alter_ne by congruence.
262
263
264
265
Qed.
Lemma partial_alter_self_alt {A} (m : M A) i x :
  x = m !! i  partial_alter (λ _, x) i m = m.
Proof.
266
267
  intros. apply map_eq. intros ii. by destruct (decide (i = ii)) as [->|];
    rewrite ?lookup_partial_alter, ?lookup_partial_alter_ne.
268
Qed.
269
Lemma partial_alter_self {A} (m : M A) i : partial_alter (λ _, m !! i) i m = m.
270
Proof. by apply partial_alter_self_alt. Qed.
271
Lemma partial_alter_subseteq {A} f (m : M A) i :
272
  m !! i = None  m  partial_alter f i m.
273
274
275
276
Proof.
  rewrite map_subseteq_spec. intros Hi j x Hj.
  rewrite lookup_partial_alter_ne; congruence.
Qed.
277
Lemma partial_alter_subset {A} f (m : M A) i :
278
  m !! i = None  is_Some (f (m !! i))  m  partial_alter f i m.
279
Proof.
280
281
282
283
  intros Hi Hfi. split; [by apply partial_alter_subseteq|].
  rewrite !map_subseteq_spec. inversion Hfi as [x Hx]. intros Hm.
  apply (Some_ne_None x). rewrite <-(Hm i x); [done|].
  by rewrite lookup_partial_alter.
284
285
286
Qed.

(** ** Properties of the [alter] operation *)
287
288
Lemma alter_ext {A} (f g : A  A) (m : M A) i :
  ( x, m !! i = Some x  f x = g x)  alter f i m = alter g i m.
289
Proof. intro. apply partial_alter_ext. intros [x|] ?; f_equal/=; auto. Qed.
290
Lemma lookup_alter {A} (f : A  A) m i : alter f i m !! i = f <$> m !! i.
291
Proof. unfold alter. apply lookup_partial_alter. Qed.
292
Lemma lookup_alter_ne {A} (f : A  A) m i j : i  j  alter f i m !! j = m !! j.
293
Proof. unfold alter. apply lookup_partial_alter_ne. Qed.
294
295
296
297
298
299
300
301
302
Lemma alter_compose {A} (f g : A  A) (m : M A) i:
  alter (f  g) i m = alter f i (alter g i m).
Proof.
  unfold alter, map_alter. rewrite <-partial_alter_compose.
  apply partial_alter_ext. by intros [?|].
Qed.
Lemma alter_commute {A} (f g : A  A) (m : M A) i j :
  i  j  alter f i (alter g j m) = alter g j (alter f i m).
Proof. apply partial_alter_commute. Qed.
303
304
305
306
Lemma lookup_alter_Some {A} (f : A  A) m i j y :
  alter f i m !! j = Some y 
    (i = j   x, m !! j = Some x  y = f x)  (i  j  m !! j = Some y).
Proof.
307
  destruct (decide (i = j)) as [->|?].
308
  - rewrite lookup_alter. naive_solver (simplify_option_eq; eauto).
309
  - rewrite lookup_alter_ne by done. naive_solver.
310
311
312
313
Qed.
Lemma lookup_alter_None {A} (f : A  A) m i j :
  alter f i m !! j = None  m !! j = None.
Proof.
314
315
  by destruct (decide (i = j)) as [->|?];
    rewrite ?lookup_alter, ?fmap_None, ?lookup_alter_ne.
316
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
317
318
Lemma alter_id {A} (f : A  A) m i :
  ( x, m !! i = Some x  f x = x)  alter f i m = m.
319
Proof.
Robbert Krebbers's avatar
Robbert Krebbers committed
320
  intros Hi; apply map_eq; intros j; destruct (decide (i = j)) as [->|?].
321
  { rewrite lookup_alter; destruct (m !! j); f_equal/=; auto. }
Robbert Krebbers's avatar
Robbert Krebbers committed
322
  by rewrite lookup_alter_ne by done.
323
324
325
326
327
328
329
330
331
332
333
Qed.

(** ** Properties of the [delete] operation *)
Lemma lookup_delete {A} (m : M A) i : delete i m !! i = None.
Proof. apply lookup_partial_alter. Qed.
Lemma lookup_delete_ne {A} (m : M A) i j : i  j  delete i m !! j = m !! j.
Proof. apply lookup_partial_alter_ne. Qed.
Lemma lookup_delete_Some {A} (m : M A) i j y :
  delete i m !! j = Some y  i  j  m !! j = Some y.
Proof.
  split.
334
  - destruct (decide (i = j)) as [->|?];
335
      rewrite ?lookup_delete, ?lookup_delete_ne; intuition congruence.
336
  - intros [??]. by rewrite lookup_delete_ne.
337
Qed.
338
339
340
Lemma lookup_delete_is_Some {A} (m : M A) i j :
  is_Some (delete i m !! j)  i  j  is_Some (m !! j).
Proof. unfold is_Some; setoid_rewrite lookup_delete_Some; naive_solver. Qed.
341
342
343
Lemma lookup_delete_None {A} (m : M A) i j :
  delete i m !! j = None  i = j  m !! j = None.
Proof.
344
345
  destruct (decide (i = j)) as [->|?];
    rewrite ?lookup_delete, ?lookup_delete_ne; tauto.
346
347
348
Qed.
Lemma delete_empty {A} i : delete i ( : M A) = .
Proof. rewrite <-(partial_alter_self ) at 2. by rewrite lookup_empty. Qed.
349
Lemma delete_singleton {A} i (x : A) : delete i {[i := x]} = .
350
351
352
353
354
355
356
Proof. setoid_rewrite <-partial_alter_compose. apply delete_empty. Qed.
Lemma delete_commute {A} (m : M A) i j :
  delete i (delete j m) = delete j (delete i m).
Proof. destruct (decide (i = j)). by subst. by apply partial_alter_commute. Qed.
Lemma delete_insert_ne {A} (m : M A) i j x :
  i  j  delete i (<[j:=x]>m) = <[j:=x]>(delete i m).
Proof. intro. by apply partial_alter_commute. Qed.
357
Lemma delete_notin {A} (m : M A) i : m !! i = None  delete i m = m.
358
Proof.
359
360
  intros. apply map_eq. intros j. by destruct (decide (i = j)) as [->|?];
    rewrite ?lookup_delete, ?lookup_delete_ne.
361
362
363
364
365
366
367
368
369
370
Qed.
Lemma delete_partial_alter {A} (m : M A) i f :
  m !! i = None  delete i (partial_alter f i m) = m.
Proof.
  intros. unfold delete, map_delete. rewrite <-partial_alter_compose.
  unfold compose. by apply partial_alter_self_alt.
Qed.
Lemma delete_insert {A} (m : M A) i x :
  m !! i = None  delete i (<[i:=x]>m) = m.
Proof. apply delete_partial_alter. Qed.
371
372
Lemma insert_delete {A} (m : M A) i x : <[i:=x]>(delete i m) = <[i:=x]> m.
Proof. symmetry; apply (partial_alter_compose (λ _, Some x)). Qed.
373
Lemma delete_subseteq {A} (m : M A) i : delete i m  m.
374
375
376
Proof.
  rewrite !map_subseteq_spec. intros j x. rewrite lookup_delete_Some. tauto.
Qed.
377
Lemma delete_subseteq_compat {A} (m1 m2 : M A) i :
378
  m1  m2  delete i m1  delete i m2.
379
380
381
382
Proof.
  rewrite !map_subseteq_spec. intros ? j x.
  rewrite !lookup_delete_Some. intuition eauto.
Qed.
383
Lemma delete_subset_alt {A} (m : M A) i x : m !! i = Some x  delete i m  m.
384
Proof.
385
386
387
  split; [apply delete_subseteq|].
  rewrite !map_subseteq_spec. intros Hi. apply (None_ne_Some x).
  by rewrite <-(lookup_delete m i), (Hi i x).
388
Qed.
389
Lemma delete_subset {A} (m : M A) i : is_Some (m !! i)  delete i m  m.
390
391
392
393
394
Proof. inversion 1. eauto using delete_subset_alt. Qed.

(** ** Properties of the [insert] operation *)
Lemma lookup_insert {A} (m : M A) i x : <[i:=x]>m !! i = Some x.
Proof. unfold insert. apply lookup_partial_alter. Qed.
395
Lemma lookup_insert_rev {A}  (m : M A) i x y : <[i:=x]>m !! i = Some y  x = y.
396
Proof. rewrite lookup_insert. congruence. Qed.
397
Lemma lookup_insert_ne {A} (m : M A) i j x : i  j  <[i:=x]>m !! j = m !! j.
398
Proof. unfold insert. apply lookup_partial_alter_ne. Qed.
399
400
Lemma insert_insert {A} (m : M A) i x y : <[i:=x]>(<[i:=y]>m) = <[i:=x]>m.
Proof. unfold insert, map_insert. by rewrite <-partial_alter_compose. Qed.
401
402
403
404
405
406
407
Lemma insert_commute {A} (m : M A) i j x y :
  i  j  <[i:=x]>(<[j:=y]>m) = <[j:=y]>(<[i:=x]>m).
Proof. apply partial_alter_commute. Qed.
Lemma lookup_insert_Some {A} (m : M A) i j x y :
  <[i:=x]>m !! j = Some y  (i = j  x = y)  (i  j  m !! j = Some y).
Proof.
  split.
408
  - destruct (decide (i = j)) as [->|?];
409
      rewrite ?lookup_insert, ?lookup_insert_ne; intuition congruence.
410
  - intros [[-> ->]|[??]]; [apply lookup_insert|]. by rewrite lookup_insert_ne.
411
Qed.
412
413
414
Lemma lookup_insert_is_Some {A} (m : M A) i j x :
  is_Some (<[i:=x]>m !! j)  i = j  i  j  is_Some (m !! j).
Proof. unfold is_Some; setoid_rewrite lookup_insert_Some; naive_solver. Qed.
415
416
417
Lemma lookup_insert_None {A} (m : M A) i j x :
  <[i:=x]>m !! j = None  m !! j = None  i  j.
Proof.
418
419
420
  split; [|by intros [??]; rewrite lookup_insert_ne].
  destruct (decide (i = j)) as [->|];
    rewrite ?lookup_insert, ?lookup_insert_ne; intuition congruence.
421
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
422
Lemma insert_id {A} (m : M A) i x : m !! i = Some x  <[i:=x]>m = m.
423
424
425
426
427
428
429
430
Proof.
  intros; apply map_eq; intros j; destruct (decide (i = j)) as [->|];
    by rewrite ?lookup_insert, ?lookup_insert_ne by done.
Qed.
Lemma insert_included {A} R `{!Reflexive R} (m : M A) i x :
  ( y, m !! i = Some y  R y x)  map_included R m (<[i:=x]>m).
Proof.
  intros ? j; destruct (decide (i = j)) as [->|].
431
432
  - rewrite lookup_insert. destruct (m !! j); simpl; eauto.
  - rewrite lookup_insert_ne by done. by destruct (m !! j); simpl.
433
Qed.
434
Lemma insert_subseteq {A} (m : M A) i x : m !! i = None  m  <[i:=x]>m.
435
Proof. apply partial_alter_subseteq. Qed.
436
Lemma insert_subset {A} (m : M A) i x : m !! i = None  m  <[i:=x]>m.
437
438
Proof. intro. apply partial_alter_subset; eauto. Qed.
Lemma insert_subseteq_r {A} (m1 m2 : M A) i x :
439
  m1 !! i = None  m1  m2  m1  <[i:=x]>m2.
440
Proof.
441
442
443
  rewrite !map_subseteq_spec. intros ?? j ?.
  destruct (decide (j = i)) as [->|?]; [congruence|].
  rewrite lookup_insert_ne; auto.
444
445
Qed.
Lemma insert_delete_subseteq {A} (m1 m2 : M A) i x :
446
  m1 !! i = None  <[i:=x]> m1  m2  m1  delete i m2.
447
Proof.
448
449
450
451
  rewrite !map_subseteq_spec. intros Hi Hix j y Hj.
  destruct (decide (i = j)) as [->|]; [congruence|].
  rewrite lookup_delete_ne by done.
  apply Hix; by rewrite lookup_insert_ne by done.
452
453
Qed.
Lemma delete_insert_subseteq {A} (m1 m2 : M A) i x :
454
  m1 !! i = Some x  delete i m1  m2  m1  <[i:=x]> m2.
455
Proof.
456
457
  rewrite !map_subseteq_spec.
  intros Hix Hi j y Hj. destruct (decide (i = j)) as [->|?].
458
459
  - rewrite lookup_insert. congruence.
  - rewrite lookup_insert_ne by done. apply Hi. by rewrite lookup_delete_ne.
460
461
Qed.
Lemma insert_delete_subset {A} (m1 m2 : M A) i x :
462
  m1 !! i = None  <[i:=x]> m1  m2  m1  delete i m2.
463
Proof.
464
465
466
  intros ? [Hm12 Hm21]; split; [eauto using insert_delete_subseteq|].
  contradict Hm21. apply delete_insert_subseteq; auto.
  eapply lookup_weaken, Hm12. by rewrite lookup_insert.
467
468
Qed.
Lemma insert_subset_inv {A} (m1 m2 : M A) i x :
469
  m1 !! i = None  <[i:=x]> m1  m2 
470
471
   m2', m2 = <[i:=x]>m2'  m1  m2'  m2' !! i = None.
Proof.
472
  intros Hi Hm1m2. exists (delete i m2). split_and?.
473
474
  - rewrite insert_delete, insert_id. done.
    eapply lookup_weaken, strict_include; eauto. by rewrite lookup_insert.
475
476
  - eauto using insert_delete_subset.
  - by rewrite lookup_delete.
477
Qed.
478
Lemma insert_empty {A} i (x : A) : <[i:=x]> = {[i := x]}.
479
Proof. done. Qed.
480
481
482
483
Lemma insert_non_empty {A} (m : M A) i x : <[i:=x]>m  .
Proof.
  intros Hi%(f_equal (!! i)). by rewrite lookup_insert, lookup_empty in Hi.
Qed.
484
485
486

(** ** Properties of the singleton maps *)
Lemma lookup_singleton_Some {A} i j (x y : A) :
487
  {[i := x]} !! j = Some y  i = j  x = y.
488
Proof.
489
  rewrite <-insert_empty,lookup_insert_Some, lookup_empty; intuition congruence.
490
Qed.
491
Lemma lookup_singleton_None {A} i j (x : A) : {[i := x]} !! j = None  i  j.
492
Proof. rewrite <-insert_empty,lookup_insert_None, lookup_empty; tauto. Qed.
493
Lemma lookup_singleton {A} i (x : A) : {[i := x]} !! i = Some x.
494
Proof. by rewrite lookup_singleton_Some. Qed.
495
Lemma lookup_singleton_ne {A} i j (x : A) : i  j  {[i := x]} !! j = None.
496
Proof. by rewrite lookup_singleton_None. Qed.
497
Lemma map_non_empty_singleton {A} i (x : A) : {[i := x]}  .
498
499
500
501
Proof.
  intros Hix. apply (f_equal (!! i)) in Hix.
  by rewrite lookup_empty, lookup_singleton in Hix.
Qed.
502
Lemma insert_singleton {A} i (x y : A) : <[i:=y]>{[i := x]} = {[i := y]}.
503
Proof.
504
  unfold singletonM, map_singleton, insert, map_insert.
505
506
  by rewrite <-partial_alter_compose.
Qed.
507
Lemma alter_singleton {A} (f : A  A) i x : alter f i {[i := x]} = {[i := f x]}.
508
Proof.
509
  intros. apply map_eq. intros i'. destruct (decide (i = i')) as [->|?].
510
511
  - by rewrite lookup_alter, !lookup_singleton.
  - by rewrite lookup_alter_ne, !lookup_singleton_ne.
512
513
Qed.
Lemma alter_singleton_ne {A} (f : A  A) i j x :
514
  i  j  alter f i {[j := x]} = {[j := x]}.
515
Proof.
516
517
  intros. apply map_eq; intros i'. by destruct (decide (i = i')) as [->|?];
    rewrite ?lookup_alter, ?lookup_singleton_ne, ?lookup_alter_ne by done.
518
Qed.
519
520
Lemma singleton_non_empty {A} i (x : A) : {[i:=x]}  .
Proof. apply insert_non_empty. Qed.
521

522
523
524
525
526
(** ** Properties of the map operations *)
Lemma fmap_empty {A B} (f : A  B) : f <$>  = .
Proof. apply map_empty; intros i. by rewrite lookup_fmap, lookup_empty. Qed.
Lemma omap_empty {A B} (f : A  option B) : omap f  = .
Proof. apply map_empty; intros i. by rewrite lookup_omap, lookup_empty. Qed.
527
528
529
Lemma fmap_insert {A B} (f: A  B) m i x: f <$> <[i:=x]>m = <[i:=f x]>(f <$> m).
Proof.
  apply map_eq; intros i'; destruct (decide (i' = i)) as [->|].
530
531
  - by rewrite lookup_fmap, !lookup_insert.
  - by rewrite lookup_fmap, !lookup_insert_ne, lookup_fmap by done.
532
Qed.
533
534
535
536
537
538
Lemma fmap_delete {A B} (f: A  B) m i: f <$> delete i m = delete i (f <$> m).
Proof.
  apply map_eq; intros i'; destruct (decide (i' = i)) as [->|].
  - by rewrite lookup_fmap, !lookup_delete.
  - by rewrite lookup_fmap, !lookup_delete_ne, lookup_fmap by done.
Qed.
539
540
541
542
Lemma omap_insert {A B} (f : A  option B) m i x y :
  f x = Some y  omap f (<[i:=x]>m) = <[i:=y]>(omap f m).
Proof.
  intros; apply map_eq; intros i'; destruct (decide (i' = i)) as [->|].
543
544
  - by rewrite lookup_omap, !lookup_insert.
  - by rewrite lookup_omap, !lookup_insert_ne, lookup_omap by done.
545
Qed.
546
Lemma map_fmap_singleton {A B} (f : A  B) i x : f <$> {[i := x]} = {[i := f x]}.
547
548
549
Proof.
  by unfold singletonM, map_singleton; rewrite fmap_insert, map_fmap_empty.
Qed.
550
Lemma omap_singleton {A B} (f : A  option B) i x y :
551
  f x = Some y  omap f {[ i := x ]} = {[ i := y ]}.
552
Proof.
553
554
  intros. unfold singletonM, map_singleton.
  by erewrite omap_insert, omap_empty by eauto.
555
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
556
557
558
559
560
Lemma map_fmap_id {A} (m : M A) : id <$> m = m.
Proof. apply map_eq; intros i; by rewrite lookup_fmap, option_fmap_id. Qed.
Lemma map_fmap_compose {A B C} (f : A  B) (g : B  C) (m : M A) :
  g  f <$> m = g <$> f <$> m.
Proof. apply map_eq; intros i; by rewrite !lookup_fmap,option_fmap_compose. Qed.
561
Lemma map_fmap_equiv_ext `{Equiv A, Equiv B} (f1 f2 : A  B) m :
562
563
564
565
566
  ( i x, m !! i = Some x  f1 x  f2 x)  f1 <$> m  f2 <$> m.
Proof.
  intros Hi i; rewrite !lookup_fmap.
  destruct (m !! i) eqn:?; constructor; eauto.
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
567
568
569
570
571
572
Lemma map_fmap_ext {A B} (f1 f2 : A  B) m :
  ( i x, m !! i = Some x  f1 x = f2 x)  f1 <$> m = f2 <$> m.
Proof.
  intros Hi; apply map_eq; intros i; rewrite !lookup_fmap.
  by destruct (m !! i) eqn:?; simpl; erewrite ?Hi by eauto.
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
573
574
575
576
577
578
Lemma omap_ext {A B} (f1 f2 : A  option B) m :
  ( i x, m !! i = Some x  f1 x = f2 x)  omap f1 m = omap f2 m.
Proof.
  intros Hi; apply map_eq; intros i; rewrite !lookup_omap.
  by destruct (m !! i) eqn:?; simpl; erewrite ?Hi by eauto.
Qed.
579

580
581
(** ** Properties of conversion to lists *)
Lemma map_to_list_unique {A} (m : M A) i x y :
582
  (i,x)  map_to_list m  (i,y)  map_to_list m  x = y.
583
Proof. rewrite !elem_of_map_to_list. congruence. Qed.
584
Lemma NoDup_fst_map_to_list {A} (m : M A) : NoDup ((map_to_list m).*1).
585
Proof. eauto using NoDup_fmap_fst, map_to_list_unique, NoDup_map_to_list. Qed.
586
587
588
589
590
Lemma elem_of_map_of_list_1_help {A} (l : list (K * A)) i x :
  (i,x)  l  ( y, (i,y)  l  y = x)  map_of_list l !! i = Some x.
Proof.
  induction l as [|[j y] l IH]; csimpl; [by rewrite elem_of_nil|].
  setoid_rewrite elem_of_cons.
591
  intros [?|?] Hdup; simplify_eq; [by rewrite lookup_insert|].
592
  destruct (decide (i = j)) as [->|].
593
594
  - rewrite lookup_insert; f_equal; eauto.
  - rewrite lookup_insert_ne by done; eauto.
595
Qed.
596
Lemma elem_of_map_of_list_1 {A} (l : list (K * A)) i x :
597
  NoDup (l.*1)  (i,x)  l  map_of_list l !! i = Some x.
598
Proof.
599
600
  intros ? Hx; apply elem_of_map_of_list_1_help; eauto using NoDup_fmap_fst.
  intros y; revert Hx. rewrite !elem_of_list_lookup; intros [i' Hi'] [j' Hj'].
601
  cut (i' = j'); [naive_solver|]. apply NoDup_lookup with (l.*1) i;
602
    by rewrite ?list_lookup_fmap, ?Hi', ?Hj'.
603
604
Qed.
Lemma elem_of_map_of_list_2 {A} (l : list (K * A)) i x :
605
  map_of_list l !! i = Some x  (i,x)  l.
606
Proof.
607
608
609
  induction l as [|[j y] l IH]; simpl; [by rewrite lookup_empty|].
  rewrite elem_of_cons. destruct (decide (i = j)) as [->|];
    rewrite ?lookup_insert, ?lookup_insert_ne; intuition congruence.
610
611
Qed.
Lemma elem_of_map_of_list {A} (l : list (K * A)) i x :
612
  NoDup (l.*1)  (i,x)  l  map_of_list l !! i = Some x.
613
Proof. split; auto using elem_of_map_of_list_1, elem_of_map_of_list_2. Qed.
614
Lemma not_elem_of_map_of_list_1 {A} (l : list (K * A)) i :
615
  i  l.*1  map_of_list l !! i = None.
616
Proof.
617
618
  rewrite elem_of_list_fmap, eq_None_not_Some. intros Hi [x ?]; destruct Hi.
  exists (i,x); simpl; auto using elem_of_map_of_list_2.
619
620
Qed.
Lemma not_elem_of_map_of_list_2 {A} (l : list (K * A)) i :
621
  map_of_list l !! i = None  i  l.*1.
622
Proof.
623
  induction l as [|[j y] l IH]; csimpl; [rewrite elem_of_nil; tauto|].
624
  rewrite elem_of_cons. destruct (decide (i = j)); simplify_eq.
625
626
  - by rewrite lookup_insert.
  - by rewrite lookup_insert_ne; intuition.
627
628
Qed.
Lemma not_elem_of_map_of_list {A} (l : list (K * A)) i :
629
  i  l.*1  map_of_list l !! i = None.
630
Proof. red; auto using not_elem_of_map_of_list_1,not_elem_of_map_of_list_2. Qed.
631
Lemma map_of_list_proper {A} (l1 l2 : list (K * A)) :
632
  NoDup (l1.*1)  l1  l2  map_of_list l1 = map_of_list l2.
633
634
635
636
637
Proof.
  intros ? Hperm. apply map_eq. intros i. apply option_eq. intros x.
  by rewrite <-!elem_of_map_of_list; rewrite <-?Hperm.
Qed.
Lemma map_of_list_inj {A} (l1 l2 : list (K * A)) :
638
  NoDup (l1.*1)  NoDup (l2.*1)  map_of_list l1 = map_of_list l2  l1  l2.
639
Proof.
640
  intros ?? Hl1l2. apply NoDup_Permutation; auto using (NoDup_fmap_1 fst).
641
642
  intros [i x]. by rewrite !elem_of_map_of_list, Hl1l2.
Qed.
643
Lemma map_of_to_list {A} (m : M A) : map_of_list (map_to_list m) = m.
644
645
646
Proof.
  apply map_eq. intros i. apply option_eq. intros x.
  by rewrite <-elem_of_map_of_list, elem_of_map_to_list
647
    by auto using NoDup_fst_map_to_list.
648
649
Qed.
Lemma map_to_of_list {A} (l : list (K * A)) :
650
  NoDup (l.*1)  map_to_list (map_of_list l)  l.
651
Proof. auto using map_of_list_inj, NoDup_fst_map_to_list, map_of_to_list. Qed.
652
Lemma map_to_list_inj {A} (m1 m2 : M A) :
653
  map_to_list m1  map_to_list m2  m1 = m2.
654
Proof.
655
  intros. rewrite <-(map_of_to_list m1), <-(map_of_to_list m2).
656
  auto using map_of_list_proper, NoDup_fst_map_to_list.
657
Qed.
658
659
660
661
662
663
Lemma map_to_of_list_flip {A} (m1 : M A) l2 :
  map_to_list m1  l2  m1 = map_of_list l2.
Proof.
  intros. rewrite <-(map_of_to_list m1).
  auto using map_of_list_proper, NoDup_fst_map_to_list.
Qed.
664
665
666
667
668
669
670
671
672
673
674
675
676

Lemma map_of_list_nil {A} : map_of_list (@nil (K * A)) = .
Proof. done. Qed.
Lemma map_of_list_cons {A} (l : list (K * A)) i x :
  map_of_list ((i, x) :: l) = <[i: