fin_maps.v 78.5 KB
Newer Older
1
(* Copyright (c) 2012-2017, Coq-std++ developers. *)
2
3
4
(* This file is distributed under the terms of the BSD license. *)
(** Finite maps associate data to keys. This file defines an interface for
finite maps and collects some theory on it. Most importantly, it proves useful
5
induction principles for finite maps and implements the tactic
6
[simplify_map_eq] to simplify goals involving finite maps. *)
7
From Coq Require Import Permutation.
8
From stdpp Require Export relations orders vector fin_collections.
9
10
(* FIXME: This file needs a 'Proof Using' hint, but the default we use
   everywhere makes for lots of extra ssumptions. *)
11

12
13
(** * Axiomatization of finite maps *)
(** We require Leibniz equality to be extensional on finite maps. This of
14
15
16
17
18
course limits the space of finite map implementations, but since we are mainly
interested in finite maps with numbers as indexes, we do not consider this to
be a serious limitation. The main application of finite maps is to implement
the memory, where extensionality of Leibniz equality is very important for a
convenient use in the assertions of our axiomatic semantics. *)
19

Robbert Krebbers's avatar
Robbert Krebbers committed
20
21
(** Finiteness is axiomatized by requiring that each map can be translated
to an association list. The translation to association lists is used to
22
prove well founded recursion on finite maps. *)
23

24
25
26
(** Finite map implementations are required to implement the [merge] function
which enables us to give a generic implementation of [union_with],
[intersection_with], and [difference_with]. *)
27

28
Class FinMapToList K A M := map_to_list: M  list (K * A).
Robbert Krebbers's avatar
Robbert Krebbers committed
29

30
31
Class FinMap K M `{FMap M,  A, Lookup K A (M A),  A, Empty (M A),  A,
    PartialAlter K A (M A), OMap M, Merge M,  A, FinMapToList K A (M A),
32
    EqDecision K} := {
33
34
  map_eq {A} (m1 m2 : M A) : ( i, m1 !! i = m2 !! i)  m1 = m2;
  lookup_empty {A} i : ( : M A) !! i = None;
35
36
37
38
  lookup_partial_alter {A} f (m : M A) i :
    partial_alter f i m !! i = f (m !! i);
  lookup_partial_alter_ne {A} f (m : M A) i j :
    i  j  partial_alter f i m !! j = m !! j;
39
  lookup_fmap {A B} (f : A  B) (m : M A) i : (f <$> m) !! i = f <$> m !! i;
40
  NoDup_map_to_list {A} (m : M A) : NoDup (map_to_list m);
41
42
  elem_of_map_to_list {A} (m : M A) i x :
    (i,x)  map_to_list m  m !! i = Some x;
43
  lookup_omap {A B} (f : A  option B) m i : omap f m !! i = m !! i = f;
44
  lookup_merge {A B C} (f: option A  option B  option C) `{!DiagNone f} m1 m2 i :
45
    merge f m1 m2 !! i = f (m1 !! i) (m2 !! i)
Robbert Krebbers's avatar
Robbert Krebbers committed
46
47
}.

48
49
50
(** * Derived operations *)
(** All of the following functions are defined in a generic way for arbitrary
finite map implementations. These generic implementations do not cause a
51
52
significant performance loss to make including them in the finite map interface
worthwhile. *)
53
54
55
56
57
58
59
60
61
62
Instance map_insert `{PartialAlter K A M} : Insert K A M :=
  λ i x, partial_alter (λ _, Some x) i.
Instance map_alter `{PartialAlter K A M} : Alter K A M :=
  λ f, partial_alter (fmap f).
Instance map_delete `{PartialAlter K A M} : Delete K M :=
  partial_alter (λ _, None).
Instance map_singleton `{PartialAlter K A M, Empty M} :
  SingletonM K A M := λ i x, <[i:=x]> .

Definition map_of_list `{Insert K A M, Empty M} : list (K * A)  M :=
63
  fold_right (λ p, <[p.1:=p.2]>) .
64
65
66
67
68
69
70

Definition map_to_collection `{FinMapToList K A M,
    Singleton B C, Empty C, Union C} (f : K  A  B) (m : M) : C :=
  of_list (curry f <$> map_to_list m).
Definition map_of_collection `{Elements B C, Insert K A M, Empty M}
    (f : B  K * A) (X : C) : M :=
  map_of_list (f <$> elements X).
Robbert Krebbers's avatar
Robbert Krebbers committed
71

72
73
74
75
76
77
Instance map_union_with `{Merge M} {A} : UnionWith A (M A) :=
  λ f, merge (union_with f).
Instance map_intersection_with `{Merge M} {A} : IntersectionWith A (M A) :=
  λ f, merge (intersection_with f).
Instance map_difference_with `{Merge M} {A} : DifferenceWith A (M A) :=
  λ f, merge (difference_with f).
Robbert Krebbers's avatar
Robbert Krebbers committed
78

79
Instance map_equiv `{ A, Lookup K A (M A), Equiv A} : Equiv (M A) | 18 :=
80
  λ m1 m2,  i, m1 !! i  m2 !! i.
Robbert Krebbers's avatar
Robbert Krebbers committed
81

82
83
(** The relation [intersection_forall R] on finite maps describes that the
relation [R] holds for each pair in the intersection. *)
84
Definition map_Forall `{Lookup K A M} (P : K  A  Prop) : M  Prop :=
Robbert Krebbers's avatar
Robbert Krebbers committed
85
  λ m,  i x, m !! i = Some x  P i x.
86
Definition map_relation `{ A, Lookup K A (M A)} {A B} (R : A  B  Prop)
Robbert Krebbers's avatar
Robbert Krebbers committed
87
88
    (P : A  Prop) (Q : B  Prop) (m1 : M A) (m2 : M B) : Prop :=  i,
  option_relation R P Q (m1 !! i) (m2 !! i).
89
Definition map_included `{ A, Lookup K A (M A)} {A}
Robbert Krebbers's avatar
Robbert Krebbers committed
90
  (R : relation A) : relation (M A) := map_relation R (λ _, False) (λ _, True).
91
Definition map_disjoint `{ A, Lookup K A (M A)} {A} : relation (M A) :=
Robbert Krebbers's avatar
Robbert Krebbers committed
92
93
94
95
96
  map_relation (λ _ _, False) (λ _, True) (λ _, True).
Infix "⊥ₘ" := map_disjoint (at level 70) : C_scope.
Hint Extern 0 (_  _) => symmetry; eassumption.
Notation "( m ⊥ₘ.)" := (map_disjoint m) (only parsing) : C_scope.
Notation "(.⊥ₘ m )" := (λ m2, m2  m) (only parsing) : C_scope.
97
Instance map_subseteq `{ A, Lookup K A (M A)} {A} : SubsetEq (M A) :=
Robbert Krebbers's avatar
Robbert Krebbers committed
98
  map_included (=).
Robbert Krebbers's avatar
Robbert Krebbers committed
99
100
101
102
103

(** The union of two finite maps only has a meaningful definition for maps
that are disjoint. However, as working with partial functions is inconvenient
in Coq, we define the union as a total function. In case both finite maps
have a value at the same index, we take the value of the first map. *)
104
Instance map_union `{Merge M} {A} : Union (M A) := union_with (λ x _, Some x).
105
106
107
Instance map_intersection `{Merge M} {A} : Intersection (M A) :=
  intersection_with (λ x _, Some x).

108
109
(** The difference operation removes all values from the first map whose
index contains a value in the second map as well. *)
110
Instance map_difference `{Merge M} {A} : Difference (M A) :=
111
  difference_with (λ _ _, None).
Robbert Krebbers's avatar
Robbert Krebbers committed
112

113
114
(** A stronger variant of map that allows the mapped function to use the index
of the elements. Implemented by conversion to lists, so not very efficient. *)
115
116
Definition map_imap `{ A, Insert K A (M A),  A, Empty (M A),
     A, FinMapToList K A (M A)} {A B} (f : K  A  option B) (m : M A) : M B :=
117
118
  map_of_list (omap (λ ix, (fst ix,) <$> curry f ix) (map_to_list m)).

119
120
121
122
123
(* Folds a function [f] over a map. The order in which the function is called
is unspecified. *)
Definition map_fold `{FinMapToList K A M} {B}
  (f : K  A  B  B) (b : B) : M  B := foldr (curry f) b  map_to_list.

124
125
126
127
(** * Theorems *)
Section theorems.
Context `{FinMap K M}.

Robbert Krebbers's avatar
Robbert Krebbers committed
128
129
(** ** Setoids *)
Section setoid.
130
  Context `{Equiv A}.
131

132
133
134
135
  Lemma map_equiv_lookup_l (m1 m2 : M A) i x :
    m1  m2  m1 !! i = Some x   y, m2 !! i = Some y  x  y.
  Proof. generalize (equiv_Some_inv_l (m1 !! i) (m2 !! i) x); naive_solver. Qed.

136
137
  Global Instance map_equivalence :
    Equivalence (() : relation A)  Equivalence (() : relation (M A)).
Robbert Krebbers's avatar
Robbert Krebbers committed
138
139
  Proof.
    split.
140
141
    - by intros m i.
    - by intros m1 m2 ? i.
142
    - by intros m1 m2 m3 ?? i; trans (m2 !! i).
Robbert Krebbers's avatar
Robbert Krebbers committed
143
  Qed.
144
145
  Global Instance lookup_proper (i : K) :
    Proper (() ==> ()) (lookup (M:=M A) i).
Robbert Krebbers's avatar
Robbert Krebbers committed
146
147
  Proof. by intros m1 m2 Hm. Qed.
  Global Instance partial_alter_proper :
148
    Proper ((() ==> ()) ==> (=) ==> () ==> ()) (partial_alter (M:=M A)).
Robbert Krebbers's avatar
Robbert Krebbers committed
149
150
151
152
153
154
  Proof.
    by intros f1 f2 Hf i ? <- m1 m2 Hm j; destruct (decide (i = j)) as [->|];
      rewrite ?lookup_partial_alter, ?lookup_partial_alter_ne by done;
      try apply Hf; apply lookup_proper.
  Qed.
  Global Instance insert_proper (i : K) :
155
    Proper (() ==> () ==> ()) (insert (M:=M A) i).
Robbert Krebbers's avatar
Robbert Krebbers committed
156
  Proof. by intros ???; apply partial_alter_proper; [constructor|]. Qed.
157
158
  Global Instance singleton_proper k :
    Proper (() ==> ()) (singletonM k : A  M A).
159
160
161
162
  Proof.
    intros ???; apply insert_proper; [done|].
    intros ?. rewrite lookup_empty; constructor.
  Qed.
163
164
  Global Instance delete_proper (i : K) :
    Proper (() ==> ()) (delete (M:=M A) i).
Robbert Krebbers's avatar
Robbert Krebbers committed
165
166
  Proof. by apply partial_alter_proper; [constructor|]. Qed.
  Global Instance alter_proper :
167
    Proper ((() ==> ()) ==> (=) ==> () ==> ()) (alter (A:=A) (M:=M A)).
Robbert Krebbers's avatar
Robbert Krebbers committed
168
169
170
171
  Proof.
    intros ?? Hf; apply partial_alter_proper.
    by destruct 1; constructor; apply Hf.
  Qed.
172
  Lemma merge_ext f g `{!DiagNone f, !DiagNone g} :
Robbert Krebbers's avatar
Robbert Krebbers committed
173
    (() ==> () ==> ())%signature f g 
174
    (() ==> () ==> ())%signature (merge (M:=M) f) (merge g).
Robbert Krebbers's avatar
Robbert Krebbers committed
175
176
177
178
  Proof.
    by intros Hf ?? Hm1 ?? Hm2 i; rewrite !lookup_merge by done; apply Hf.
  Qed.
  Global Instance union_with_proper :
179
    Proper ((() ==> () ==> ()) ==> () ==> () ==>()) (union_with (M:=M A)).
Robbert Krebbers's avatar
Robbert Krebbers committed
180
181
182
  Proof.
    intros ?? Hf ?? Hm1 ?? Hm2 i; apply (merge_ext _ _); auto.
    by do 2 destruct 1; first [apply Hf | constructor].
183
  Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
184
  Global Instance map_leibniz `{!LeibnizEquiv A} : LeibnizEquiv (M A).
185
  Proof. intros m1 m2 Hm; apply map_eq; intros i. apply leibniz_equiv, Hm. Qed.
186
187
  Lemma map_equiv_empty (m : M A) : m    m = .
  Proof.
188
189
190
    split; [intros Hm; apply map_eq; intros i|intros ->].
    - generalize (Hm i). by rewrite lookup_empty, equiv_None.
    - intros ?. rewrite lookup_empty; constructor.
191
  Qed.
192
193
194
195
196
  Global Instance map_fmap_proper `{Equiv B} (f : A  B) :
    Proper (() ==> ()) f  Proper (() ==> ()) (fmap (M:=M) f).
  Proof.
    intros ? m m' ? k; rewrite !lookup_fmap. by apply option_fmap_proper.
  Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
197
198
199
End setoid.

(** ** General properties *)
200
201
202
203
204
Lemma map_eq_iff {A} (m1 m2 : M A) : m1 = m2   i, m1 !! i = m2 !! i.
Proof. split. by intros ->. apply map_eq. Qed.
Lemma map_subseteq_spec {A} (m1 m2 : M A) :
  m1  m2   i x, m1 !! i = Some x  m2 !! i = Some x.
Proof.
Robbert Krebbers's avatar
Robbert Krebbers committed
205
  unfold subseteq, map_subseteq, map_relation. split; intros Hm i;
206
207
    specialize (Hm i); destruct (m1 !! i), (m2 !! i); naive_solver.
Qed.
208
209
Global Instance map_included_preorder {A} (R : relation A) :
  PreOrder R  PreOrder (map_included R).
210
Proof.
Robbert Krebbers's avatar
Robbert Krebbers committed
211
  split; [intros m i; by destruct (m !! i); simpl|].
212
  intros m1 m2 m3 Hm12 Hm23 i; specialize (Hm12 i); specialize (Hm23 i).
213
  destruct (m1 !! i), (m2 !! i), (m3 !! i); simplify_eq/=;
214
    done || etrans; eauto.
215
Qed.
216
Global Instance map_subseteq_po : PartialOrder (() : relation (M A)).
217
Proof.
218
219
220
  split; [apply _|].
  intros m1 m2; rewrite !map_subseteq_spec.
  intros; apply map_eq; intros i; apply option_eq; naive_solver.
221
222
223
Qed.
Lemma lookup_weaken {A} (m1 m2 : M A) i x :
  m1 !! i = Some x  m1  m2  m2 !! i = Some x.
224
Proof. rewrite !map_subseteq_spec. auto. Qed.
225
226
227
228
229
230
Lemma lookup_weaken_is_Some {A} (m1 m2 : M A) i :
  is_Some (m1 !! i)  m1  m2  is_Some (m2 !! i).
Proof. inversion 1. eauto using lookup_weaken. Qed.
Lemma lookup_weaken_None {A} (m1 m2 : M A) i :
  m2 !! i = None  m1  m2  m1 !! i = None.
Proof.
231
232
  rewrite map_subseteq_spec, !eq_None_not_Some.
  intros Hm2 Hm [??]; destruct Hm2; eauto.
233
234
Qed.
Lemma lookup_weaken_inv {A} (m1 m2 : M A) i x y :
235
236
  m1 !! i = Some x  m1  m2  m2 !! i = Some y  x = y.
Proof. intros Hm1 ? Hm2. eapply lookup_weaken in Hm1; eauto. congruence. Qed.
237
238
239
240
241
242
243
244
245
Lemma lookup_ne {A} (m : M A) i j : m !! i  m !! j  i  j.
Proof. congruence. Qed.
Lemma map_empty {A} (m : M A) : ( i, m !! i = None)  m = .
Proof. intros Hm. apply map_eq. intros. by rewrite Hm, lookup_empty. Qed.
Lemma lookup_empty_is_Some {A} i : ¬is_Some (( : M A) !! i).
Proof. rewrite lookup_empty. by inversion 1. Qed.
Lemma lookup_empty_Some {A} i (x : A) : ¬ !! i = Some x.
Proof. by rewrite lookup_empty. Qed.
Lemma map_subset_empty {A} (m : M A) : m  .
246
247
248
Proof.
  intros [_ []]. rewrite map_subseteq_spec. intros ??. by rewrite lookup_empty.
Qed.
249
250
Lemma map_fmap_empty {A B} (f : A  B) : f <$> ( : M A) = .
Proof. by apply map_eq; intros i; rewrite lookup_fmap, !lookup_empty. Qed.
251

252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
Lemma map_subset_alt {A} (m1 m2 : M A) :
  m1  m2  m1  m2   i, m1 !! i = None  is_Some (m2 !! i).
Proof.
  rewrite strict_spec_alt. split.
  - intros [? Heq]; split; [done|].
    destruct (decide (Exists (λ '(i,_), m1 !! i = None) (map_to_list m2)))
      as [[[i x] [?%elem_of_map_to_list ?]]%Exists_exists
         |Hm%(not_Exists_Forall _)]; [eauto|].
    destruct Heq; apply (anti_symm _), map_subseteq_spec; [done|intros i x Hi].
    assert (is_Some (m1 !! i)) as [x' ?].
    { by apply not_eq_None_Some,
        (proj1 (Forall_forall _ _) Hm (i,x)), elem_of_map_to_list. }
    by rewrite <-(lookup_weaken_inv m1 m2 i x' x).
  - intros [? (i&?&x&?)]; split; [done|]. congruence.
Qed.

268
(** ** Properties of the [partial_alter] operation *)
269
270
271
Lemma partial_alter_ext {A} (f g : option A  option A) (m : M A) i :
  ( x, m !! i = x  f x = g x)  partial_alter f i m = partial_alter g i m.
Proof.
272
273
  intros. apply map_eq; intros j. by destruct (decide (i = j)) as [->|?];
    rewrite ?lookup_partial_alter, ?lookup_partial_alter_ne; auto.
274
275
Qed.
Lemma partial_alter_compose {A} f g (m : M A) i:
276
277
  partial_alter (f  g) i m = partial_alter f i (partial_alter g i m).
Proof.
278
279
  intros. apply map_eq. intros ii. by destruct (decide (i = ii)) as [->|?];
    rewrite ?lookup_partial_alter, ?lookup_partial_alter_ne.
280
Qed.
281
Lemma partial_alter_commute {A} f g (m : M A) i j :
282
  i  j  partial_alter f i (partial_alter g j m) =
283
284
    partial_alter g j (partial_alter f i m).
Proof.
285
286
287
288
  intros. apply map_eq; intros jj. destruct (decide (jj = j)) as [->|?].
  { by rewrite lookup_partial_alter_ne,
      !lookup_partial_alter, lookup_partial_alter_ne. }
  destruct (decide (jj = i)) as [->|?].
289
  - by rewrite lookup_partial_alter,
290
     !lookup_partial_alter_ne, lookup_partial_alter by congruence.
291
  - by rewrite !lookup_partial_alter_ne by congruence.
292
293
294
295
Qed.
Lemma partial_alter_self_alt {A} (m : M A) i x :
  x = m !! i  partial_alter (λ _, x) i m = m.
Proof.
296
297
  intros. apply map_eq. intros ii. by destruct (decide (i = ii)) as [->|];
    rewrite ?lookup_partial_alter, ?lookup_partial_alter_ne.
298
Qed.
299
Lemma partial_alter_self {A} (m : M A) i : partial_alter (λ _, m !! i) i m = m.
300
Proof. by apply partial_alter_self_alt. Qed.
301
Lemma partial_alter_subseteq {A} f (m : M A) i :
302
  m !! i = None  m  partial_alter f i m.
303
304
305
306
Proof.
  rewrite map_subseteq_spec. intros Hi j x Hj.
  rewrite lookup_partial_alter_ne; congruence.
Qed.
307
Lemma partial_alter_subset {A} f (m : M A) i :
308
  m !! i = None  is_Some (f (m !! i))  m  partial_alter f i m.
309
Proof.
310
311
  intros Hi Hfi. apply map_subset_alt; split; [by apply partial_alter_subseteq|].
  exists i. by rewrite lookup_partial_alter.
312
313
314
Qed.

(** ** Properties of the [alter] operation *)
315
Lemma lookup_alter {A} (f : A  A) m i : alter f i m !! i = f <$> m !! i.
316
Proof. unfold alter. apply lookup_partial_alter. Qed.
317
Lemma lookup_alter_ne {A} (f : A  A) m i j : i  j  alter f i m !! j = m !! j.
318
Proof. unfold alter. apply lookup_partial_alter_ne. Qed.
319
320
321
Lemma alter_ext {A} (f g : A  A) (m : M A) i :
  ( x, m !! i = Some x  f x = g x)  alter f i m = alter g i m.
Proof. intro. apply partial_alter_ext. intros [x|] ?; f_equal/=; auto. Qed.
322
323
324
325
326
327
328
329
330
Lemma alter_compose {A} (f g : A  A) (m : M A) i:
  alter (f  g) i m = alter f i (alter g i m).
Proof.
  unfold alter, map_alter. rewrite <-partial_alter_compose.
  apply partial_alter_ext. by intros [?|].
Qed.
Lemma alter_commute {A} (f g : A  A) (m : M A) i j :
  i  j  alter f i (alter g j m) = alter g j (alter f i m).
Proof. apply partial_alter_commute. Qed.
331
332
333
334
Lemma lookup_alter_Some {A} (f : A  A) m i j y :
  alter f i m !! j = Some y 
    (i = j   x, m !! j = Some x  y = f x)  (i  j  m !! j = Some y).
Proof.
335
  destruct (decide (i = j)) as [->|?].
336
  - rewrite lookup_alter. naive_solver (simplify_option_eq; eauto).
337
  - rewrite lookup_alter_ne by done. naive_solver.
338
339
340
341
Qed.
Lemma lookup_alter_None {A} (f : A  A) m i j :
  alter f i m !! j = None  m !! j = None.
Proof.
342
343
  by destruct (decide (i = j)) as [->|?];
    rewrite ?lookup_alter, ?fmap_None, ?lookup_alter_ne.
344
Qed.
345
346
347
Lemma lookup_alter_is_Some {A} (f : A  A) m i j :
  is_Some (alter f i m !! j)  is_Some (m !! j).
Proof. by rewrite <-!not_eq_None_Some, lookup_alter_None. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
348
349
Lemma alter_id {A} (f : A  A) m i :
  ( x, m !! i = Some x  f x = x)  alter f i m = m.
350
Proof.
Robbert Krebbers's avatar
Robbert Krebbers committed
351
  intros Hi; apply map_eq; intros j; destruct (decide (i = j)) as [->|?].
352
  { rewrite lookup_alter; destruct (m !! j); f_equal/=; auto. }
Robbert Krebbers's avatar
Robbert Krebbers committed
353
  by rewrite lookup_alter_ne by done.
354
Qed.
355
356
357
358
359
360
361
362
363
364
365
366
Lemma alter_mono {A} f (m1 m2 : M A) i : m1  m2  alter f i m1  alter f i m2.
Proof.
  rewrite !map_subseteq_spec. intros ? j x.
  rewrite !lookup_alter_Some. naive_solver.
Qed.
Lemma alter_strict_mono {A} f (m1 m2 : M A) i :
  m1  m2  alter f i m1  alter f i m2.
Proof.
  rewrite !map_subset_alt.
  intros [? (j&?&?)]; split; auto using alter_mono.
  exists j. by rewrite lookup_alter_None, lookup_alter_is_Some.
Qed.
367
368
369
370
371
372
373
374
375
376

(** ** Properties of the [delete] operation *)
Lemma lookup_delete {A} (m : M A) i : delete i m !! i = None.
Proof. apply lookup_partial_alter. Qed.
Lemma lookup_delete_ne {A} (m : M A) i j : i  j  delete i m !! j = m !! j.
Proof. apply lookup_partial_alter_ne. Qed.
Lemma lookup_delete_Some {A} (m : M A) i j y :
  delete i m !! j = Some y  i  j  m !! j = Some y.
Proof.
  split.
377
  - destruct (decide (i = j)) as [->|?];
378
      rewrite ?lookup_delete, ?lookup_delete_ne; intuition congruence.
379
  - intros [??]. by rewrite lookup_delete_ne.
380
Qed.
381
382
383
Lemma lookup_delete_is_Some {A} (m : M A) i j :
  is_Some (delete i m !! j)  i  j  is_Some (m !! j).
Proof. unfold is_Some; setoid_rewrite lookup_delete_Some; naive_solver. Qed.
384
385
386
Lemma lookup_delete_None {A} (m : M A) i j :
  delete i m !! j = None  i = j  m !! j = None.
Proof.
387
388
  destruct (decide (i = j)) as [->|?];
    rewrite ?lookup_delete, ?lookup_delete_ne; tauto.
389
390
391
Qed.
Lemma delete_empty {A} i : delete i ( : M A) = .
Proof. rewrite <-(partial_alter_self ) at 2. by rewrite lookup_empty. Qed.
392
Lemma delete_singleton {A} i (x : A) : delete i {[i := x]} = .
393
394
395
396
397
398
399
Proof. setoid_rewrite <-partial_alter_compose. apply delete_empty. Qed.
Lemma delete_commute {A} (m : M A) i j :
  delete i (delete j m) = delete j (delete i m).
Proof. destruct (decide (i = j)). by subst. by apply partial_alter_commute. Qed.
Lemma delete_insert_ne {A} (m : M A) i j x :
  i  j  delete i (<[j:=x]>m) = <[j:=x]>(delete i m).
Proof. intro. by apply partial_alter_commute. Qed.
400
Lemma delete_notin {A} (m : M A) i : m !! i = None  delete i m = m.
401
Proof.
402
403
  intros. apply map_eq. intros j. by destruct (decide (i = j)) as [->|?];
    rewrite ?lookup_delete, ?lookup_delete_ne.
404
405
406
407
408
409
410
411
412
413
Qed.
Lemma delete_partial_alter {A} (m : M A) i f :
  m !! i = None  delete i (partial_alter f i m) = m.
Proof.
  intros. unfold delete, map_delete. rewrite <-partial_alter_compose.
  unfold compose. by apply partial_alter_self_alt.
Qed.
Lemma delete_insert {A} (m : M A) i x :
  m !! i = None  delete i (<[i:=x]>m) = m.
Proof. apply delete_partial_alter. Qed.
414
415
Lemma insert_delete {A} (m : M A) i x : <[i:=x]>(delete i m) = <[i:=x]> m.
Proof. symmetry; apply (partial_alter_compose (λ _, Some x)). Qed.
416
Lemma delete_subseteq {A} (m : M A) i : delete i m  m.
417
418
419
Proof.
  rewrite !map_subseteq_spec. intros j x. rewrite lookup_delete_Some. tauto.
Qed.
420
Lemma delete_subset {A} (m : M A) i : is_Some (m !! i)  delete i m  m.
421
Proof.
422
423
  intros [x ?]; apply map_subset_alt; split; [apply delete_subseteq|].
  exists i. rewrite lookup_delete; eauto.
424
Qed.
425
Lemma delete_mono {A} (m1 m2 : M A) i : m1  m2  delete i m1  delete i m2.
426
Proof.
427
428
  rewrite !map_subseteq_spec. intros ? j x.
  rewrite !lookup_delete_Some. intuition eauto.
429
430
431
432
433
Qed.

(** ** Properties of the [insert] operation *)
Lemma lookup_insert {A} (m : M A) i x : <[i:=x]>m !! i = Some x.
Proof. unfold insert. apply lookup_partial_alter. Qed.
434
Lemma lookup_insert_rev {A}  (m : M A) i x y : <[i:=x]>m !! i = Some y  x = y.
435
Proof. rewrite lookup_insert. congruence. Qed.
436
Lemma lookup_insert_ne {A} (m : M A) i j x : i  j  <[i:=x]>m !! j = m !! j.
437
Proof. unfold insert. apply lookup_partial_alter_ne. Qed.
438
439
Lemma insert_insert {A} (m : M A) i x y : <[i:=x]>(<[i:=y]>m) = <[i:=x]>m.
Proof. unfold insert, map_insert. by rewrite <-partial_alter_compose. Qed.
440
441
442
443
444
445
446
Lemma insert_commute {A} (m : M A) i j x y :
  i  j  <[i:=x]>(<[j:=y]>m) = <[j:=y]>(<[i:=x]>m).
Proof. apply partial_alter_commute. Qed.
Lemma lookup_insert_Some {A} (m : M A) i j x y :
  <[i:=x]>m !! j = Some y  (i = j  x = y)  (i  j  m !! j = Some y).
Proof.
  split.
447
  - destruct (decide (i = j)) as [->|?];
448
      rewrite ?lookup_insert, ?lookup_insert_ne; intuition congruence.
449
  - intros [[-> ->]|[??]]; [apply lookup_insert|]. by rewrite lookup_insert_ne.
450
Qed.
451
452
453
Lemma lookup_insert_is_Some {A} (m : M A) i j x :
  is_Some (<[i:=x]>m !! j)  i = j  i  j  is_Some (m !! j).
Proof. unfold is_Some; setoid_rewrite lookup_insert_Some; naive_solver. Qed.
454
455
456
Lemma lookup_insert_is_Some' {A} (m : M A) i j x :
  is_Some (<[i:=x]>m !! j)  i = j  is_Some (m !! j).
Proof. rewrite lookup_insert_is_Some. destruct (decide (i=j)); naive_solver. Qed.
457
458
459
Lemma lookup_insert_None {A} (m : M A) i j x :
  <[i:=x]>m !! j = None  m !! j = None  i  j.
Proof.
460
461
462
  split; [|by intros [??]; rewrite lookup_insert_ne].
  destruct (decide (i = j)) as [->|];
    rewrite ?lookup_insert, ?lookup_insert_ne; intuition congruence.
463
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
464
Lemma insert_id {A} (m : M A) i x : m !! i = Some x  <[i:=x]>m = m.
465
466
467
468
469
470
471
472
Proof.
  intros; apply map_eq; intros j; destruct (decide (i = j)) as [->|];
    by rewrite ?lookup_insert, ?lookup_insert_ne by done.
Qed.
Lemma insert_included {A} R `{!Reflexive R} (m : M A) i x :
  ( y, m !! i = Some y  R y x)  map_included R m (<[i:=x]>m).
Proof.
  intros ? j; destruct (decide (i = j)) as [->|].
473
474
  - rewrite lookup_insert. destruct (m !! j); simpl; eauto.
  - rewrite lookup_insert_ne by done. by destruct (m !! j); simpl.
475
Qed.
476
477
478
479
480
481
482
Lemma insert_empty {A} i (x : A) : <[i:=x]> = {[i := x]}.
Proof. done. Qed.
Lemma insert_non_empty {A} (m : M A) i x : <[i:=x]>m  .
Proof.
  intros Hi%(f_equal (!! i)). by rewrite lookup_insert, lookup_empty in Hi.
Qed.

483
Lemma insert_subseteq {A} (m : M A) i x : m !! i = None  m  <[i:=x]>m.
484
Proof. apply partial_alter_subseteq. Qed.
485
Lemma insert_subset {A} (m : M A) i x : m !! i = None  m  <[i:=x]>m.
486
Proof. intro. apply partial_alter_subset; eauto. Qed.
487
488
489
490
491
Lemma insert_mono {A} (m1 m2 : M A) i x : m1  m2  <[i:=x]> m1  <[i:=x]>m2.
Proof.
  rewrite !map_subseteq_spec.
  intros Hm j y. rewrite !lookup_insert_Some. naive_solver.
Qed.
492
Lemma insert_subseteq_r {A} (m1 m2 : M A) i x :
493
  m1 !! i = None  m1  m2  m1  <[i:=x]>m2.
494
Proof.
495
  intros. trans (<[i:=x]> m1); eauto using insert_subseteq, insert_mono.
496
Qed.
497

498
Lemma insert_delete_subseteq {A} (m1 m2 : M A) i x :
499
  m1 !! i = None  <[i:=x]> m1  m2  m1  delete i m2.
500
Proof.
501
502
503
504
  rewrite !map_subseteq_spec. intros Hi Hix j y Hj.
  destruct (decide (i = j)) as [->|]; [congruence|].
  rewrite lookup_delete_ne by done.
  apply Hix; by rewrite lookup_insert_ne by done.
505
506
Qed.
Lemma delete_insert_subseteq {A} (m1 m2 : M A) i x :
507
  m1 !! i = Some x  delete i m1  m2  m1  <[i:=x]> m2.
508
Proof.
509
510
  rewrite !map_subseteq_spec.
  intros Hix Hi j y Hj. destruct (decide (i = j)) as [->|?].
511
512
  - rewrite lookup_insert. congruence.
  - rewrite lookup_insert_ne by done. apply Hi. by rewrite lookup_delete_ne.
513
514
Qed.
Lemma insert_delete_subset {A} (m1 m2 : M A) i x :
515
  m1 !! i = None  <[i:=x]> m1  m2  m1  delete i m2.
516
Proof.
517
518
519
  intros ? [Hm12 Hm21]; split; [eauto using insert_delete_subseteq|].
  contradict Hm21. apply delete_insert_subseteq; auto.
  eapply lookup_weaken, Hm12. by rewrite lookup_insert.
520
521
Qed.
Lemma insert_subset_inv {A} (m1 m2 : M A) i x :
522
  m1 !! i = None  <[i:=x]> m1  m2 
523
524
   m2', m2 = <[i:=x]>m2'  m1  m2'  m2' !! i = None.
Proof.
525
  intros Hi Hm1m2. exists (delete i m2). split_and?.
526
527
  - rewrite insert_delete, insert_id. done.
    eapply lookup_weaken, strict_include; eauto. by rewrite lookup_insert.
528
529
  - eauto using insert_delete_subset.
  - by rewrite lookup_delete.
530
531
532
533
Qed.

(** ** Properties of the singleton maps *)
Lemma lookup_singleton_Some {A} i j (x y : A) :
534
  {[i := x]} !! j = Some y  i = j  x = y.
535
Proof.
536
  rewrite <-insert_empty,lookup_insert_Some, lookup_empty; intuition congruence.
537
Qed.
538
Lemma lookup_singleton_None {A} i j (x : A) : {[i := x]} !! j = None  i  j.
539
Proof. rewrite <-insert_empty,lookup_insert_None, lookup_empty; tauto. Qed.
540
Lemma lookup_singleton {A} i (x : A) : {[i := x]} !! i = Some x.
541
Proof. by rewrite lookup_singleton_Some. Qed.
542
Lemma lookup_singleton_ne {A} i j (x : A) : i  j  {[i := x]} !! j = None.
543
Proof. by rewrite lookup_singleton_None. Qed.
544
Lemma map_non_empty_singleton {A} i (x : A) : {[i := x]}  .
545
546
547
548
Proof.
  intros Hix. apply (f_equal (!! i)) in Hix.
  by rewrite lookup_empty, lookup_singleton in Hix.
Qed.
549
Lemma insert_singleton {A} i (x y : A) : <[i:=y]>{[i := x]} = {[i := y]}.
550
Proof.
551
  unfold singletonM, map_singleton, insert, map_insert.
552
553
  by rewrite <-partial_alter_compose.
Qed.
554
Lemma alter_singleton {A} (f : A  A) i x : alter f i {[i := x]} = {[i := f x]}.
555
Proof.
556
  intros. apply map_eq. intros i'. destruct (decide (i = i')) as [->|?].
557
558
  - by rewrite lookup_alter, !lookup_singleton.
  - by rewrite lookup_alter_ne, !lookup_singleton_ne.
559
560
Qed.
Lemma alter_singleton_ne {A} (f : A  A) i j x :
561
  i  j  alter f i {[j := x]} = {[j := x]}.
562
Proof.
563
564
  intros. apply map_eq; intros i'. by destruct (decide (i = i')) as [->|?];
    rewrite ?lookup_alter, ?lookup_singleton_ne, ?lookup_alter_ne by done.
565
Qed.
566
567
Lemma singleton_non_empty {A} i (x : A) : {[i:=x]}  .
Proof. apply insert_non_empty. Qed.
568

569
570
571
572
573
(** ** Properties of the map operations *)
Lemma fmap_empty {A B} (f : A  B) : f <$>  = .
Proof. apply map_empty; intros i. by rewrite lookup_fmap, lookup_empty. Qed.
Lemma omap_empty {A B} (f : A  option B) : omap f  = .
Proof. apply map_empty; intros i. by rewrite lookup_omap, lookup_empty. Qed.
574
575
576
Lemma fmap_insert {A B} (f: A  B) m i x: f <$> <[i:=x]>m = <[i:=f x]>(f <$> m).
Proof.
  apply map_eq; intros i'; destruct (decide (i' = i)) as [->|].
577
578
  - by rewrite lookup_fmap, !lookup_insert.
  - by rewrite lookup_fmap, !lookup_insert_ne, lookup_fmap by done.
579
Qed.
580
581
582
583
584
585
Lemma fmap_delete {A B} (f: A  B) m i: f <$> delete i m = delete i (f <$> m).
Proof.
  apply map_eq; intros i'; destruct (decide (i' = i)) as [->|].
  - by rewrite lookup_fmap, !lookup_delete.
  - by rewrite lookup_fmap, !lookup_delete_ne, lookup_fmap by done.
Qed.
586
587
588
589
Lemma omap_insert {A B} (f : A  option B) m i x y :
  f x = Some y  omap f (<[i:=x]>m) = <[i:=y]>(omap f m).
Proof.
  intros; apply map_eq; intros i'; destruct (decide (i' = i)) as [->|].
590
591
  - by rewrite lookup_omap, !lookup_insert.
  - by rewrite lookup_omap, !lookup_insert_ne, lookup_omap by done.
592
Qed.
593
Lemma map_fmap_singleton {A B} (f : A  B) i x : f <$> {[i := x]} = {[i := f x]}.
594
595
596
Proof.
  by unfold singletonM, map_singleton; rewrite fmap_insert, map_fmap_empty.
Qed.
597
Lemma omap_singleton {A B} (f : A  option B) i x y :
598
  f x = Some y  omap f {[ i := x ]} = {[ i := y ]}.
599
Proof.
600
601
  intros. unfold singletonM, map_singleton.
  by erewrite omap_insert, omap_empty by eauto.
602
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
603
604
605
606
607
Lemma map_fmap_id {A} (m : M A) : id <$> m = m.
Proof. apply map_eq; intros i; by rewrite lookup_fmap, option_fmap_id. Qed.
Lemma map_fmap_compose {A B C} (f : A  B) (g : B  C) (m : M A) :
  g  f <$> m = g <$> f <$> m.
Proof. apply map_eq; intros i; by rewrite !lookup_fmap,option_fmap_compose. Qed.
608
Lemma map_fmap_equiv_ext `{Equiv A, Equiv B} (f1 f2 : A  B) m :
609
610
611
612
613
  ( i x, m !! i = Some x  f1 x  f2 x)  f1 <$> m  f2 <$> m.
Proof.
  intros Hi i; rewrite !lookup_fmap.
  destruct (m !! i) eqn:?; constructor; eauto.
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
614
615
616
617
618
619
Lemma map_fmap_ext {A B} (f1 f2 : A  B) m :
  ( i x, m !! i = Some x  f1 x = f2 x)  f1 <$> m = f2 <$> m.
Proof.
  intros Hi; apply map_eq; intros i; rewrite !lookup_fmap.
  by destruct (m !! i) eqn:?; simpl; erewrite ?Hi by eauto.
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
620
621
622
623
624
625
Lemma omap_ext {A B} (f1 f2 : A  option B) m :
  ( i x, m !! i = Some x  f1 x = f2 x)  omap f1 m = omap f2 m.
Proof.
  intros Hi; apply map_eq; intros i; rewrite !lookup_omap.
  by destruct (m !! i) eqn:?; simpl; erewrite ?Hi by eauto.
Qed.
626

627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
Lemma map_fmap_mono {A B} (f : A  B) (m1 m2 : M A) :
  m1  m2  f <$> m1  f <$> m2.
Proof.
  rewrite !map_subseteq_spec; intros Hm i x.
  rewrite !lookup_fmap, !fmap_Some. naive_solver.
Qed.
Lemma map_fmap_strict_mono {A B} (f : A  B) (m1 m2 : M A) :
  m1  m2  f <$> m1  f <$> m2.
Proof.
  rewrite !map_subset_alt.
  intros [? (j&?&?)]; split; auto using map_fmap_mono.
  exists j. by rewrite !lookup_fmap, fmap_None, fmap_is_Some.
Qed.
Lemma map_omap_mono {A B} (f : A  option B) (m1 m2 : M A) :
  m1  m2  omap f m1  omap f m2.
Proof.
  rewrite !map_subseteq_spec; intros Hm i x.
  rewrite !lookup_omap, !bind_Some. naive_solver.
Qed.

647
(** ** Properties of conversion to lists *)
648
649
650
Lemma elem_of_map_to_list' {A} (m : M A) ix :
  ix  map_to_list m  m !! ix.1 = Some (ix.2).
Proof. destruct ix as [i x]. apply elem_of_map_to_list. Qed.
651
Lemma map_to_list_unique {A} (m : M A) i x y :
652
  (i,x)  map_to_list m  (i,y)  map_to_list m  x = y.
653
Proof. rewrite !elem_of_map_to_list. congruence. Qed.
654
Lemma NoDup_fst_map_to_list {A} (m : M A) : NoDup ((map_to_list m).*1).
655
Proof. eauto using NoDup_fmap_fst, map_to_list_unique, NoDup_map_to_list. Qed.
656
657
Lemma elem_of_map_of_list_1' {A} (l : list (K * A)) i x :
  ( y, (i,y)  l  x = y)  (i,x)  l  map_of_list l !! i = Some x.
658
659
660
Proof.
  induction l as [|[j y] l IH]; csimpl; [by rewrite elem_of_nil|].
  setoid_rewrite elem_of_cons.
661
  intros Hdup [?|?]; simplify_eq; [by rewrite lookup_insert|].
662
  destruct (decide (i = j)) as [->|].
663
  - rewrite lookup_insert; f_equal; eauto using eq_sym.
664
  - rewrite lookup_insert_ne by done; eauto.
665
Qed.
666
Lemma elem_of_map_of_list_1 {A} (l : list (K * A)) i x :
667
  NoDup (l.*1)  (i,x)  l  map_of_list l !! i = Some x.
668
Proof.
669
  intros ? Hx; apply elem_of_map_of_list_1'; eauto using NoDup_fmap_fst.
670
  intros y; revert Hx. rewrite !elem_of_list_lookup; intros [i' Hi'] [j' Hj'].
671
  cut (i' = j'); [naive_solver|]. apply NoDup_lookup with (l.*1) i;
672
    by rewrite ?list_lookup_fmap, ?Hi', ?Hj'.
673
674
Qed.
Lemma elem_of_map_of_list_2 {A} (l : list (K * A)) i x :
675
  map_of_list l !! i = Some x  (i,x)  l.
676
Proof.
677
678
679
  induction l as [|[j y] l IH]; simpl; [by rewrite lookup_empty|].
  rewrite elem_of_cons. destruct (decide (i = j)) as [->|];
    rewrite ?lookup_insert, ?lookup_insert_ne; intuition congruence.
680
Qed.
681
682
683
684
Lemma elem_of_map_of_list' {A} (l : list (K * A)) i x :
  ( x', (i,x)  l  (i,x')  l  x = x') 
  (i,x)  l  map_of_list l !! i = Some x.
Proof. split; auto using elem_of_map_of_list_1', elem_of_map_of_list_2. Qed.
685
Lemma elem_of_map_of_list {A} (l : list (K * A)) i x :
686
  NoDup (l.*1)  (i,x)  l  map_of_list l !! i = Some x.
687
Proof. split; auto using elem_of_map_of_list_1, elem_of_map_of_list_2. Qed.
688

689
Lemma not_elem_of_map_of_list_1 {A} (l : list (K * A)) i :
690
  i  l.*1  map_of_list l !! i = None.
691
Proof.
692
693
  rewrite elem_of_list_fmap, eq_None_not_Some. intros Hi [x ?]; destruct Hi.
  exists (i,x); simpl; auto using elem_of_map_of_list_2.
694
695
Qed.
Lemma not_elem_of_map_of_list_2 {A} (l : list (K * A)) i :
696
  map_of_list l !! i = None  i  l.*1.