base.v 59.4 KB
Newer Older
1 2
(** This file collects type class interfaces, notations, and general theorems
that are used throughout the whole development. Most importantly it contains
3
abstract interfaces for ordered structures, sets, and various other data
4
structures. *)
5

Olivier Laurent's avatar
Olivier Laurent committed
6 7 8 9
(* We want to ensure that [le] and [lt] refer to operations on [nat].
These two functions being defined both in [Coq.Bool] and in [Coq.Peano],
we must export [Coq.Peano] later than any export of [Coq.Bool]. *)
From Coq Require Export Morphisms RelationClasses List Bool Utf8 Setoid Peano.
10
From Coq Require Import Permutation.
11
Set Default Proof Using "Type".
12 13
Export ListNotations.
From Coq.Program Require Export Basics Syntax.
14

Michael Sammler's avatar
Michael Sammler committed
15 16 17 18 19
(** This notation is necessary to prevent [length] from being printed
as [strings.length] if strings.v is imported and later base.v. See
also strings.v and
https://gitlab.mpi-sws.org/iris/stdpp/-/merge_requests/144 and
https://gitlab.mpi-sws.org/iris/stdpp/-/merge_requests/129. *)
20 21
Notation length := Datatypes.length.

Ralf Jung's avatar
Ralf Jung committed
22 23
(** * Enable implicit generalization. *)
(** This option enables implicit generalization in arguments of the form
Robbert Krebbers's avatar
Robbert Krebbers committed
24 25
   [`{...}] (i.e., anonymous arguments).  Unfortunately, it also enables
   implicit generalization in [Instance].  We think that the fact that both
26 27 28 29
   behaviors are coupled together is a [bug in
   Coq](https://github.com/coq/coq/issues/6030). *)
Global Generalizable All Variables.

30 31 32 33 34 35 36 37 38 39 40 41 42 43 44
(** * Tweak program *)
(** 1. Since we only use Program to solve logical side-conditions, they should
always be made Opaque, otherwise we end up with performance problems due to
Coq blindly unfolding them.

Note that in most cases we use [Next Obligation. (* ... *) Qed.], for which
this option does not matter. However, sometimes we write things like
[Solve Obligations with naive_solver (* ... *)], and then the obligations
should surely be opaque. *)
Global Unset Transparent Obligations.

(** 2. Do not let Program automatically simplify obligations. The default
obligation tactic is [Tactics.program_simpl], which, among other things,
introduces all variables and gives them fresh names. As such, it becomes
impossible to refer to hypotheses in a robust way. *)
45
Obligation Tactic := idtac.
46 47

(** 3. Hide obligations from the results of the [Search] commands. *)
48
Add Search Blacklist "_obligation_".
Robbert Krebbers's avatar
Robbert Krebbers committed
49

50
(** * Sealing off definitions *)
Ralf Jung's avatar
Ralf Jung committed
51 52 53 54
Section seal.
  Local Set Primitive Projections.
  Record seal {A} (f : A) := { unseal : A; seal_eq : unseal = f }.
End seal.
Ralf Jung's avatar
Ralf Jung committed
55 56
Arguments unseal {_ _} _ : assert.
Arguments seal_eq {_ _} _ : assert.
57

58
(** * Non-backtracking type classes *)
59
(** The type class [TCNoBackTrack P] can be used to establish [P] without ever
60 61 62 63 64 65 66 67 68 69 70
backtracking on the instance of [P] that has been found. Backtracking may
normally happen when [P] contains evars that could be instanciated in different
ways depending on which instance is picked, and type class search somewhere else
depends on this evar.

The proper way of handling this would be by setting Coq's option
`Typeclasses Unique Instances`. However, this option seems to be broken, see Coq
issue #6714.

See https://gitlab.mpi-sws.org/FP/iris-coq/merge_requests/112 for a rationale
of this type class. *)
71 72
Class TCNoBackTrack (P : Prop) := { tc_no_backtrack : P }.
Hint Extern 0 (TCNoBackTrack _) => constructor; apply _ : typeclass_instances.
73

74 75
(* A conditional at the type class level. Note that [TCIf P Q R] is not the same
as [TCOr (TCAnd P Q) R]: the latter will backtrack to [R] if it fails to
Paolo G. Giarrusso's avatar
Paolo G. Giarrusso committed
76
establish [Q], i.e. does not have the behavior of a conditional. Furthermore,
77
note that [TCOr (TCAnd P Q) (TCAnd (TCNot P) R)] would not work; we generally
Robbert Krebbers's avatar
Robbert Krebbers committed
78
would not be able to prove the negation of [P]. *)
Robbert Krebbers's avatar
Robbert Krebbers committed
79
Inductive TCIf (P Q R : Prop) : Prop :=
80 81 82 83 84 85 86 87
  | TCIf_true : P  Q  TCIf P Q R
  | TCIf_false : R  TCIf P Q R.
Existing Class TCIf.

Hint Extern 0 (TCIf _ _ _) =>
  first [apply TCIf_true; [apply _|]
        |apply TCIf_false] : typeclass_instances.

88
(** * Typeclass opaque definitions *)
Ralf Jung's avatar
Ralf Jung committed
89
(** The constant [tc_opaque] is used to make definitions opaque for just type
90 91 92 93 94
class search. Note that [simpl] is set up to always unfold [tc_opaque]. *)
Definition tc_opaque {A} (x : A) : A := x.
Typeclasses Opaque tc_opaque.
Arguments tc_opaque {_} _ /.

Ralf Jung's avatar
Ralf Jung committed
95
(** Below we define type class versions of the common logical operators. It is
96 97 98 99 100 101 102 103 104 105 106 107 108 109 110
important to note that we duplicate the definitions, and do not declare the
existing logical operators as type classes. That is, we do not say:

  Existing Class or.
  Existing Class and.

If we could define the existing logical operators as classes, there is no way
of disambiguating whether a premise of a lemma should be solved by type class
resolution or not.

These classes are useful for two purposes: writing complicated type class
premises in a more concise way, and for efficiency. For example, using the [Or]
class, instead of defining two instances [P → Q1 → R] and [P → Q2 → R] we could
have one instance [P → Or Q1 Q2 → R]. When we declare the instance that way, we
avoid the need to derive [P] twice. *)
111
Inductive TCOr (P1 P2 : Prop) : Prop :=
112 113 114 115 116
  | TCOr_l : P1  TCOr P1 P2
  | TCOr_r : P2  TCOr P1 P2.
Existing Class TCOr.
Existing Instance TCOr_l | 9.
Existing Instance TCOr_r | 10.
117
Hint Mode TCOr ! ! : typeclass_instances.
Robbert Krebbers's avatar
Robbert Krebbers committed
118

119
Inductive TCAnd (P1 P2 : Prop) : Prop := TCAnd_intro : P1  P2  TCAnd P1 P2.
120 121
Existing Class TCAnd.
Existing Instance TCAnd_intro.
122
Hint Mode TCAnd ! ! : typeclass_instances.
123

124 125 126
Inductive TCTrue : Prop := TCTrue_intro : TCTrue.
Existing Class TCTrue.
Existing Instance TCTrue_intro.
127

128 129 130 131 132 133
Inductive TCForall {A} (P : A  Prop) : list A  Prop :=
  | TCForall_nil : TCForall P []
  | TCForall_cons x xs : P x  TCForall P xs  TCForall P (x :: xs).
Existing Class TCForall.
Existing Instance TCForall_nil.
Existing Instance TCForall_cons.
134
Hint Mode TCForall ! ! ! : typeclass_instances.
135

136 137 138
(** The class [TCForall2 P l k] is commonly used to transform an input list [l]
into an output list [k], or the converse. Therefore there are two modes, either
[l] input and [k] output, or [k] input and [l] input. *)
Robbert Krebbers's avatar
Robbert Krebbers committed
139 140 141 142 143 144 145
Inductive TCForall2 {A B} (P : A  B  Prop) : list A  list B  Prop :=
  | TCForall2_nil : TCForall2 P [] []
  | TCForall2_cons x y xs ys :
     P x y  TCForall2 P xs ys  TCForall2 P (x :: xs) (y :: ys).
Existing Class TCForall2.
Existing Instance TCForall2_nil.
Existing Instance TCForall2_cons.
146 147
Hint Mode TCForall2 ! ! ! ! - : typeclass_instances.
Hint Mode TCForall2 ! ! ! - ! : typeclass_instances.
Robbert Krebbers's avatar
Robbert Krebbers committed
148

149 150 151 152 153 154
Inductive TCElemOf {A} (x : A) : list A  Prop :=
  | TCElemOf_here xs : TCElemOf x (x :: xs)
  | TCElemOf_further y xs : TCElemOf x xs  TCElemOf x (y :: xs).
Existing Class TCElemOf.
Existing Instance TCElemOf_here.
Existing Instance TCElemOf_further.
155
Hint Mode TCElemOf ! ! ! : typeclass_instances.
156

Robbert Krebbers's avatar
Robbert Krebbers committed
157 158 159 160
(** We declare both arguments [x] and [y] of [TCEq x y] as outputs, which means
[TCEq] can also be used to unify evars. This is harmless: since the only
instance of [TCEq] is [TCEq_refl] below, it can never cause loops. See
https://gitlab.mpi-sws.org/iris/iris/merge_requests/391 for a use case. *)
161 162 163
Inductive TCEq {A} (x : A) : A  Prop := TCEq_refl : TCEq x x.
Existing Class TCEq.
Existing Instance TCEq_refl.
Robbert Krebbers's avatar
Robbert Krebbers committed
164
Hint Mode TCEq ! - - : typeclass_instances.
165

Michael Sammler's avatar
Michael Sammler committed
166 167 168
Lemma TCEq_eq {A} (x1 x2 : A) : TCEq x1 x2  x1 = x2.
Proof. split; destruct 1; reflexivity. Qed.

Robbert Krebbers's avatar
Robbert Krebbers committed
169 170 171 172
Inductive TCDiag {A} (C : A  Prop) : A  A  Prop :=
  | TCDiag_diag x : C x  TCDiag C x x.
Existing Class TCDiag.
Existing Instance TCDiag_diag.
173 174
Hint Mode TCDiag ! ! ! - : typeclass_instances.
Hint Mode TCDiag ! ! - ! : typeclass_instances.
Robbert Krebbers's avatar
Robbert Krebbers committed
175

176 177 178 179 180 181
(** Given a proposition [P] that is a type class, [tc_to_bool P] will return
[true] iff there is an instance of [P]. It is often useful in Ltac programming,
where one can do [lazymatch tc_to_bool P with true => .. | false => .. end]. *)
Definition tc_to_bool (P : Prop)
  {p : bool} `{TCIf P (TCEq p true) (TCEq p false)} : bool := p.

182
(** Throughout this development we use [stdpp_scope] for all general purpose
183
notations that do not belong to a more specific scope. *)
184 185
Delimit Scope stdpp_scope with stdpp.
Global Open Scope stdpp_scope.
186

187
(** Change [True] and [False] into notations in order to enable overloading.
188 189
We will use this to give [True] and [False] a different interpretation for
embedded logics. *)
190 191
Notation "'True'" := True (format "True") : type_scope.
Notation "'False'" := False (format "False") : type_scope.
Robbert Krebbers's avatar
Robbert Krebbers committed
192 193


194
(** * Equality *)
195
(** Introduce some Haskell style like notations. *)
196
Notation "(=)" := eq (only parsing) : stdpp_scope.
197 198
Notation "( x =.)" := (eq x) (only parsing) : stdpp_scope.
Notation "(.= x )" := (λ y, eq y x) (only parsing) : stdpp_scope.
199
Notation "(≠)" := (λ x y, x  y) (only parsing) : stdpp_scope.
200 201
Notation "( x ≠.)" := (λ y, x  y) (only parsing) : stdpp_scope.
Notation "(.≠ x )" := (λ y, y  x) (only parsing) : stdpp_scope.
Robbert Krebbers's avatar
Robbert Krebbers committed
202

203 204 205 206
Infix "=@{ A }" := (@eq A)
  (at level 70, only parsing, no associativity) : stdpp_scope.
Notation "(=@{ A } )" := (@eq A) (only parsing) : stdpp_scope.
Notation "(≠@{ A } )" := (λ X Y, ¬X =@{A} Y) (only parsing) : stdpp_scope.
207 208
Notation "X ≠@{ A } Y":= (¬X =@{ A } Y)
  (at level 70, only parsing, no associativity) : stdpp_scope.
209

Tej Chajed's avatar
Tej Chajed committed
210 211
Hint Extern 0 (_ = _) => reflexivity : core.
Hint Extern 100 (_  _) => discriminate : core.
Robbert Krebbers's avatar
Robbert Krebbers committed
212

213
Instance:  A, PreOrder (=@{A}).
214 215 216
Proof. split; repeat intro; congruence. Qed.

(** ** Setoid equality *)
Ralf Jung's avatar
Ralf Jung committed
217 218 219
(** We define an operational type class for setoid equality, i.e., the
"canonical" equivalence for a type. The typeclass is tied to the \equiv
symbol. This is based on (Spitters/van der Weegen, 2011). *)
220
Class Equiv A := equiv: relation A.
221 222 223
(* No Hint Mode set because of Coq bug #5735
Hint Mode Equiv ! : typeclass_instances. *)

224
Infix "≡" := equiv (at level 70, no associativity) : stdpp_scope.
225 226 227
Infix "≡@{ A }" := (@equiv A _)
  (at level 70, only parsing, no associativity) : stdpp_scope.

228
Notation "(≡)" := equiv (only parsing) : stdpp_scope.
229 230
Notation "( X ≡.)" := (equiv X) (only parsing) : stdpp_scope.
Notation "(.≡ X )" := (λ Y, Y  X) (only parsing) : stdpp_scope.
231 232
Notation "(≢)" := (λ X Y, ¬X  Y) (only parsing) : stdpp_scope.
Notation "X ≢ Y":= (¬X  Y) (at level 70, no associativity) : stdpp_scope.
233 234
Notation "( X ≢.)" := (λ Y, X  Y) (only parsing) : stdpp_scope.
Notation "(.≢ X )" := (λ Y, Y  X) (only parsing) : stdpp_scope.
235

236 237
Notation "(≡@{ A } )" := (@equiv A _) (only parsing) : stdpp_scope.
Notation "(≢@{ A } )" := (λ X Y, ¬X @{A} Y) (only parsing) : stdpp_scope.
238 239
Notation "X ≢@{ A } Y":= (¬X @{ A } Y)
  (at level 70, only parsing, no associativity) : stdpp_scope.
240

241 242 243 244 245
(** The type class [LeibnizEquiv] collects setoid equalities that coincide
with Leibniz equality. We provide the tactic [fold_leibniz] to transform such
setoid equalities into Leibniz equalities, and [unfold_leibniz] for the
reverse. *)
Class LeibnizEquiv A `{Equiv A} := leibniz_equiv x y : x  y  x = y.
246 247
Hint Mode LeibnizEquiv ! - : typeclass_instances.

248
Lemma leibniz_equiv_iff `{LeibnizEquiv A, !Reflexive (@{A})} (x y : A) :
249 250
  x  y  x = y.
Proof. split. apply leibniz_equiv. intros ->; reflexivity. Qed.
251

252 253
Ltac fold_leibniz := repeat
  match goal with
254
  | H : context [ _ @{?A} _ ] |- _ =>
255
    setoid_rewrite (leibniz_equiv_iff (A:=A)) in H
256
  | |- context [ _ @{?A} _ ] =>
257 258 259 260
    setoid_rewrite (leibniz_equiv_iff (A:=A))
  end.
Ltac unfold_leibniz := repeat
  match goal with
261
  | H : context [ _ =@{?A} _ ] |- _ =>
262
    setoid_rewrite <-(leibniz_equiv_iff (A:=A)) in H
263
  | |- context [ _ =@{?A} _ ] =>
264 265 266 267 268 269 270 271
    setoid_rewrite <-(leibniz_equiv_iff (A:=A))
  end.

Definition equivL {A} : Equiv A := (=).

(** A [Params f n] instance forces the setoid rewriting mechanism not to
rewrite in the first [n] arguments of the function [f]. We will declare such
instances for all operational type classes in this development. *)
272
Instance: Params (@equiv) 2 := {}.
273 274 275 276

(** The following instance forces [setoid_replace] to use setoid equality
(for types that have an [Equiv] instance) rather than the standard Leibniz
equality. *)
277
Instance equiv_default_relation `{Equiv A} : DefaultRelation () | 3 := {}.
Tej Chajed's avatar
Tej Chajed committed
278 279
Hint Extern 0 (_  _) => reflexivity : core.
Hint Extern 0 (_  _) => symmetry; assumption : core.
280 281 282 283 284


(** * Type classes *)
(** ** Decidable propositions *)
(** This type class by (Spitters/van der Weegen, 2011) collects decidable
285
propositions. *)
286
Class Decision (P : Prop) := decide : {P} + {¬P}.
287
Hint Mode Decision ! : typeclass_instances.
288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307
Arguments decide _ {_} : simpl never, assert.

(** Although [RelDecision R] is just [∀ x y, Decision (R x y)], we make this
an explicit class instead of a notation for two reasons:

- It allows us to control [Hint Mode] more precisely. In particular, if it were
  defined as a notation, the above [Hint Mode] for [Decision] would not prevent
  diverging instance search when looking for [RelDecision (@eq ?A)], which would
  result in it looking for [Decision (@eq ?A x y)], i.e. an instance where the
  head position of [Decision] is not en evar.
- We use it to avoid inefficient computation due to eager evaluation of
  propositions by [vm_compute]. This inefficiency arises for example if
  [(x = y) := (f x = f y)]. Since [decide (x = y)] evaluates to
  [decide (f x = f y)], this would then lead to evaluation of [f x] and [f y].
  Using the [RelDecision], the [f] is hidden under a lambda, which prevents
  unnecessary evaluation. *)
Class RelDecision {A B} (R : A  B  Prop) :=
  decide_rel x y :> Decision (R x y).
Hint Mode RelDecision ! ! ! : typeclass_instances.
Arguments decide_rel {_ _} _ {_} _ _ : simpl never, assert.
308
Notation EqDecision A := (RelDecision (=@{A})).
309 310 311 312

(** ** Inhabited types *)
(** This type class collects types that are inhabited. *)
Class Inhabited (A : Type) : Type := populate { inhabitant : A }.
313
Hint Mode Inhabited ! : typeclass_instances.
314
Arguments populate {_} _ : assert.
315 316 317 318 319 320

(** ** Proof irrelevant types *)
(** This type class collects types that are proof irrelevant. That means, all
elements of the type are equal. We use this notion only used for propositions,
but by universe polymorphism we can generalize it. *)
Class ProofIrrel (A : Type) : Prop := proof_irrel (x y : A) : x = y.
321
Hint Mode ProofIrrel ! : typeclass_instances.
322 323 324

(** ** Common properties *)
(** These operational type classes allow us to refer to common mathematical
325 326
properties in a generic way. For example, for injectivity of [(k ++.)] it
allows us to write [inj (k ++.)] instead of [app_inv_head k]. *)
327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356
Class Inj {A B} (R : relation A) (S : relation B) (f : A  B) : Prop :=
  inj x y : S (f x) (f y)  R x y.
Class Inj2 {A B C} (R1 : relation A) (R2 : relation B)
    (S : relation C) (f : A  B  C) : Prop :=
  inj2 x1 x2 y1 y2 : S (f x1 x2) (f y1 y2)  R1 x1 y1  R2 x2 y2.
Class Cancel {A B} (S : relation B) (f : A  B) (g : B  A) : Prop :=
  cancel :  x, S (f (g x)) x.
Class Surj {A B} (R : relation B) (f : A  B) :=
  surj y :  x, R (f x) y.
Class IdemP {A} (R : relation A) (f : A  A  A) : Prop :=
  idemp x : R (f x x) x.
Class Comm {A B} (R : relation A) (f : B  B  A) : Prop :=
  comm x y : R (f x y) (f y x).
Class LeftId {A} (R : relation A) (i : A) (f : A  A  A) : Prop :=
  left_id x : R (f i x) x.
Class RightId {A} (R : relation A) (i : A) (f : A  A  A) : Prop :=
  right_id x : R (f x i) x.
Class Assoc {A} (R : relation A) (f : A  A  A) : Prop :=
  assoc x y z : R (f x (f y z)) (f (f x y) z).
Class LeftAbsorb {A} (R : relation A) (i : A) (f : A  A  A) : Prop :=
  left_absorb x : R (f i x) i.
Class RightAbsorb {A} (R : relation A) (i : A) (f : A  A  A) : Prop :=
  right_absorb x : R (f x i) i.
Class AntiSymm {A} (R S : relation A) : Prop :=
  anti_symm x y : S x y  S y x  R x y.
Class Total {A} (R : relation A) := total x y : R x y  R y x.
Class Trichotomy {A} (R : relation A) :=
  trichotomy x y : R x y  x = y  R y x.
Class TrichotomyT {A} (R : relation A) :=
  trichotomyT x y : {R x y} + {x = y} + {R y x}.
357 358 359 360 361

Notation Involutive R f := (Cancel R f f).
Lemma involutive {A} {R : relation A} (f : A  A) `{Involutive R f} x :
  R (f (f x)) x.
Proof. auto. Qed.
362

363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378
Arguments irreflexivity {_} _ {_} _ _ : assert.
Arguments inj {_ _ _ _} _ {_} _ _ _ : assert.
Arguments inj2 {_ _ _ _ _ _} _ {_} _ _ _ _ _: assert.
Arguments cancel {_ _ _} _ _ {_} _ : assert.
Arguments surj {_ _ _} _ {_} _ : assert.
Arguments idemp {_ _} _ {_} _ : assert.
Arguments comm {_ _ _} _ {_} _ _ : assert.
Arguments left_id {_ _} _ _ {_} _ : assert.
Arguments right_id {_ _} _ _ {_} _ : assert.
Arguments assoc {_ _} _ {_} _ _ _ : assert.
Arguments left_absorb {_ _} _ _ {_} _ : assert.
Arguments right_absorb {_ _} _ _ {_} _ : assert.
Arguments anti_symm {_ _} _ {_} _ _ _ _ : assert.
Arguments total {_} _ {_} _ _ : assert.
Arguments trichotomy {_} _ {_} _ _ : assert.
Arguments trichotomyT {_} _ {_} _ _ : assert.
379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431

Lemma not_symmetry `{R : relation A, !Symmetric R} x y : ¬R x y  ¬R y x.
Proof. intuition. Qed.
Lemma symmetry_iff `(R : relation A) `{!Symmetric R} x y : R x y  R y x.
Proof. intuition. Qed.

Lemma not_inj `{Inj A B R R' f} x y : ¬R x y  ¬R' (f x) (f y).
Proof. intuition. Qed.
Lemma not_inj2_1 `{Inj2 A B C R R' R'' f} x1 x2 y1 y2 :
  ¬R x1 x2  ¬R'' (f x1 y1) (f x2 y2).
Proof. intros HR HR''. destruct (inj2 f x1 y1 x2 y2); auto. Qed.
Lemma not_inj2_2 `{Inj2 A B C R R' R'' f} x1 x2 y1 y2 :
  ¬R' y1 y2  ¬R'' (f x1 y1) (f x2 y2).
Proof. intros HR' HR''. destruct (inj2 f x1 y1 x2 y2); auto. Qed.

Lemma inj_iff {A B} {R : relation A} {S : relation B} (f : A  B)
  `{!Inj R S f} `{!Proper (R ==> S) f} x y : S (f x) (f y)  R x y.
Proof. firstorder. Qed.
Instance inj2_inj_1 `{Inj2 A B C R1 R2 R3 f} y : Inj R1 R3 (λ x, f x y).
Proof. repeat intro; edestruct (inj2 f); eauto. Qed.
Instance inj2_inj_2 `{Inj2 A B C R1 R2 R3 f} x : Inj R2 R3 (f x).
Proof. repeat intro; edestruct (inj2 f); eauto. Qed.

Lemma cancel_inj `{Cancel A B R1 f g, !Equivalence R1, !Proper (R2 ==> R1) f} :
  Inj R1 R2 g.
Proof.
  intros x y E. rewrite <-(cancel f g x), <-(cancel f g y), E. reflexivity.
Qed.
Lemma cancel_surj `{Cancel A B R1 f g} : Surj R1 f.
Proof. intros y. exists (g y). auto. Qed.

(** The following lemmas are specific versions of the projections of the above
type classes for Leibniz equality. These lemmas allow us to enforce Coq not to
use the setoid rewriting mechanism. *)
Lemma idemp_L {A} f `{!@IdemP A (=) f} x : f x x = x.
Proof. auto. Qed.
Lemma comm_L {A B} f `{!@Comm A B (=) f} x y : f x y = f y x.
Proof. auto. Qed.
Lemma left_id_L {A} i f `{!@LeftId A (=) i f} x : f i x = x.
Proof. auto. Qed.
Lemma right_id_L {A} i f `{!@RightId A (=) i f} x : f x i = x.
Proof. auto. Qed.
Lemma assoc_L {A} f `{!@Assoc A (=) f} x y z : f x (f y z) = f (f x y) z.
Proof. auto. Qed.
Lemma left_absorb_L {A} i f `{!@LeftAbsorb A (=) i f} x : f i x = i.
Proof. auto. Qed.
Lemma right_absorb_L {A} i f `{!@RightAbsorb A (=) i f} x : f x i = i.
Proof. auto. Qed.

(** ** Generic orders *)
(** The classes [PreOrder], [PartialOrder], and [TotalOrder] use an arbitrary
relation [R] instead of [⊆] to support multiple orders on the same type. *)
Definition strict {A} (R : relation A) : relation A := λ X Y, R X Y  ¬R Y X.
432
Instance: Params (@strict) 2 := {}.
433 434 435 436 437 438 439 440 441 442
Class PartialOrder {A} (R : relation A) : Prop := {
  partial_order_pre :> PreOrder R;
  partial_order_anti_symm :> AntiSymm (=) R
}.
Class TotalOrder {A} (R : relation A) : Prop := {
  total_order_partial :> PartialOrder R;
  total_order_trichotomy :> Trichotomy (strict R)
}.

(** * Logic *)
Robbert Krebbers's avatar
Robbert Krebbers committed
443 444
Instance prop_inhabited : Inhabited Prop := populate True.

445
Notation "(∧)" := and (only parsing) : stdpp_scope.
446 447
Notation "( A ∧.)" := (and A) (only parsing) : stdpp_scope.
Notation "(.∧ B )" := (λ A, A  B) (only parsing) : stdpp_scope.
448

449
Notation "(∨)" := or (only parsing) : stdpp_scope.
450 451
Notation "( A ∨.)" := (or A) (only parsing) : stdpp_scope.
Notation "(.∨ B )" := (λ A, A  B) (only parsing) : stdpp_scope.
452

453
Notation "(↔)" := iff (only parsing) : stdpp_scope.
454 455
Notation "( A ↔.)" := (iff A) (only parsing) : stdpp_scope.
Notation "(.↔ B )" := (λ A, A  B) (only parsing) : stdpp_scope.
456

Tej Chajed's avatar
Tej Chajed committed
457 458
Hint Extern 0 (_  _) => reflexivity : core.
Hint Extern 0 (_  _) => symmetry; assumption : core.
459 460 461 462 463 464 465 466 467 468 469

Lemma or_l P Q : ¬Q  P  Q  P.
Proof. tauto. Qed.
Lemma or_r P Q : ¬P  P  Q  Q.
Proof. tauto. Qed.
Lemma and_wlog_l (P Q : Prop) : (Q  P)  Q  (P  Q).
Proof. tauto. Qed.
Lemma and_wlog_r (P Q : Prop) : P  (P  Q)  (P  Q).
Proof. tauto. Qed.
Lemma impl_transitive (P Q R : Prop) : (P  Q)  (Q  R)  (P  R).
Proof. tauto. Qed.
470 471 472 473 474 475
Lemma forall_proper {A} (P Q : A  Prop) :
  ( x, P x  Q x)  ( x, P x)  ( x, Q x).
Proof. firstorder. Qed.
Lemma exist_proper {A} (P Q : A  Prop) :
  ( x, P x  Q x)  ( x, P x)  ( x, Q x).
Proof. firstorder. Qed.
476

477
Instance: Comm () (=@{A}).
478
Proof. red; intuition. Qed.
479
Instance: Comm () (λ x y, y =@{A} x).
480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518
Proof. red; intuition. Qed.
Instance: Comm () ().
Proof. red; intuition. Qed.
Instance: Comm () ().
Proof. red; intuition. Qed.
Instance: Assoc () ().
Proof. red; intuition. Qed.
Instance: IdemP () ().
Proof. red; intuition. Qed.
Instance: Comm () ().
Proof. red; intuition. Qed.
Instance: Assoc () ().
Proof. red; intuition. Qed.
Instance: IdemP () ().
Proof. red; intuition. Qed.
Instance: LeftId () True ().
Proof. red; intuition. Qed.
Instance: RightId () True ().
Proof. red; intuition. Qed.
Instance: LeftAbsorb () False ().
Proof. red; intuition. Qed.
Instance: RightAbsorb () False ().
Proof. red; intuition. Qed.
Instance: LeftId () False ().
Proof. red; intuition. Qed.
Instance: RightId () False ().
Proof. red; intuition. Qed.
Instance: LeftAbsorb () True ().
Proof. red; intuition. Qed.
Instance: RightAbsorb () True ().
Proof. red; intuition. Qed.
Instance: LeftId () True impl.
Proof. unfold impl. red; intuition. Qed.
Instance: RightAbsorb () True impl.
Proof. unfold impl. red; intuition. Qed.


(** * Common data types *)
(** ** Functions *)
519
Notation "(→)" := (λ A B, A  B) (only parsing) : stdpp_scope.
520 521
Notation "( A →.)" := (λ B, A  B) (only parsing) : stdpp_scope.
Notation "(.→ B )" := (λ A, A  B) (only parsing) : stdpp_scope.
522

523
Notation "t $ r" := (t r)
524 525
  (at level 65, right associativity, only parsing) : stdpp_scope.
Notation "($)" := (λ f x, f x) (only parsing) : stdpp_scope.
526
Notation "(.$ x )" := (λ f, f x) (only parsing) : stdpp_scope.
527

528 529
Infix "∘" := compose : stdpp_scope.
Notation "(∘)" := compose (only parsing) : stdpp_scope.
530 531
Notation "( f ∘.)" := (compose f) (only parsing) : stdpp_scope.
Notation "(.∘ f )" := (λ g, compose g f) (only parsing) : stdpp_scope.
532

Robbert Krebbers's avatar
Robbert Krebbers committed
533 534 535
Instance impl_inhabited {A} `{Inhabited B} : Inhabited (A  B) :=
  populate (λ _, inhabitant).

536 537
(** Ensure that [simpl] unfolds [id], [compose], and [flip] when fully
applied. *)
538 539 540 541
Arguments id _ _ / : assert.
Arguments compose _ _ _ _ _ _ / : assert.
Arguments flip _ _ _ _ _ _ / : assert.
Arguments const _ _ _ _ / : assert.
542
Typeclasses Transparent id compose flip const.
543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589

Definition fun_map {A A' B B'} (f: A'  A) (g: B  B') (h : A  B) : A'  B' :=
  g  h  f.

Instance const_proper `{R1 : relation A, R2 : relation B} (x : B) :
  Reflexive R2  Proper (R1 ==> R2) (λ _, x).
Proof. intros ? y1 y2; reflexivity. Qed.

Instance id_inj {A} : Inj (=) (=) (@id A).
Proof. intros ??; auto. Qed.
Instance compose_inj {A B C} R1 R2 R3 (f : A  B) (g : B  C) :
  Inj R1 R2 f  Inj R2 R3 g  Inj R1 R3 (g  f).
Proof. red; intuition. Qed.

Instance id_surj {A} : Surj (=) (@id A).
Proof. intros y; exists y; reflexivity. Qed.
Instance compose_surj {A B C} R (f : A  B) (g : B  C) :
  Surj (=) f  Surj R g  Surj R (g  f).
Proof.
  intros ?? x. unfold compose. destruct (surj g x) as [y ?].
  destruct (surj f y) as [z ?]. exists z. congruence.
Qed.

Instance id_comm {A B} (x : B) : Comm (=) (λ _ _ : A, x).
Proof. intros ?; reflexivity. Qed.
Instance id_assoc {A} (x : A) : Assoc (=) (λ _ _ : A, x).
Proof. intros ???; reflexivity. Qed.
Instance const1_assoc {A} : Assoc (=) (λ x _ : A, x).
Proof. intros ???; reflexivity. Qed.
Instance const2_assoc {A} : Assoc (=) (λ _ x : A, x).
Proof. intros ???; reflexivity. Qed.
Instance const1_idemp {A} : IdemP (=) (λ x _ : A, x).
Proof. intros ?; reflexivity. Qed.
Instance const2_idemp {A} : IdemP (=) (λ _ x : A, x).
Proof. intros ?; reflexivity. Qed.

(** ** Lists *)
Instance list_inhabited {A} : Inhabited (list A) := populate [].

Definition zip_with {A B C} (f : A  B  C) : list A  list B  list C :=
  fix go l1 l2 :=
  match l1, l2 with x1 :: l1, x2 :: l2 => f x1 x2 :: go l1 l2 | _ , _ => [] end.
Notation zip := (zip_with pair).

(** ** Booleans *)
(** The following coercion allows us to use Booleans as propositions. *)
Coercion Is_true : bool >-> Sortclass.
Tej Chajed's avatar
Tej Chajed committed
590 591 592
Hint Unfold Is_true : core.
Hint Immediate Is_true_eq_left : core.
Hint Resolve orb_prop_intro andb_prop_intro : core.
593 594 595 596 597 598
Notation "(&&)" := andb (only parsing).
Notation "(||)" := orb (only parsing).
Infix "&&*" := (zip_with (&&)) (at level 40).
Infix "||*" := (zip_with (||)) (at level 50).

Instance bool_inhabated : Inhabited bool := populate true.
599

600 601 602 603 604
Definition bool_le (β1 β2 : bool) : Prop := negb β1 || β2.
Infix "=.>" := bool_le (at level 70).
Infix "=.>*" := (Forall2 bool_le) (at level 70).
Instance: PartialOrder bool_le.
Proof. repeat split; repeat intros [|]; compute; tauto. Qed.
605

606 607 608 609 610 611 612 613
Lemma andb_True b1 b2 : b1 && b2  b1  b2.
Proof. destruct b1, b2; simpl; tauto. Qed.
Lemma orb_True b1 b2 : b1 || b2  b1  b2.
Proof. destruct b1, b2; simpl; tauto. Qed.
Lemma negb_True b : negb b  ¬b.
Proof. destruct b; simpl; tauto. Qed.
Lemma Is_true_false (b : bool) : b = false  ¬b.
Proof. now intros -> ?. Qed.
614

615 616
(** ** Unit *)
Instance unit_equiv : Equiv unit := λ _ _, True.
617
Instance unit_equivalence : Equivalence (@{unit}).
618
Proof. repeat split. Qed.
619 620
Instance unit_leibniz : LeibnizEquiv unit.
Proof. intros [] []; reflexivity. Qed.
621
Instance unit_inhabited: Inhabited unit := populate ().
622

Ralf Jung's avatar
Ralf Jung committed
623 624 625 626 627 628 629
(** ** Empty *)
Instance Empty_set_equiv : Equiv Empty_set := λ _ _, True.
Instance Empty_set_equivalence : Equivalence (@{Empty_set}).
Proof. repeat split. Qed.
Instance Empty_set_leibniz : LeibnizEquiv Empty_set.
Proof. intros [] []; reflexivity. Qed.

630
(** ** Products *)
631 632
Notation "( x ,.)" := (pair x) (only parsing) : stdpp_scope.
Notation "(., y )" := (λ x, (x,y)) (only parsing) : stdpp_scope.
633

634 635
Notation "p .1" := (fst p) (at level 2, left associativity, format "p .1").
Notation "p .2" := (snd p) (at level 2, left associativity, format "p .2").
636

637 638 639
Instance: Params (@pair) 2 := {}.
Instance: Params (@fst) 2 := {}.
Instance: Params (@snd) 2 := {}.
640

641 642 643 644 645 646 647
Notation curry := prod_curry.
Notation uncurry := prod_uncurry.
Definition curry3 {A B C D} (f : A  B  C  D) (p : A * B * C) : D :=
  let '(a,b,c) := p in f a b c.
Definition curry4 {A B C D E} (f : A  B  C  D  E) (p : A * B * C * D) : E :=
  let '(a,b,c,d) := p in f a b c d.

Robbert Krebbers's avatar
Robbert Krebbers committed
648 649 650 651 652
Definition uncurry3 {A B C D} (f : A * B * C  D) (a : A) (b : B) (c : C) : D :=
  f (a, b, c).
Definition uncurry4 {A B C D E} (f : A * B * C * D  E)
  (a : A) (b : B) (c : C) (d : D) : E := f (a, b, c, d).

653 654
Definition prod_map {A A' B B'} (f: A  A') (g: B  B') (p : A * B) : A' * B' :=
  (f (p.1), g (p.2)).
655
Arguments prod_map {_ _ _ _} _ _ !_ / : assert.
656

657 658
Definition prod_zip {A A' A'' B B' B''} (f : A  A'  A'') (g : B  B'  B'')
    (p : A * B) (q : A' * B') : A'' * B'' := (f (p.1) (q.1), g (p.2) (q.2)).
659
Arguments prod_zip {_ _ _ _ _ _} _ _ !_ !_ / : assert.
660

661 662 663
Instance prod_inhabited {A B} (iA : Inhabited A)
    (iB : Inhabited B) : Inhabited (A * B) :=
  match iA, iB with populate x, populate y => populate (x,y) end.
664

665 666 667 668 669 670 671 672
Instance pair_inj : Inj2 (=) (=) (=) (@pair A B).
Proof. injection 1; auto. Qed.
Instance prod_map_inj {A A' B B'} (f : A  A') (g : B  B') :
  Inj (=) (=) f  Inj (=) (=) g  Inj (=) (=) (prod_map f g).
Proof.
  intros ?? [??] [??] ?; simpl in *; f_equal;
    [apply (inj f)|apply (inj g)]; congruence.
Qed.
673

674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689
Definition prod_relation {A B} (R1 : relation A) (R2 : relation B) :
  relation (A * B) := λ x y, R1 (x.1) (y.1)  R2 (x.2) (y.2).
Section prod_relation.
  Context `{R1 : relation A, R2 : relation B}.
  Global Instance prod_relation_refl :
    Reflexive R1  Reflexive R2  Reflexive (prod_relation R1 R2).
  Proof. firstorder eauto. Qed.
  Global Instance prod_relation_sym :
    Symmetric R1  Symmetric R2  Symmetric (prod_relation R1 R2).
  Proof. firstorder eauto. Qed.
  Global Instance prod_relation_trans :
    Transitive R1  Transitive R2  Transitive (prod_relation R1 R2).
  Proof. firstorder eauto. Qed.
  Global Instance prod_relation_equiv :
    Equivalence R1  Equivalence R2  Equivalence (prod_relation R1 R2).
  Proof. split; apply _. Qed.
690

691 692
  Global Instance pair_proper' : Proper (R1 ==> R2 ==> prod_relation R1 R2) pair.
  Proof. firstorder eauto. Qed.
693 694
  Global Instance pair_inj' : Inj2 R1 R2 (prod_relation R1 R2) pair.
  Proof. inversion_clear 1; eauto. Qed.
695 696 697 698 699
  Global Instance fst_proper' : Proper (prod_relation R1 R2 ==> R1) fst.
  Proof. firstorder eauto. Qed.
  Global Instance snd_proper' : Proper (prod_relation R1 R2 ==> R2) snd.
  Proof. firstorder eauto. Qed.
End prod_relation.
Robbert Krebbers's avatar
Robbert Krebbers committed
700

701 702
Instance prod_equiv `{Equiv A,Equiv B} : Equiv (A * B) := prod_relation () ().
Instance pair_proper `{Equiv A, Equiv B} :
703 704
  Proper (() ==> () ==> ()) (@pair A B) := _.
Instance pair_equiv_inj `{Equiv A, Equiv B} : Inj2 () () () (@pair A B) := _.
705 706 707
Instance fst_proper `{Equiv A, Equiv B} : Proper (() ==> ()) (@fst A B) := _.
Instance snd_proper `{Equiv A, Equiv B} : Proper (() ==> ()) (@snd A B) := _.
Typeclasses Opaque prod_equiv.
708

Robbert Krebbers's avatar
Robbert Krebbers committed
709 710
Instance prod_leibniz `{LeibnizEquiv A, LeibnizEquiv B} : LeibnizEquiv (A * B).
Proof. intros [??] [??] [??]; f_equal; apply leibniz_equiv; auto. Qed.
711

712
(** ** Sums *)
713 714
Definition sum_map {A A' B B'} (f: A  A') (g: B  B') (xy : A + B) : A' + B' :=
  match xy with inl x => inl (f x) | inr y => inr (g y) end.
715
Arguments sum_map {_ _ _ _} _ _ !_ / : assert.
716

717
Instance sum_inhabited_l {A B} (iA : Inhabited A) : Inhabited (A + B) :=
718
  match iA with populate x => populate (inl x) end.
719
Instance sum_inhabited_r {A B} (iB : Inhabited A) : Inhabited (A + B) :=
720
  match iB with populate y => populate (inl y) end.
721

722 723 724 725
Instance inl_inj : Inj (=) (=) (@inl A B).
Proof. injection 1; auto. Qed.
Instance inr_inj : Inj (=) (=) (@inr A B).
Proof. injection 1; auto. Qed.
726

727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753
Instance sum_map_inj {A A' B B'} (f : A  A') (g : B  B') :
  Inj (=) (=) f  Inj (=) (=) g  Inj (=) (=) (sum_map f g).
Proof. intros ?? [?|?] [?|?] [=]; f_equal; apply (inj _); auto. Qed.

Inductive sum_relation {A B}
     (R1 : relation A) (R2 : relation B) : relation (A + B) :=
  | inl_related x1 x2 : R1 x1 x2  sum_relation R1 R2 (inl x1) (inl x2)
  | inr_related y1 y2 : R2 y1 y2  sum_relation R1 R2 (inr y1) (inr y2).

Section sum_relation.
  Context `{R1 : relation A, R2 : relation B}.
  Global Instance sum_relation_refl :
    Reflexive R1  Reflexive R2  Reflexive (sum_relation R1 R2).
  Proof. intros ?? [?|?]; constructor; reflexivity. Qed.
  Global Instance sum_relation_sym :
    Symmetric R1  Symmetric R2  Symmetric (sum_relation R1 R2).
  Proof. destruct 3; constructor; eauto. Qed.
  Global Instance sum_relation_trans :
    Transitive R1  Transitive R2  Transitive (sum_relation R1 R2).
  Proof. destruct 3; inversion_clear 1; constructor; eauto. Qed.
  Global Instance sum_relation_equiv :
    Equivalence R1  Equivalence R2  Equivalence (sum_relation R1 R2).
  Proof. split; apply _. Qed.
  Global Instance inl_proper' : Proper (R1 ==> sum_relation R1 R2) inl.
  Proof. constructor; auto. Qed.
  Global Instance inr_proper' : Proper (R2 ==> sum_relation R1 R2) inr.
  Proof. constructor; auto. Qed.
754 755 756 757
  Global Instance inl_inj' : Inj R1 (sum_relation R1 R2) inl.
  Proof. inversion_clear 1; auto. Qed.
  Global Instance inr_inj' : Inj R2 (sum_relation R1 R2) inr.
  Proof. inversion_clear 1; auto. Qed.
758 759 760 761 762
End sum_relation.

Instance sum_equiv `{Equiv A, Equiv B} : Equiv (A + B) := sum_relation () ().
Instance inl_proper `{Equiv A, Equiv B} : Proper (() ==> ()) (@inl A B) := _.
Instance inr_proper `{Equiv A, Equiv B} : Proper (() ==> ()) (@inr A B) := _.
763 764
Instance inl_equiv_inj `{Equiv A, Equiv B} : Inj () () (@inl A B) := _.
Instance inr_equiv_inj `{Equiv A, Equiv B} : Inj () () (@inr A B) := _.
765 766
Typeclasses Opaque sum_equiv.

767 768
(** ** Option *)
Instance option_inhabited {A} : Inhabited (option A) := populate None.
Robbert Krebbers's avatar
Robbert Krebbers committed
769

770
(** ** Sigma types *)
771 772 773
Arguments existT {_ _} _ _ : assert.
Arguments projT1 {_ _} _ : assert.
Arguments projT2 {_ _} _ : assert.
774

775 776 777
Arguments exist {_} _ _ _ : assert.
Arguments proj1_sig {_ _} _ : assert.
Arguments proj2_sig {_ _} _ : assert.
778 779
Notation "x ↾ p" := (exist _ x p) (at level 20) : stdpp_scope.
Notation "` x" := (proj1_sig x) (at level 10, format "` x") : stdpp_scope.
780

781 782 783
Lemma proj1_sig_inj {A} (P : A  Prop) x (Px : P x) y (Py : P y) :
  xPx = yPy  x = y.
Proof. injection 1; trivial. Qed.
784

785 786 787 788 789 790 791 792 793 794
Section sig_map.
  Context `{P : A  Prop} `{Q : B  Prop} (f : A  B) (Hf :  x, P x  Q (f x)).
  Definition sig_map (x : sig P) : sig Q := f (`x)  Hf _ (proj2_sig x).
  Global Instance sig_map_inj:
    ( x, ProofIrrel (P x))  Inj (=) (=) f  Inj (=) (=) sig_map.
  Proof.
    intros ?? [x Hx] [y Hy]. injection 1. intros Hxy.
    apply (inj f) in Hxy; subst. rewrite (proof_irrel _ Hy). auto.
  Qed.
End sig_map.
795
Arguments sig_map _ _ _ _ _ _ !_ / : assert.
796

797 798 799 800
Definition proj1_ex {P : Prop} {Q : P  Prop} (p :  x, Q x) : P :=
  let '(ex_intro _ x _) := p in x.
Definition proj2_ex {P : Prop} {Q : P  Prop} (p :  x, Q x) : Q (proj1_ex p) :=
  let '(ex_intro _ x H) := p in H.
Robbert Krebbers's avatar
Robbert Krebbers committed
801

802
(** * Operations on sets *)
803
(** We define operational type classes for the traditional operations and
804
relations on sets: the empty set [∅], the union [(∪)],
805
intersection [(∩)], and difference [(∖)], the singleton [{[_]}], the subset
806
[(⊆)] and element of [(∈)] relation, and disjointess [(##)]. *)
Robbert Krebbers's avatar
Robbert Krebbers committed
807
Class Empty A := empty: A.
808
Hint Mode Empty ! : typeclass_instances.
809
Notation "∅" := empty (format "∅") : stdpp_scope.
Robbert Krebbers's avatar
Robbert Krebbers committed
810

811 812
Instance empty_inhabited `(Empty A) : Inhabited A := populate .

Robbert Krebbers's avatar
Robbert Krebbers committed
813
Class Union A := union: A  A  A.
814
Hint Mode Union ! : typeclass_instances.
815
Instance: Params (@union) 2 := {}.
816 817
Infix "∪" := union (at level 50, left associativity) : stdpp_scope.
Notation "(∪)" := union (only parsing) : stdpp_scope.
818 819
Notation "( x ∪.)" := (union x) (only parsing) : stdpp_scope.
Notation "(.∪ x )" := (λ y, union y x) (only parsing) : stdpp_scope.
820 821
Infix "∪*" := (zip_with ()) (at level 50, left associativity) : stdpp_scope.
Notation "(∪*)" := (zip_with ()) (only parsing) : stdpp_scope.
822
Infix "∪**" := (zip_with (zip_with ()))
823
  (at level 50, left associativity) : stdpp_scope.
824
Infix "∪*∪**" := (zip_with (prod_zip () (*)))
825
  (at level 50, left associativity) : stdpp_scope.
Robbert Krebbers's avatar
Robbert Krebbers committed
826

827
Definition union_list `{Empty A} `{Union A} : list A  A := fold_right () .
828
Arguments union_list _ _ _ !_ / : assert.
829
Notation "⋃ l" := (union_list l) (at level 20, format "⋃  l") : stdpp_scope.
830

831 832 833 834 835
Class DisjUnion A := disj_union: A  A  A.
Hint Mode DisjUnion ! : typeclass_instances.
Instance: Params (@disj_union) 2 := {}.
Infix "⊎" := disj_union (at level 50, left associativity) : stdpp_scope.
Notation "(⊎)" := disj_union (only parsing) : stdpp_scope.
836 837
Notation "( x ⊎.)" := (disj_union x) (only parsing) : stdpp_scope.
Notation "(.⊎ x )" := (λ y, disj_union y x) (only parsing) : stdpp_scope.
838

Robbert Krebbers's avatar
Robbert Krebbers committed
839
Class Intersection A := intersection: A  A  A.
840
Hint Mode Intersection ! : typeclass_instances.
841
Instance: Params (@intersection) 2 := {}.
842 843
Infix "∩" := intersection (at level 40) : stdpp_scope.
Notation "(∩)" := intersection (only parsing) : stdpp_scope.
844 845
Notation "( x ∩.)" := (intersection x) (only parsing) : stdpp_scope.
Notation "(.∩ x )" := (λ y, intersection y x) (only parsing) : stdpp_scope.
Robbert Krebbers's avatar
Robbert Krebbers committed
846 847

Class Difference A := difference: A  A  A.
848
Hint Mode Difference ! : typeclass_instances.
849
Instance: Params (@difference) 2 := {}.
850 851
Infix "∖" := difference (at level 40, left associativity) : stdpp_scope.
Notation "(∖)" := difference (only parsing) : stdpp_scope.
852 853
Notation "( x ∖.)" := (difference x) (only parsing) : stdpp_scope.
Notation "(.∖ x )" := (λ y, difference y x) (only parsing) : stdpp_scope.
854 855
Infix "∖*" := (zip_with ()) (at level 40, left associativity) : stdpp_scope.
Notation "(∖*)" := (zip_with ()) (only parsing) : stdpp_scope.
856
Infix "∖**" := (zip_with (zip_with ()))