base.v 21.7 KB
Newer Older
1 2 3 4 5 6
(* Copyright (c) 2012, Robbert Krebbers. *)
(* This file is distributed under the terms of the BSD license. *)
(** This file collects type class interfaces, notations, and general theorems
that are used throughout the whole development. Most importantly it contains
abstract interfaces for ordered structures, collections, and various other data
structures. *)
Robbert Krebbers's avatar
Robbert Krebbers committed
7 8 9 10
Global Generalizable All Variables.
Global Set Automatic Coercions Import.
Require Export Morphisms RelationClasses List Bool Utf8 Program Setoid NArith.

11 12 13 14 15
(** * General *)
(** The following coercion allows us to use Booleans as propositions. *)
Coercion Is_true : bool >-> Sortclass.

(** Ensure that [simpl] unfolds [id] and [compose] when fully applied. *)
16 17 18
Arguments id _ _/.
Arguments compose _ _ _ _ _ _ /.

19 20 21 22
(** Change [True] and [False] into notations in order to enable overloading.
We will use this in the file [assertions] to give [True] and [False] a
different interpretation in [assert_scope] used for assertions of our axiomatic
semantics. *)
23 24
Notation "'True'" := True : type_scope.
Notation "'False'" := False : type_scope.
Robbert Krebbers's avatar
Robbert Krebbers committed
25

26 27
(** Throughout this development we use [C_scope] for all general purpose
notations that do not belong to a more specific scope. *)
Robbert Krebbers's avatar
Robbert Krebbers committed
28 29 30
Delimit Scope C_scope with C.
Global Open Scope C_scope.

31
(** Introduce some Haskell style like notations. *)
Robbert Krebbers's avatar
Robbert Krebbers committed
32 33 34 35 36 37 38 39 40
Notation "(=)" := eq (only parsing) : C_scope.
Notation "( x =)" := (eq x) (only parsing) : C_scope.
Notation "(= x )" := (λ y, eq y x) (only parsing) : C_scope.
Notation "(≠)" := (λ x y, x  y) (only parsing) : C_scope.
Notation "( x ≠)" := (λ y, x  y) (only parsing) : C_scope.
Notation "(≠ x )" := (λ y, y  x) (only parsing) : C_scope.

Hint Extern 0 (?x = ?x) => reflexivity.

41 42 43
Notation "(→)" := (λ x y, x  y) (only parsing) : C_scope.
Notation "( T →)" := (λ y, T  y) (only parsing) : C_scope.
Notation "(→ T )" := (λ y, y  T) (only parsing) : C_scope.
44

45
Notation "t $ r" := (t r)
46
  (at level 65, right associativity, only parsing) : C_scope.
47 48 49
Notation "($)" := (λ f x, f x) (only parsing) : C_scope.
Notation "($ x )" := (λ f, f x) (only parsing) : C_scope.

Robbert Krebbers's avatar
Robbert Krebbers committed
50 51 52 53
Infix "∘" := compose : C_scope.
Notation "(∘)" := compose (only parsing) : C_scope.
Notation "( f ∘)" := (compose f) (only parsing) : C_scope.
Notation "(∘ f )" := (λ g, compose g f) (only parsing) : C_scope.
54 55 56

(** Set convenient implicit arguments for [existT] and introduce notations. *)
Arguments existT {_ _} _ _.
Robbert Krebbers's avatar
Robbert Krebbers committed
57 58 59
Notation "x ↾ p" := (exist _ x p) (at level 20) : C_scope.
Notation "` x" := (proj1_sig x) : C_scope.

60 61 62 63
(** * Type classes *)
(** ** Provable propositions *)
(** This type class collects provable propositions. It is useful to constraint
type classes by arbitrary propositions. *)
Robbert Krebbers's avatar
Robbert Krebbers committed
64 65
Class PropHolds (P : Prop) := prop_holds: P.

66 67
Hint Extern 0 (PropHolds _) => assumption : typeclass_instances.
Instance: Proper (iff ==> iff) PropHolds.
68
Proof. repeat intro; trivial. Qed.
69 70 71

Ltac solve_propholds :=
  match goal with
72 73
  | |- PropHolds (?P) => apply _
  | |- ?P => change (PropHolds P); apply _
74 75 76 77 78 79 80
  end.

(** ** Decidable propositions *)
(** This type class by (Spitters/van der Weegen, 2011) collects decidable
propositions. For example to declare a parameter expressing decidable equality
on a type [A] we write [`{∀ x y : A, Decision (x = y)}] and use it by writing
[decide (x = y)]. *)
Robbert Krebbers's avatar
Robbert Krebbers committed
81 82 83
Class Decision (P : Prop) := decide : {P} + {¬P}.
Arguments decide _ {_}.

84 85 86
(** ** Setoid equality *)
(** We define an operational type class for setoid equality. This is based on
(Spitters/van der Weegen, 2011). *)
Robbert Krebbers's avatar
Robbert Krebbers committed
87 88 89 90 91 92 93 94 95 96
Class Equiv A := equiv: relation A.
Infix "≡" := equiv (at level 70, no associativity) : C_scope.
Notation "(≡)" := equiv (only parsing) : C_scope.
Notation "( x ≡)" := (equiv x) (only parsing) : C_scope.
Notation "(≡ x )" := (λ y, y  x) (only parsing) : C_scope.
Notation "(≢)" := (λ x y, ¬x  y) (only parsing) : C_scope.
Notation "x ≢ y":= (¬x  y) (at level 70, no associativity) : C_scope.
Notation "( x ≢)" := (λ y, x  y) (only parsing) : C_scope.
Notation "(≢ x )" := (λ y, y  x) (only parsing) : C_scope.

97 98 99 100 101 102 103 104
(** A [Params f n] instance forces the setoid rewriting mechanism not to
rewrite in the first [n] arguments of the function [f]. We will declare such
instances for all operational type classes in this development. *)
Instance: Params (@equiv) 2.

(** The following instance forces [setoid_replace] to use setoid equality
(for types that have an [Equiv] instance) rather than the standard Leibniz
equality. *)
Robbert Krebbers's avatar
Robbert Krebbers committed
105
Instance equiv_default_relation `{Equiv A} : DefaultRelation () | 3.
106 107
Hint Extern 0 (_  _) => reflexivity.
Hint Extern 0 (_  _) => symmetry; assumption.
Robbert Krebbers's avatar
Robbert Krebbers committed
108

109
(** ** Operations on collections *)
110
(** We define operational type classes for the traditional operations and
111
relations on collections: the empty collection [∅], the union [(∪)],
112 113
intersection [(∩)], and difference [(∖)], the singleton [{[_]}], the subset
[(⊆)] and element of [(∈)] relation, and disjointess [(⊥)]. *)
Robbert Krebbers's avatar
Robbert Krebbers committed
114 115 116 117
Class Empty A := empty: A.
Notation "∅" := empty : C_scope.

Class Union A := union: A  A  A.
118
Instance: Params (@union) 2.
Robbert Krebbers's avatar
Robbert Krebbers committed
119 120 121 122 123
Infix "∪" := union (at level 50, left associativity) : C_scope.
Notation "(∪)" := union (only parsing) : C_scope.
Notation "( x ∪)" := (union x) (only parsing) : C_scope.
Notation "(∪ x )" := (λ y, union y x) (only parsing) : C_scope.

124 125 126 127 128
Definition union_list `{Empty A}
  `{Union A} : list A  A := fold_right () .
Arguments union_list _ _ _ !_ /.
Notation "⋃ l" := (union_list l) (at level 20, format "⋃  l") : C_scope.

Robbert Krebbers's avatar
Robbert Krebbers committed
129
Class Intersection A := intersection: A  A  A.
130
Instance: Params (@intersection) 2.
Robbert Krebbers's avatar
Robbert Krebbers committed
131 132 133 134 135 136
Infix "∩" := intersection (at level 40) : C_scope.
Notation "(∩)" := intersection (only parsing) : C_scope.
Notation "( x ∩)" := (intersection x) (only parsing) : C_scope.
Notation "(∩ x )" := (λ y, intersection y x) (only parsing) : C_scope.

Class Difference A := difference: A  A  A.
137
Instance: Params (@difference) 2.
Robbert Krebbers's avatar
Robbert Krebbers committed
138 139 140 141 142
Infix "∖" := difference (at level 40) : C_scope.
Notation "(∖)" := difference (only parsing) : C_scope.
Notation "( x ∖)" := (difference x) (only parsing) : C_scope.
Notation "(∖ x )" := (λ y, difference y x) (only parsing) : C_scope.

143 144 145 146 147 148
Class Singleton A B := singleton: A  B.
Instance: Params (@singleton) 3.
Notation "{[ x ]}" := (singleton x) : C_scope.
Notation "{[ x ; y ; .. ; z ]}" :=
  (union .. (union (singleton x) (singleton y)) .. (singleton z)) : C_scope.

Robbert Krebbers's avatar
Robbert Krebbers committed
149
Class SubsetEq A := subseteq: A  A  Prop.
150
Instance: Params (@subseteq) 2.
Robbert Krebbers's avatar
Robbert Krebbers committed
151 152 153 154 155 156 157 158 159
Infix "⊆" := subseteq (at level 70) : C_scope.
Notation "(⊆)" := subseteq (only parsing) : C_scope.
Notation "( X ⊆ )" := (subseteq X) (only parsing) : C_scope.
Notation "( ⊆ X )" := (λ Y, subseteq Y X) (only parsing) : C_scope.
Notation "X ⊈ Y" := (¬X  Y) (at level 70) : C_scope.
Notation "(⊈)" := (λ X Y, X  Y) (only parsing) : C_scope.
Notation "( X ⊈ )" := (λ Y, X  Y) (only parsing) : C_scope.
Notation "( ⊈ X )" := (λ Y, Y  X) (only parsing) : C_scope.

160
Hint Extern 0 (_  _) => reflexivity.
Robbert Krebbers's avatar
Robbert Krebbers committed
161 162

Class ElemOf A B := elem_of: A  B  Prop.
163
Instance: Params (@elem_of) 3.
Robbert Krebbers's avatar
Robbert Krebbers committed
164 165 166 167 168 169 170 171 172
Infix "∈" := elem_of (at level 70) : C_scope.
Notation "(∈)" := elem_of (only parsing) : C_scope.
Notation "( x ∈)" := (elem_of x) (only parsing) : C_scope.
Notation "(∈ X )" := (λ x, elem_of x X) (only parsing) : C_scope.
Notation "x ∉ X" := (¬x  X) (at level 80) : C_scope.
Notation "(∉)" := (λ x X, x  X) (only parsing) : C_scope.
Notation "( x ∉)" := (λ X, x  X) (only parsing) : C_scope.
Notation "(∉ X )" := (λ x, x  X) (only parsing) : C_scope.

Robbert Krebbers's avatar
Robbert Krebbers committed
173 174 175 176 177 178 179
Class Disjoint A := disjoint : A  A  Prop.
Instance: Params (@disjoint) 2.
Infix "⊥" := disjoint (at level 70) : C_scope.
Notation "(⊥)" := disjoint (only parsing) : C_scope.
Notation "( X ⊥)" := (disjoint X) (only parsing) : C_scope.
Notation "(⊥ X )" := (λ Y, disjoint Y X) (only parsing) : C_scope.

180 181 182
Instance generic_disjoint `{ElemOf A B} : Disjoint B | 100 :=
  λ X Y,  x, x  X  x  Y.

183
(** ** Operations on maps *)
184 185
(** In this section we define operational type classes for the operations
on maps. In the file [fin_maps] we will axiomatize finite maps.
186
The function lookup [m !! k] should yield the element at key [k] in [m]. *)
187 188
Class Lookup (K : Type) (M : Type  Type) :=
  lookup:  {A}, K  M A  option A.
189 190 191 192 193 194
Instance: Params (@lookup) 4.

Notation "m !! i" := (lookup i m) (at level 20) : C_scope.
Notation "(!!)" := lookup (only parsing) : C_scope.
Notation "( m !!)" := (λ i, lookup i m) (only parsing) : C_scope.
Notation "(!! i )" := (lookup i) (only parsing) : C_scope.
195
Arguments lookup _ _ _ _ !_ !_ / : simpl nomatch.
196 197 198

(** The function insert [<[k:=a]>m] should update the element at key [k] with
value [a] in [m]. *)
199
Class Insert (K : Type) (M : Type  Type) :=
200 201 202 203
  insert:  {A}, K  A  M A  M A.
Instance: Params (@insert) 4.
Notation "<[ k := a ]>" := (insert k a)
  (at level 5, right associativity, format "<[ k := a ]>") : C_scope.
204
Arguments insert _ _ _ _ !_ _ !_ / : simpl nomatch.
205

206 207 208 209 210 211
(** The function delete [delete k m] should delete the value at key [k] in
[m]. If the key [k] is not a member of [m], the original map should be
returned. *)
Class Delete (K : Type) (M : Type  Type) :=
  delete:  {A}, K  M A  M A.
Instance: Params (@delete) 4.
212
Arguments delete _ _ _ _ !_ !_ / : simpl nomatch.
213 214

(** The function [alter f k m] should update the value at key [k] using the
215 216
function [f], which is called with the original value. *)
Class Alter (K : Type) (M : Type  Type) :=
217 218
  alter:  {A}, (A  A)  K  M A  M A.
Instance: Params (@alter) 4.
219
Arguments alter _ _ _ _ _ !_ !_ / : simpl nomatch.
220 221

(** The function [alter f k m] should update the value at key [k] using the
222 223 224 225
function [f], which is called with the original value at key [k] or [None]
if [k] is not a member of [m]. The value at [k] should be deleted if [f] 
yields [None]. *)
Class PartialAlter (K : Type) (M : Type  Type) :=
226 227
  partial_alter:  {A}, (option A  option A)  K  M A  M A.
Instance: Params (@partial_alter) 4.
228
Arguments partial_alter _ _ _ _ _ !_ !_ / : simpl nomatch.
229 230 231

(** The function [dom C m] should yield the domain of [m]. That is a finite
collection of type [C] that contains the keys that are a member of [m]. *)
232 233 234
Class Dom (K : Type) (M : Type  Type) :=
  dom:  {A} C `{Empty C} `{Union C} `{Singleton K C}, M A  C.
Instance: Params (@dom) 8.
235
Arguments dom _ _ _ _ _ _ _ _ !_ / : simpl nomatch.
236 237 238 239

(** The function [merge f m1 m2] should merge the maps [m1] and [m2] by
constructing a new map whose value at key [k] is [f (m1 !! k) (m2 !! k)]
provided that [k] is a member of either [m1] or [m2].*)
240
Class Merge (M : Type  Type) :=
241 242
  merge:  {A}, (option A  option A  option A)  M A  M A  M A.
Instance: Params (@merge) 3.
243
Arguments merge _ _ _ _ !_ !_ / : simpl nomatch.
244 245 246 247 248

(** We lift the insert and delete operation to lists of elements. *)
Definition insert_list `{Insert K M} {A} (l : list (K * A)) (m : M A) : M A :=
  fold_right (λ p, <[ fst p := snd p ]>) m l.
Instance: Params (@insert_list) 4.
249
Definition delete_list `{Delete K M} {A} (l : list K) (m : M A) : M A :=
250
  fold_right delete m l.
251
Instance: Params (@delete_list) 4.
252 253 254 255

(** The function [union_with f m1 m2] should yield the union of [m1] and [m2]
using the function [f] to combine values of members that are in both [m1] and
[m2]. *)
256
Class UnionWith (M : Type  Type) :=
257
  union_with:  {A}, (A  A  A)  M A  M A  M A.
258 259 260
Instance: Params (@union_with) 3.

(** Similarly for the intersection and difference. *)
261
Class IntersectionWith (M : Type  Type) :=
262
  intersection_with:  {A}, (A  A  A)  M A  M A  M A.
263
Instance: Params (@intersection_with) 3.
264
Class DifferenceWith (M : Type  Type) :=
265
  difference_with:  {A}, (A  A  option A)  M A  M A  M A.
266
Instance: Params (@difference_with) 3.
Robbert Krebbers's avatar
Robbert Krebbers committed
267

268 269 270 271
(** ** Common properties *)
(** These operational type classes allow us to refer to common mathematical
properties in a generic way. For example, for injectivity of [(k ++)] it
allows us to write [injective (k ++)] instead of [app_inv_head k]. *)
272 273 274 275 276 277 278 279 280 281 282 283
Class Injective {A B} R S (f : A  B) :=
  injective:  x y : A, S (f x) (f y)  R x y.
Class Idempotent {A} R (f : A  A  A) :=
  idempotent:  x, R (f x x) x.
Class Commutative {A B} R (f : B  B  A) :=
  commutative:  x y, R (f x y) (f y x).
Class LeftId {A} R (i : A) (f : A  A  A) :=
  left_id:  x, R (f i x) x.
Class RightId {A} R (i : A) (f : A  A  A) :=
  right_id:  x, R (f x i) x.
Class Associative {A} R (f : A  A  A) :=
  associative:  x y z, R (f x (f y z)) (f (f x y) z).
284 285 286 287
Class LeftAbsorb {A} R (i : A) (f : A  A  A) :=
  left_absorb:  x, R (f i x) i.
Class RightAbsorb {A} R (i : A) (f : A  A  A) :=
  right_absorb:  x, R (f x i) i.
Robbert Krebbers's avatar
Robbert Krebbers committed
288 289 290 291 292 293 294

Arguments injective {_ _ _ _} _ {_} _ _ _.
Arguments idempotent {_ _} _ {_} _.
Arguments commutative {_ _ _} _ {_} _ _.
Arguments left_id {_ _} _ _ {_} _.
Arguments right_id {_ _} _ _ {_} _.
Arguments associative {_ _} _ {_} _ _ _.
295 296
Arguments left_absorb {_ _} _ _ {_} _.
Arguments right_absorb {_ _} _ _ {_} _.
Robbert Krebbers's avatar
Robbert Krebbers committed
297

298 299 300
(** The following lemmas are more specific versions of the projections of the
above type classes. These lemmas allow us to enforce Coq not to use the setoid
rewriting mechanism. *)
301 302
Lemma idempotent_eq {A} (f : A  A  A) `{!Idempotent (=) f} x :
  f x x = x.
303
Proof. auto. Qed.
304 305
Lemma commutative_eq {A B} (f : B  B  A) `{!Commutative (=) f} x y :
  f x y = f y x.
306
Proof. auto. Qed.
307 308
Lemma left_id_eq {A} (i : A) (f : A  A  A) `{!LeftId (=) i f} x :
  f i x = x.
309
Proof. auto. Qed.
310 311
Lemma right_id_eq {A} (i : A) (f : A  A  A) `{!RightId (=) i f} x :
  f x i = x.
312
Proof. auto. Qed.
313 314
Lemma associative_eq {A} (f : A  A  A) `{!Associative (=) f} x y z :
  f x (f y z) = f (f x y) z.
315
Proof. auto. Qed.
316 317 318 319 320 321
Lemma left_absorb_eq {A} (i : A) (f : A  A  A) `{!LeftAbsorb (=) i f} x :
  f i x = i.
Proof. auto. Qed.
Lemma right_absorb_eq {A} (i : A) (f : A  A  A) `{!RightAbsorb (=) i f} x :
  f x i = i.
Proof. auto. Qed.
322

323
(** ** Monadic operations *)
324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339
(** We define operational type classes for the monadic operations bind, join 
and fmap. These type classes are defined in a non-standard way by taking the
function as a parameter of the class. For example, we define
<<
  Class FMap := fmap: ∀ {A B}, (A → B) → M A → M B.
>>
instead of
<<
  Class FMap {A B} (f : A → B) := fmap: M A → M B.
>>
This approach allows us to define [fmap] on lists such that [simpl] unfolds it
in the appropriate way, and so that it can be used for mutual recursion
(the mapped function [f] is not part of the fixpoint) as well.
We use these type classes merely for convenient overloading of notations and do
not formalize any theory on monads (we do not even define a class with the
monad laws). *)
Robbert Krebbers's avatar
Robbert Krebbers committed
340 341 342
Section monad_ops.
  Context (M : Type  Type).

343 344 345
  Class MBind {A B} (f : A  M B) := mbind: M A  M B.
  Class MJoin {A} := mjoin: M (M A)  M A.
  Class FMap {A B} (f : A  B) := fmap: M A  M B.
Robbert Krebbers's avatar
Robbert Krebbers committed
346 347
End monad_ops.

348
Instance: Params (@mbind) 4.
349
Arguments mbind {_ _ _} _ {_} !_ / : simpl nomatch.
350
Instance: Params (@mjoin) 3.
351
Arguments mjoin {_ _ _} !_ / : simpl nomatch.
352
Instance: Params (@fmap) 4.
353
Arguments fmap {_ _ _} _ {_} !_ / : simpl nomatch.
Robbert Krebbers's avatar
Robbert Krebbers committed
354 355

Notation "m ≫= f" := (mbind f m) (at level 60, right associativity) : C_scope.
356 357
Notation "x ← y ; z" := (y = (λ x : _, z))
  (at level 65, next at level 35, right associativity) : C_scope.
Robbert Krebbers's avatar
Robbert Krebbers committed
358 359
Infix "<$>" := fmap (at level 65, right associativity, only parsing) : C_scope.

360 361
(** ** Axiomatization of ordered structures *)
(** A pre-order equiped with a smallest element. *)
Robbert Krebbers's avatar
Robbert Krebbers committed
362 363 364 365 366
Class BoundedPreOrder A `{Empty A} `{SubsetEq A} := {
  bounded_preorder :>> PreOrder ();
  subseteq_empty x :   x
}.

367 368 369 370
(** We do not include equality in the following interfaces so as to avoid the
need for proofs that the  relations and operations respect setoid equality.
Instead, we will define setoid equality in a generic way as
[λ X Y, X ⊆ Y ∧ Y ⊆ X]. *)
Robbert Krebbers's avatar
Robbert Krebbers committed
371
Class BoundedJoinSemiLattice A `{Empty A} `{SubsetEq A} `{Union A} := {
372
  bjsl_preorder :>> BoundedPreOrder A;
Robbert Krebbers's avatar
Robbert Krebbers committed
373 374 375 376 377 378 379 380 381 382
  subseteq_union_l x y : x  x  y;
  subseteq_union_r x y : y  x  y;
  union_least x y z : x  z  y  z  x  y  z
}.
Class MeetSemiLattice A `{Empty A} `{SubsetEq A} `{Intersection A} := {
  msl_preorder :>> BoundedPreOrder A;
  subseteq_intersection_l x y : x  y  x;
  subseteq_intersection_r x y : x  y  y;
  intersection_greatest x y z : z  x  z  y  z  x  y
}.
383 384 385 386 387
Class LowerBoundedLattice A `{Empty A} `{SubsetEq A}
    `{Union A} `{Intersection A} := {
  lbl_bjsl :>> BoundedJoinSemiLattice A;
  lbl_msl :>> MeetSemiLattice A
}.
388 389 390 391
(** ** Axiomatization of collections *)
(** The class [Collection A C] axiomatizes a collection of type [C] with
elements of type [A]. Since [C] is not dependent on [A], we use the monomorphic
[Map] type class instead of the polymorphic [FMap]. *)
Robbert Krebbers's avatar
Robbert Krebbers committed
392
Class Map A C := map: (A  A)  (C  C).
393 394
Instance: Params (@map) 3.
Class Collection A C `{ElemOf A C} `{Empty C} `{Union C}
Robbert Krebbers's avatar
Robbert Krebbers committed
395
    `{Intersection C} `{Difference C} `{Singleton A C} `{Map A C} := {
396
  not_elem_of_empty (x : A) : x  ;
397
  elem_of_singleton (x y : A) : x  {[ y ]}  x = y;
Robbert Krebbers's avatar
Robbert Krebbers committed
398 399 400 401 402 403
  elem_of_union X Y (x : A) : x  X  Y  x  X  x  Y;
  elem_of_intersection X Y (x : A) : x  X  Y  x  X  x  Y;
  elem_of_difference X Y (x : A) : x  X  Y  x  X  x  Y;
  elem_of_map f X (x : A) : x  map f X   y, x = f y  y  X
}.

404 405 406
(** We axiomative a finite collection as a collection whose elements can be
enumerated as a list. These elements, given by the [elements] function, may be
in any order and should not contain duplicates. *)
Robbert Krebbers's avatar
Robbert Krebbers committed
407
Class Elements A C := elements: C  list A.
408
Instance: Params (@elements) 3.
409 410 411 412 413 414

(** Decidability of equality of the carrier set is admissible, but we add it
anyway so as to avoid cycles in type class search. *)
Class FinCollection A C `{ElemOf A C} `{Empty C} `{Union C}
    `{Intersection C} `{Difference C} `{Singleton A C} `{Map A C}
    `{Elements A C} `{ x y : A, Decision (x = y)} := {
Robbert Krebbers's avatar
Robbert Krebbers committed
415 416 417
  fin_collection :>> Collection A C;
  elements_spec X x : x  X  In x (elements X);
  elements_nodup X : NoDup (elements X)
418 419 420
}.
Class Size C := size: C  nat.
Instance: Params (@size) 2.
Robbert Krebbers's avatar
Robbert Krebbers committed
421

422 423 424
(** The function [fresh X] yields an element that is not contained in [X]. We
will later prove that [fresh] is [Proper] with respect to the induced setoid
equality on collections. *)
Robbert Krebbers's avatar
Robbert Krebbers committed
425
Class Fresh A C := fresh: C  A.
426
Instance: Params (@fresh) 3.
Robbert Krebbers's avatar
Robbert Krebbers committed
427
Class FreshSpec A C `{!Fresh A C} `{!ElemOf A C} := {
428
  fresh_proper_alt X Y : ( x, x  X  x  Y)  fresh X = fresh Y;
Robbert Krebbers's avatar
Robbert Krebbers committed
429 430 431
  is_fresh (X : C) : fresh X  X
}.

432 433 434
(** * Miscellaneous *)
Lemma proj1_sig_inj {A} (P : A  Prop) x (Px : P x) y (Py : P y) :
  xPx = yPy  x = y.
435
Proof. injection 1; trivial. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
436

437 438 439 440
Lemma symmetry_iff `(R : relation A) `{!Symmetric R} (x y : A) :
  R x y  R y x.
Proof. intuition. Qed.

441 442 443
(** ** Pointwise relations *)
(** These instances are in Coq trunk since revision 15455, but are not in Coq
8.4 yet. *)
Robbert Krebbers's avatar
Robbert Krebbers committed
444 445 446 447 448 449 450 451 452 453
Instance pointwise_reflexive {A} `{R : relation B} :
  Reflexive R  Reflexive (pointwise_relation A R) | 9.
Proof. firstorder. Qed.
Instance pointwise_symmetric {A} `{R : relation B} :
  Symmetric R  Symmetric (pointwise_relation A R) | 9.
Proof. firstorder. Qed.
Instance pointwise_transitive {A} `{R : relation B} :
  Transitive R  Transitive (pointwise_relation A R) | 9.
Proof. firstorder. Qed.

454
(** ** Products *)
455 456 457 458 459 460
Definition fst_map {A A' B} (f : A  A') (p : A * B) : A' * B :=
  (f (fst p), snd p).
Definition snd_map {A B B'} (f : B  B') (p : A * B) : A * B' :=
  (fst p, f (snd p)).
Definition prod_relation {A B} (R1 : relation A) (R2 : relation B) :
  relation (A * B) := λ x y, R1 (fst x) (fst y)  R2 (snd x) (snd y).
Robbert Krebbers's avatar
Robbert Krebbers committed
461 462 463

Section prod_relation.
  Context `{R1 : relation A} `{R2 : relation B}.
464 465
  Global Instance:
    Reflexive R1  Reflexive R2  Reflexive (prod_relation R1 R2).
Robbert Krebbers's avatar
Robbert Krebbers committed
466
  Proof. firstorder eauto. Qed.
467 468
  Global Instance:
    Symmetric R1  Symmetric R2  Symmetric (prod_relation R1 R2).
Robbert Krebbers's avatar
Robbert Krebbers committed
469
  Proof. firstorder eauto. Qed.
470 471
  Global Instance:
    Transitive R1  Transitive R2  Transitive (prod_relation R1 R2).
Robbert Krebbers's avatar
Robbert Krebbers committed
472
  Proof. firstorder eauto. Qed.
473 474
  Global Instance:
    Equivalence R1  Equivalence R2  Equivalence (prod_relation R1 R2).
Robbert Krebbers's avatar
Robbert Krebbers committed
475 476 477 478 479 480 481 482 483
  Proof. split; apply _. Qed.
  Global Instance: Proper (R1 ==> R2 ==> prod_relation R1 R2) pair.
  Proof. firstorder eauto. Qed.
  Global Instance: Proper (prod_relation R1 R2 ==> R1) fst.
  Proof. firstorder eauto. Qed.
  Global Instance: Proper (prod_relation R1 R2 ==> R2) snd.
  Proof. firstorder eauto. Qed.
End prod_relation.

484
(** ** Other *)
485 486
Definition lift_relation {A B} (R : relation A)
  (f : B  A) : relation B := λ x y, R (f x) (f y).
Robbert Krebbers's avatar
Robbert Krebbers committed
487 488
Definition lift_relation_equivalence {A B} (R : relation A) (f : B  A) :
  Equivalence R  Equivalence (lift_relation R f).
489
Proof. unfold lift_relation. firstorder auto. Qed.
490 491
Hint Extern 0 (Equivalence (lift_relation _ _)) =>
  eapply @lift_relation_equivalence : typeclass_instances.
Robbert Krebbers's avatar
Robbert Krebbers committed
492 493

Instance:  A B (x : B), Commutative (=) (λ _ _ : A, x).
494
Proof. red. trivial. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
495
Instance:  A (x : A), Associative (=) (λ _ _ : A, x).
496
Proof. red. trivial. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
497
Instance:  A, Associative (=) (λ x _ : A, x).
498
Proof. red. trivial. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
499
Instance:  A, Associative (=) (λ _ x : A, x).
500
Proof. red. trivial. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
501
Instance:  A, Idempotent (=) (λ x _ : A, x).
502
Proof. red. trivial. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
503
Instance:  A, Idempotent (=) (λ _ x : A, x).
504
Proof. red. trivial. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
505

506 507
Instance left_id_propholds {A} (R : relation A) i f :
  LeftId R i f   x, PropHolds (R (f i x) x).
508
Proof. red. trivial. Qed.
509 510
Instance right_id_propholds {A} (R : relation A) i f :
  RightId R i f   x, PropHolds (R (f x i) x).
511
Proof. red. trivial. Qed.
512 513
Instance idem_propholds {A} (R : relation A) f :
  Idempotent R f   x, PropHolds (R (f x x) x).
514
Proof. red. trivial. Qed.