base.v 19 KB
Newer Older
1 2 3 4 5 6
(* Copyright (c) 2012, Robbert Krebbers. *)
(* This file is distributed under the terms of the BSD license. *)
(** This file collects type class interfaces, notations, and general theorems
that are used throughout the whole development. Most importantly it contains
abstract interfaces for ordered structures, collections, and various other data
structures. *)
Robbert Krebbers's avatar
Robbert Krebbers committed
7 8 9 10
Global Generalizable All Variables.
Global Set Automatic Coercions Import.
Require Export Morphisms RelationClasses List Bool Utf8 Program Setoid NArith.

11 12 13 14 15
(** * General *)
(** The following coercion allows us to use Booleans as propositions. *)
Coercion Is_true : bool >-> Sortclass.

(** Ensure that [simpl] unfolds [id] and [compose] when fully applied. *)
16 17 18
Arguments id _ _/.
Arguments compose _ _ _ _ _ _ /.

19 20 21 22
(** Change [True] and [False] into notations in order to enable overloading.
We will use this in the file [assertions] to give [True] and [False] a
different interpretation in [assert_scope] used for assertions of our axiomatic
semantics. *)
23 24
Notation "'True'" := True : type_scope.
Notation "'False'" := False : type_scope.
Robbert Krebbers's avatar
Robbert Krebbers committed
25

26 27
(** Throughout this development we use [C_scope] for all general purpose
notations that do not belong to a more specific scope. *)
Robbert Krebbers's avatar
Robbert Krebbers committed
28 29 30
Delimit Scope C_scope with C.
Global Open Scope C_scope.

31
(** Introduce some Haskell style like notations. *)
Robbert Krebbers's avatar
Robbert Krebbers committed
32 33 34 35 36 37 38 39 40 41 42 43
Notation "(=)" := eq (only parsing) : C_scope.
Notation "( x =)" := (eq x) (only parsing) : C_scope.
Notation "(= x )" := (λ y, eq y x) (only parsing) : C_scope.
Notation "(≠)" := (λ x y, x  y) (only parsing) : C_scope.
Notation "( x ≠)" := (λ y, x  y) (only parsing) : C_scope.
Notation "(≠ x )" := (λ y, y  x) (only parsing) : C_scope.

Hint Extern 0 (?x = ?x) => reflexivity.

Notation "(→)" := (λ x y, x  y) : C_scope.
Notation "( T →)" := (λ y, T  y) : C_scope.
Notation "(→ T )" := (λ y, y  T) : C_scope.
44 45
Notation "t $ r" := (t r)
  (at level 65, right associativity,only parsing) : C_scope.
Robbert Krebbers's avatar
Robbert Krebbers committed
46 47 48 49
Infix "∘" := compose : C_scope.
Notation "(∘)" := compose (only parsing) : C_scope.
Notation "( f ∘)" := (compose f) (only parsing) : C_scope.
Notation "(∘ f )" := (λ g, compose g f) (only parsing) : C_scope.
50 51 52

(** Set convenient implicit arguments for [existT] and introduce notations. *)
Arguments existT {_ _} _ _.
Robbert Krebbers's avatar
Robbert Krebbers committed
53 54 55
Notation "x ↾ p" := (exist _ x p) (at level 20) : C_scope.
Notation "` x" := (proj1_sig x) : C_scope.

56 57 58 59
(** * Type classes *)
(** ** Provable propositions *)
(** This type class collects provable propositions. It is useful to constraint
type classes by arbitrary propositions. *)
Robbert Krebbers's avatar
Robbert Krebbers committed
60 61
Class PropHolds (P : Prop) := prop_holds: P.

62 63 64 65 66 67 68 69 70 71 72 73 74 75 76
Hint Extern 0 (PropHolds _) => assumption : typeclass_instances.
Instance: Proper (iff ==> iff) PropHolds.
Proof. now repeat intro. Qed.

Ltac solve_propholds :=
  match goal with
  | [ |- PropHolds (?P) ] => apply _
  | [ |- ?P ] => change (PropHolds P); apply _
  end.

(** ** Decidable propositions *)
(** This type class by (Spitters/van der Weegen, 2011) collects decidable
propositions. For example to declare a parameter expressing decidable equality
on a type [A] we write [`{∀ x y : A, Decision (x = y)}] and use it by writing
[decide (x = y)]. *)
Robbert Krebbers's avatar
Robbert Krebbers committed
77 78 79
Class Decision (P : Prop) := decide : {P} + {¬P}.
Arguments decide _ {_}.

80 81 82
(** ** Setoid equality *)
(** We define an operational type class for setoid equality. This is based on
(Spitters/van der Weegen, 2011). *)
Robbert Krebbers's avatar
Robbert Krebbers committed
83 84 85 86 87 88 89 90 91 92
Class Equiv A := equiv: relation A.
Infix "≡" := equiv (at level 70, no associativity) : C_scope.
Notation "(≡)" := equiv (only parsing) : C_scope.
Notation "( x ≡)" := (equiv x) (only parsing) : C_scope.
Notation "(≡ x )" := (λ y, y  x) (only parsing) : C_scope.
Notation "(≢)" := (λ x y, ¬x  y) (only parsing) : C_scope.
Notation "x ≢ y":= (¬x  y) (at level 70, no associativity) : C_scope.
Notation "( x ≢)" := (λ y, x  y) (only parsing) : C_scope.
Notation "(≢ x )" := (λ y, y  x) (only parsing) : C_scope.

93 94 95 96 97 98 99 100
(** A [Params f n] instance forces the setoid rewriting mechanism not to
rewrite in the first [n] arguments of the function [f]. We will declare such
instances for all operational type classes in this development. *)
Instance: Params (@equiv) 2.

(** The following instance forces [setoid_replace] to use setoid equality
(for types that have an [Equiv] instance) rather than the standard Leibniz
equality. *)
Robbert Krebbers's avatar
Robbert Krebbers committed
101 102 103
Instance equiv_default_relation `{Equiv A} : DefaultRelation () | 3.
Hint Extern 0 (?x  ?x) => reflexivity.

104 105 106 107 108
(** ** Operations on collections *)
(** We define operational type classes for the standard operations and
relations on collections: the empty collection [∅], the union [(∪)],
intersection [(∩)], difference [(∖)], and the singleton [{[_]}]
operation, and the subset [(⊆)] and element of [(∈)] relation. *)
Robbert Krebbers's avatar
Robbert Krebbers committed
109 110 111 112
Class Empty A := empty: A.
Notation "∅" := empty : C_scope.

Class Union A := union: A  A  A.
113
Instance: Params (@union) 2.
Robbert Krebbers's avatar
Robbert Krebbers committed
114 115 116 117 118 119
Infix "∪" := union (at level 50, left associativity) : C_scope.
Notation "(∪)" := union (only parsing) : C_scope.
Notation "( x ∪)" := (union x) (only parsing) : C_scope.
Notation "(∪ x )" := (λ y, union y x) (only parsing) : C_scope.

Class Intersection A := intersection: A  A  A.
120
Instance: Params (@intersection) 2.
Robbert Krebbers's avatar
Robbert Krebbers committed
121 122 123 124 125 126
Infix "∩" := intersection (at level 40) : C_scope.
Notation "(∩)" := intersection (only parsing) : C_scope.
Notation "( x ∩)" := (intersection x) (only parsing) : C_scope.
Notation "(∩ x )" := (λ y, intersection y x) (only parsing) : C_scope.

Class Difference A := difference: A  A  A.
127
Instance: Params (@difference) 2.
Robbert Krebbers's avatar
Robbert Krebbers committed
128 129 130 131 132
Infix "∖" := difference (at level 40) : C_scope.
Notation "(∖)" := difference (only parsing) : C_scope.
Notation "( x ∖)" := (difference x) (only parsing) : C_scope.
Notation "(∖ x )" := (λ y, difference y x) (only parsing) : C_scope.

133 134 135 136 137 138
Class Singleton A B := singleton: A  B.
Instance: Params (@singleton) 3.
Notation "{[ x ]}" := (singleton x) : C_scope.
Notation "{[ x ; y ; .. ; z ]}" :=
  (union .. (union (singleton x) (singleton y)) .. (singleton z)) : C_scope.

Robbert Krebbers's avatar
Robbert Krebbers committed
139
Class SubsetEq A := subseteq: A  A  Prop.
140
Instance: Params (@subseteq) 2.
Robbert Krebbers's avatar
Robbert Krebbers committed
141 142 143 144 145 146 147 148 149 150 151 152
Infix "⊆" := subseteq (at level 70) : C_scope.
Notation "(⊆)" := subseteq (only parsing) : C_scope.
Notation "( X ⊆ )" := (subseteq X) (only parsing) : C_scope.
Notation "( ⊆ X )" := (λ Y, subseteq Y X) (only parsing) : C_scope.
Notation "X ⊈ Y" := (¬X  Y) (at level 70) : C_scope.
Notation "(⊈)" := (λ X Y, X  Y) (only parsing) : C_scope.
Notation "( X ⊈ )" := (λ Y, X  Y) (only parsing) : C_scope.
Notation "( ⊈ X )" := (λ Y, Y  X) (only parsing) : C_scope.

Hint Extern 0 (?x  ?x) => reflexivity.

Class ElemOf A B := elem_of: A  B  Prop.
153
Instance: Params (@elem_of) 3.
Robbert Krebbers's avatar
Robbert Krebbers committed
154 155 156 157 158 159 160 161 162
Infix "∈" := elem_of (at level 70) : C_scope.
Notation "(∈)" := elem_of (only parsing) : C_scope.
Notation "( x ∈)" := (elem_of x) (only parsing) : C_scope.
Notation "(∈ X )" := (λ x, elem_of x X) (only parsing) : C_scope.
Notation "x ∉ X" := (¬x  X) (at level 80) : C_scope.
Notation "(∉)" := (λ x X, x  X) (only parsing) : C_scope.
Notation "( x ∉)" := (λ X, x  X) (only parsing) : C_scope.
Notation "(∉ X )" := (λ x, x  X) (only parsing) : C_scope.

163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227
(** ** Operations on maps *)
(** In this file we will only define operational type classes for the
operations on maps. In the file [fin_maps] we will axiomatize finite maps.
The function lookup [m !! k] should yield the element at key [k] in [m]. *)
Class Lookup K M := lookup:  {A}, K  M A  option A.
Instance: Params (@lookup) 4.

Notation "m !! i" := (lookup i m) (at level 20) : C_scope.
Notation "(!!)" := lookup (only parsing) : C_scope.
Notation "( m !!)" := (λ i, lookup i m) (only parsing) : C_scope.
Notation "(!! i )" := (lookup i) (only parsing) : C_scope.

(** The function insert [<[k:=a]>m] should update the element at key [k] with
value [a] in [m]. *)
Class Insert K M :=
  insert:  {A}, K  A  M A  M A.
Instance: Params (@insert) 4.
Notation "<[ k := a ]>" := (insert k a)
  (at level 5, right associativity, format "<[ k := a ]>") : C_scope.

(** The function delete [delete k m] should deletes the value at key [k] in
[m]. *)
Class Delete K M :=
  delete: K  M  M.
Instance: Params (@delete) 3.

(** The function [alter f k m] should update the value at key [k] using the
function [f], which is called with the original value at key [k]. When [k] is
not a member of [m], the original map should be returned. *)
Class Alter K M :=
  alter:  {A}, (A  A)  K  M A  M A.
Instance: Params (@alter) 4.

(** The function [alter f k m] should update the value at key [k] using the
function [f], which is called with the original value at key [k] or [None] if
[k] is not a member of [m]. The value at [k] should be deleted if [f] yields
[None]. *)
Class PartialAlter K M :=
  partial_alter:  {A}, (option A  option A)  K  M A  M A.
Instance: Params (@partial_alter) 4.

(** The function [dom C m] should yield the domain of [m]. That is a finite
collection of type [C] that contains the keys that are a member of [m]. *)
Class Dom K M :=
  dom:  C `{Empty C} `{Union C} `{Singleton K C}, M  C.
Instance: Params (@dom) 7.

(** The function [merge f m1 m2] should merge the maps [m1] and [m2] by
constructing a new map whose value at key [k] is [f (m1 !! k) (m2 !! k)]
provided that [k] is a member of either [m1] or [m2].*)
Class Merge M :=
  merge:  {A}, (option A  option A  option A)  M A  M A  M A.
Instance: Params (@merge) 3.

(** We lift the insert and delete operation to lists of elements. *)
Definition insert_list `{Insert K M} {A} (l : list (K * A)) (m : M A) : M A :=
  fold_right (λ p, <[ fst p := snd p ]>) m l.
Instance: Params (@insert_list) 4.
Definition delete_list `{Delete K M} (l : list K) (m : M) : M :=
  fold_right delete m l.
Instance: Params (@delete_list) 3.

(** The function [union_with f m1 m2] should yield the union of [m1] and [m2]
using the function [f] to combine values of members that are in both [m1] and
[m2]. *)
228 229
Class UnionWith M :=
  union_with:  {A}, (A  A  A)  M A  M A  M A.
230 231 232
Instance: Params (@union_with) 3.

(** Similarly for the intersection and difference. *)
233 234
Class IntersectionWith M :=
  intersection_with:  {A}, (A  A  A)  M A  M A  M A.
235
Instance: Params (@intersection_with) 3.
236 237
Class DifferenceWith M :=
  difference_with:  {A}, (A  A  option A)  M A  M A  M A.
238
Instance: Params (@difference_with) 3.
Robbert Krebbers's avatar
Robbert Krebbers committed
239

240 241 242 243
(** ** Common properties *)
(** These operational type classes allow us to refer to common mathematical
properties in a generic way. For example, for injectivity of [(k ++)] it
allows us to write [injective (k ++)] instead of [app_inv_head k]. *)
244 245 246 247 248 249 250 251 252 253 254 255
Class Injective {A B} R S (f : A  B) :=
  injective:  x y : A, S (f x) (f y)  R x y.
Class Idempotent {A} R (f : A  A  A) :=
  idempotent:  x, R (f x x) x.
Class Commutative {A B} R (f : B  B  A) :=
  commutative:  x y, R (f x y) (f y x).
Class LeftId {A} R (i : A) (f : A  A  A) :=
  left_id:  x, R (f i x) x.
Class RightId {A} R (i : A) (f : A  A  A) :=
  right_id:  x, R (f x i) x.
Class Associative {A} R (f : A  A  A) :=
  associative:  x y z, R (f x (f y z)) (f (f x y) z).
Robbert Krebbers's avatar
Robbert Krebbers committed
256 257 258 259 260 261 262 263

Arguments injective {_ _ _ _} _ {_} _ _ _.
Arguments idempotent {_ _} _ {_} _.
Arguments commutative {_ _ _} _ {_} _ _.
Arguments left_id {_ _} _ _ {_} _.
Arguments right_id {_ _} _ _ {_} _.
Arguments associative {_ _} _ {_} _ _ _.

264 265 266
(** The following lemmas are more specific versions of the projections of the
above type classes. These lemmas allow us to enforce Coq not to use the setoid
rewriting mechanism. *)
267 268
Lemma idempotent_eq {A} (f : A  A  A) `{!Idempotent (=) f} x :
  f x x = x.
269
Proof. auto. Qed.
270 271
Lemma commutative_eq {A B} (f : B  B  A) `{!Commutative (=) f} x y :
  f x y = f y x.
272
Proof. auto. Qed.
273 274
Lemma left_id_eq {A} (i : A) (f : A  A  A) `{!LeftId (=) i f} x :
  f i x = x.
275
Proof. auto. Qed.
276 277
Lemma right_id_eq {A} (i : A) (f : A  A  A) `{!RightId (=) i f} x :
  f x i = x.
278
Proof. auto. Qed.
279 280
Lemma associative_eq {A} (f : A  A  A) `{!Associative (=) f} x y z :
  f x (f y z) = f (f x y) z.
281 282
Proof. auto. Qed.

283 284 285 286
(** ** Monadic operations *)
(** We do use the operation type classes for monads merely for convenient
overloading of notations and do not formalize any theory on monads (we do not
define a class with the monad laws). *)
Robbert Krebbers's avatar
Robbert Krebbers committed
287 288 289 290 291 292 293 294 295
Section monad_ops.
  Context (M : Type  Type).

  Class MRet := mret:  {A}, A  M A.
  Class MBind := mbind:  {A B}, (A  M B)  M A  M B.
  Class MJoin := mjoin:  {A}, M (M A)  M A.
  Class FMap := fmap:  {A B}, (A  B)  M A  M B.
End monad_ops.

296
Instance: Params (@mret) 3.
Robbert Krebbers's avatar
Robbert Krebbers committed
297
Arguments mret {M MRet A} _.
298
Instance: Params (@mbind) 4.
Robbert Krebbers's avatar
Robbert Krebbers committed
299
Arguments mbind {M MBind A B} _ _.
300
Instance: Params (@mjoin) 3.
Robbert Krebbers's avatar
Robbert Krebbers committed
301
Arguments mjoin {M MJoin A} _.
302
Instance: Params (@fmap) 4.
Robbert Krebbers's avatar
Robbert Krebbers committed
303 304 305
Arguments fmap {M FMap A B} _ _.

Notation "m ≫= f" := (mbind f m) (at level 60, right associativity) : C_scope.
306 307
Notation "x ← y ; z" := (y = (λ x : _, z))
  (at level 65, next at level 35, right associativity) : C_scope.
Robbert Krebbers's avatar
Robbert Krebbers committed
308 309
Infix "<$>" := fmap (at level 65, right associativity, only parsing) : C_scope.

310 311
(** ** Axiomatization of ordered structures *)
(** A pre-order equiped with a smallest element. *)
Robbert Krebbers's avatar
Robbert Krebbers committed
312 313 314 315 316
Class BoundedPreOrder A `{Empty A} `{SubsetEq A} := {
  bounded_preorder :>> PreOrder ();
  subseteq_empty x :   x
}.

317 318 319 320
(** We do not include equality in the following interfaces so as to avoid the
need for proofs that the  relations and operations respect setoid equality.
Instead, we will define setoid equality in a generic way as
[λ X Y, X ⊆ Y ∧ Y ⊆ X]. *)
Robbert Krebbers's avatar
Robbert Krebbers committed
321 322 323 324 325 326 327 328 329 330 331 332 333
Class BoundedJoinSemiLattice A `{Empty A} `{SubsetEq A} `{Union A} := {
  jsl_preorder :>> BoundedPreOrder A;
  subseteq_union_l x y : x  x  y;
  subseteq_union_r x y : y  x  y;
  union_least x y z : x  z  y  z  x  y  z
}.
Class MeetSemiLattice A `{Empty A} `{SubsetEq A} `{Intersection A} := {
  msl_preorder :>> BoundedPreOrder A;
  subseteq_intersection_l x y : x  y  x;
  subseteq_intersection_r x y : x  y  y;
  intersection_greatest x y z : z  x  z  y  z  x  y
}.

334 335 336 337
(** ** Axiomatization of collections *)
(** The class [Collection A C] axiomatizes a collection of type [C] with
elements of type [A]. Since [C] is not dependent on [A], we use the monomorphic
[Map] type class instead of the polymorphic [FMap]. *)
Robbert Krebbers's avatar
Robbert Krebbers committed
338
Class Map A C := map: (A  A)  (C  C).
339 340
Instance: Params (@map) 3.
Class Collection A C `{ElemOf A C} `{Empty C} `{Union C}
Robbert Krebbers's avatar
Robbert Krebbers committed
341
    `{Intersection C} `{Difference C} `{Singleton A C} `{Map A C} := {
342
  not_elem_of_empty (x : A) : x  ;
343
  elem_of_singleton (x y : A) : x  {[ y ]}  x = y;
Robbert Krebbers's avatar
Robbert Krebbers committed
344 345 346 347 348 349
  elem_of_union X Y (x : A) : x  X  Y  x  X  x  Y;
  elem_of_intersection X Y (x : A) : x  X  Y  x  X  x  Y;
  elem_of_difference X Y (x : A) : x  X  Y  x  X  x  Y;
  elem_of_map f X (x : A) : x  map f X   y, x = f y  y  X
}.

350 351 352
(** We axiomative a finite collection as a collection whose elements can be
enumerated as a list. These elements, given by the [elements] function, may be
in any order and should not contain duplicates. *)
Robbert Krebbers's avatar
Robbert Krebbers committed
353
Class Elements A C := elements: C  list A.
354 355
Instance: Params (@elements) 3.
Class FinCollection A C `{Empty C} `{Union C} `{Intersection C} `{Difference C}
Robbert Krebbers's avatar
Robbert Krebbers committed
356 357 358 359
    `{Singleton A C} `{ElemOf A C} `{Map A C} `{Elements A C} := {
  fin_collection :>> Collection A C;
  elements_spec X x : x  X  In x (elements X);
  elements_nodup X : NoDup (elements X)
360 361 362
}.
Class Size C := size: C  nat.
Instance: Params (@size) 2.
Robbert Krebbers's avatar
Robbert Krebbers committed
363

364 365 366
(** The function [fresh X] yields an element that is not contained in [X]. We
will later prove that [fresh] is [Proper] with respect to the induced setoid
equality on collections. *)
Robbert Krebbers's avatar
Robbert Krebbers committed
367
Class Fresh A C := fresh: C  A.
368
Instance: Params (@fresh) 3.
Robbert Krebbers's avatar
Robbert Krebbers committed
369
Class FreshSpec A C `{!Fresh A C} `{!ElemOf A C} := {
370
  fresh_proper_alt X Y : ( x, x  X  x  Y)  fresh X = fresh Y;
Robbert Krebbers's avatar
Robbert Krebbers committed
371 372 373
  is_fresh (X : C) : fresh X  X
}.

374 375 376 377
(** * Miscellaneous *)
Lemma proj1_sig_inj {A} (P : A  Prop) x (Px : P x) y (Py : P y) :
  xPx = yPy  x = y.
Proof. now injection 1. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
378

379 380 381 382
Lemma symmetry_iff `(R : relation A) `{!Symmetric R} (x y : A) :
  R x y  R y x.
Proof. intuition. Qed.

383 384 385
(** ** Pointwise relations *)
(** These instances are in Coq trunk since revision 15455, but are not in Coq
8.4 yet. *)
Robbert Krebbers's avatar
Robbert Krebbers committed
386 387 388 389 390 391 392 393 394 395
Instance pointwise_reflexive {A} `{R : relation B} :
  Reflexive R  Reflexive (pointwise_relation A R) | 9.
Proof. firstorder. Qed.
Instance pointwise_symmetric {A} `{R : relation B} :
  Symmetric R  Symmetric (pointwise_relation A R) | 9.
Proof. firstorder. Qed.
Instance pointwise_transitive {A} `{R : relation B} :
  Transitive R  Transitive (pointwise_relation A R) | 9.
Proof. firstorder. Qed.

396
(** ** Products *)
397 398 399 400 401 402
Definition fst_map {A A' B} (f : A  A') (p : A * B) : A' * B :=
  (f (fst p), snd p).
Definition snd_map {A B B'} (f : B  B') (p : A * B) : A * B' :=
  (fst p, f (snd p)).
Definition prod_relation {A B} (R1 : relation A) (R2 : relation B) :
  relation (A * B) := λ x y, R1 (fst x) (fst y)  R2 (snd x) (snd y).
Robbert Krebbers's avatar
Robbert Krebbers committed
403 404 405

Section prod_relation.
  Context `{R1 : relation A} `{R2 : relation B}.
406 407
  Global Instance:
    Reflexive R1  Reflexive R2  Reflexive (prod_relation R1 R2).
Robbert Krebbers's avatar
Robbert Krebbers committed
408
  Proof. firstorder eauto. Qed.
409 410
  Global Instance:
    Symmetric R1  Symmetric R2  Symmetric (prod_relation R1 R2).
Robbert Krebbers's avatar
Robbert Krebbers committed
411
  Proof. firstorder eauto. Qed.
412 413
  Global Instance:
    Transitive R1  Transitive R2  Transitive (prod_relation R1 R2).
Robbert Krebbers's avatar
Robbert Krebbers committed
414
  Proof. firstorder eauto. Qed.
415 416
  Global Instance:
    Equivalence R1  Equivalence R2  Equivalence (prod_relation R1 R2).
Robbert Krebbers's avatar
Robbert Krebbers committed
417 418 419 420 421 422 423 424 425
  Proof. split; apply _. Qed.
  Global Instance: Proper (R1 ==> R2 ==> prod_relation R1 R2) pair.
  Proof. firstorder eauto. Qed.
  Global Instance: Proper (prod_relation R1 R2 ==> R1) fst.
  Proof. firstorder eauto. Qed.
  Global Instance: Proper (prod_relation R1 R2 ==> R2) snd.
  Proof. firstorder eauto. Qed.
End prod_relation.

426
(** ** Other *)
427 428
Definition lift_relation {A B} (R : relation A)
  (f : B  A) : relation B := λ x y, R (f x) (f y).
Robbert Krebbers's avatar
Robbert Krebbers committed
429 430 431
Definition lift_relation_equivalence {A B} (R : relation A) (f : B  A) :
  Equivalence R  Equivalence (lift_relation R f).
Proof. unfold lift_relation. firstorder. Qed.
432 433
Hint Extern 0 (Equivalence (lift_relation _ _)) =>
  eapply @lift_relation_equivalence : typeclass_instances.
Robbert Krebbers's avatar
Robbert Krebbers committed
434 435 436 437 438 439 440 441 442 443 444 445 446 447

Instance:  A B (x : B), Commutative (=) (λ _ _ : A, x).
Proof. easy. Qed.
Instance:  A (x : A), Associative (=) (λ _ _ : A, x).
Proof. easy. Qed.
Instance:  A, Associative (=) (λ x _ : A, x).
Proof. easy. Qed.
Instance:  A, Associative (=) (λ _ x : A, x).
Proof. easy. Qed.
Instance:  A, Idempotent (=) (λ x _ : A, x).
Proof. easy. Qed.
Instance:  A, Idempotent (=) (λ _ x : A, x).
Proof. easy. Qed.

448 449
Instance left_id_propholds {A} (R : relation A) i f :
  LeftId R i f   x, PropHolds (R (f i x) x).
Robbert Krebbers's avatar
Robbert Krebbers committed
450
Proof. easy. Qed.
451 452
Instance right_id_propholds {A} (R : relation A) i f :
  RightId R i f   x, PropHolds (R (f x i) x).
Robbert Krebbers's avatar
Robbert Krebbers committed
453
Proof. easy. Qed.
454 455
Instance idem_propholds {A} (R : relation A) f :
  Idempotent R f   x, PropHolds (R (f x x) x).
Robbert Krebbers's avatar
Robbert Krebbers committed
456
Proof. easy. Qed.