collections.v 27.1 KB
Newer Older
Robbert Krebbers's avatar
Robbert Krebbers committed
1
(* Copyright (c) 2012-2015, Robbert Krebbers. *)
2
3
4
5
(* This file is distributed under the terms of the BSD license. *)
(** This file collects definitions and theorems on collections. Most
importantly, it implements some tactics to automatically solve goals involving
collections. *)
6
Require Export prelude.base prelude.tactics prelude.orders.
7

8
9
10
Instance collection_subseteq `{ElemOf A C} : SubsetEq C := λ X Y,
   x, x  X  x  Y.

11
(** * Basic theorems *)
12
13
Section simple_collection.
  Context `{SimpleCollection A C}.
14
15
  Implicit Types x y : A.
  Implicit Types X Y : C.
Robbert Krebbers's avatar
Robbert Krebbers committed
16

17
  Lemma elem_of_empty x : x    False.
18
  Proof. split. apply not_elem_of_empty. done. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
19
20
21
22
  Lemma elem_of_union_l x X Y : x  X  x  X  Y.
  Proof. intros. apply elem_of_union. auto. Qed.
  Lemma elem_of_union_r x X Y : x  Y  x  X  Y.
  Proof. intros. apply elem_of_union. auto. Qed.
23
24
25
  Global Instance: EmptySpec C.
  Proof. firstorder auto. Qed.
  Global Instance: JoinSemiLattice C.
26
  Proof. firstorder auto. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
27
  Lemma elem_of_subseteq X Y : X  Y   x, x  X  x  Y.
28
  Proof. done. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
29
30
  Lemma elem_of_equiv X Y : X  Y   x, x  X  x  Y.
  Proof. firstorder. Qed.
31
32
  Lemma elem_of_equiv_alt X Y :
    X  Y  ( x, x  X  x  Y)  ( x, x  Y  x  X).
Robbert Krebbers's avatar
Robbert Krebbers committed
33
  Proof. firstorder. Qed.
34
35
  Lemma elem_of_equiv_empty X : X     x, x  X.
  Proof. firstorder. Qed.
36
37
38
39
40
41
  Lemma collection_positive_l X Y : X  Y    X  .
  Proof.
    rewrite !elem_of_equiv_empty. setoid_rewrite elem_of_union. naive_solver.
  Qed.
  Lemma collection_positive_l_alt X Y : X    X  Y  .
  Proof. eauto using collection_positive_l. Qed.
42
43
44
45
  Lemma elem_of_singleton_1 x y : x  {[y]}  x = y.
  Proof. by rewrite elem_of_singleton. Qed.
  Lemma elem_of_singleton_2 x y : x = y  x  {[y]}.
  Proof. by rewrite elem_of_singleton. Qed.
46
47
48
  Lemma elem_of_subseteq_singleton x X : x  X  {[ x ]}  X.
  Proof.
    split.
49
    * intros ??. rewrite elem_of_singleton. by intros ->.
50
51
    * intros Ex. by apply (Ex x), elem_of_singleton.
  Qed.
52
  Global Instance singleton_proper : Proper ((=) ==> ()) (singleton (B:=C)).
53
  Proof. by repeat intro; subst. Qed.
54
55
  Global Instance elem_of_proper :
    Proper ((=) ==> () ==> iff) (() : A  C  Prop) | 5.
56
  Proof. intros ???; subst. firstorder. Qed.
57
  Lemma elem_of_union_list Xs x : x   Xs   X, X  Xs  x  X.
58
59
  Proof.
    split.
60
61
62
63
    * induction Xs; simpl; intros HXs; [by apply elem_of_empty in HXs|].
      setoid_rewrite elem_of_cons. apply elem_of_union in HXs. naive_solver.
    * intros [X []]. induction 1; simpl; [by apply elem_of_union_l |].
      intros. apply elem_of_union_r; auto.
64
  Qed.
65
  Lemma non_empty_singleton x : ({[ x ]} : C)  .
66
67
68
69
70
71
  Proof. intros [E _]. by apply (elem_of_empty x), E, elem_of_singleton. Qed.
  Lemma not_elem_of_singleton x y : x  {[ y ]}  x  y.
  Proof. by rewrite elem_of_singleton. Qed.
  Lemma not_elem_of_union x X Y : x  X  Y  x  X  x  Y.
  Proof. rewrite elem_of_union. tauto. Qed.

72
73
74
75
76
77
78
79
80
  Section leibniz.
    Context `{!LeibnizEquiv C}.
    Lemma elem_of_equiv_L X Y : X = Y   x, x  X  x  Y.
    Proof. unfold_leibniz. apply elem_of_equiv. Qed.
    Lemma elem_of_equiv_alt_L X Y :
      X = Y  ( x, x  X  x  Y)  ( x, x  Y  x  X).
    Proof. unfold_leibniz. apply elem_of_equiv_alt. Qed.
    Lemma elem_of_equiv_empty_L X : X =    x, x  X.
    Proof. unfold_leibniz. apply elem_of_equiv_empty. Qed.
81
82
83
84
    Lemma collection_positive_l_L X Y : X  Y =   X = .
    Proof. unfold_leibniz. apply collection_positive_l. Qed.
    Lemma collection_positive_l_alt_L X Y : X    X  Y  .
    Proof. unfold_leibniz. apply collection_positive_l_alt. Qed.
85
86
87
88
89
90
91
92
93
94
95
96
    Lemma non_empty_singleton_L x : {[ x ]}  .
    Proof. unfold_leibniz. apply non_empty_singleton. Qed.
  End leibniz.

  Section dec.
    Context `{ X Y : C, Decision (X  Y)}.
    Global Instance elem_of_dec_slow (x : A) (X : C) : Decision (x  X) | 100.
    Proof.
      refine (cast_if (decide_rel () {[ x ]} X));
        by rewrite elem_of_subseteq_singleton.
    Defined.
  End dec.
97
98
End simple_collection.

99
Definition of_option `{Singleton A C, Empty C} (x : option A) : C :=
100
  match x with None =>  | Some a => {[ a ]} end.
101
102
Fixpoint of_list `{Singleton A C, Empty C, Union C} (l : list A) : C :=
  match l with [] =>  | x :: l => {[ x ]}  of_list l end.
103

104
105
106
107
108
109
110
111
112
113
114
Section of_option_list.
  Context `{SimpleCollection A C}.
  Lemma elem_of_of_option (x : A) o : x  of_option o  o = Some x.
  Proof.
    destruct o; simpl;
      rewrite ?elem_of_empty, ?elem_of_singleton; naive_solver.
  Qed.
  Lemma elem_of_of_list (x : A) l : x  of_list l  x  l.
  Proof.
    split.
    * induction l; simpl; [by rewrite elem_of_empty|].
Robbert Krebbers's avatar
Robbert Krebbers committed
115
      rewrite elem_of_union,elem_of_singleton; intros [->|?]; constructor; auto.
116
117
118
    * induction 1; simpl; rewrite elem_of_union, elem_of_singleton; auto.
  Qed.
End of_option_list.
119
120
121

Global Instance collection_guard `{CollectionMonad M} : MGuard M :=
  λ P dec A x, match dec with left H => x H | _ =>  end.
122
123
124
125
126
127
128
129
130

Section collection_monad_base.
  Context `{CollectionMonad M}.
  Lemma elem_of_guard `{Decision P} {A} (x : A) (X : M A) :
    x  guard P; X  P  x  X.
  Proof.
    unfold mguard, collection_guard; simpl; case_match;
      rewrite ?elem_of_empty; naive_solver.
  Qed.
131
132
133
  Lemma elem_of_guard_2 `{Decision P} {A} (x : A) (X : M A) :
    P  x  X  x  guard P; X.
  Proof. by rewrite elem_of_guard. Qed.
134
135
136
137
138
139
140
141
142
143
144
145
  Lemma guard_empty `{Decision P} {A} (X : M A) : guard P; X    ¬P  X  .
  Proof.
    rewrite !elem_of_equiv_empty; setoid_rewrite elem_of_guard.
    destruct (decide P); naive_solver.
  Qed.
  Lemma bind_empty {A B} (f : A  M B) X :
    X = f    X     x, x  X  f x  .
  Proof.
    setoid_rewrite elem_of_equiv_empty; setoid_rewrite elem_of_bind.
    naive_solver.
  Qed.
End collection_monad_base.
146

147
148
149
150
151
152
153
154
155
(** * Tactics *)
(** Given a hypothesis [H : _ ∈ _], the tactic [destruct_elem_of H] will
recursively split [H] for [(∪)], [(∩)], [(∖)], [map], [∅], [{[_]}]. *)
Tactic Notation "decompose_elem_of" hyp(H) :=
  let rec go H :=
  lazymatch type of H with
  | _   => apply elem_of_empty in H; destruct H
  | ?x  {[ ?y ]} =>
    apply elem_of_singleton in H; try first [subst y | subst x]
156
157
  | ?x  {[ ?y ]} =>
    apply not_elem_of_singleton in H
158
  | _  _  _ =>
159
160
161
162
    apply elem_of_union in H; destruct H as [H|H]; [go H|go H]
  | _  _  _ =>
    let H1 := fresh H in let H2 := fresh H in apply not_elem_of_union in H;
    destruct H as [H1 H2]; go H1; go H2
163
  | _  _  _ =>
164
    let H1 := fresh H in let H2 := fresh H in apply elem_of_intersection in H;
165
166
    destruct H as [H1 H2]; go H1; go H2
  | _  _  _ =>
167
    let H1 := fresh H in let H2 := fresh H in apply elem_of_difference in H;
168
169
    destruct H as [H1 H2]; go H1; go H2
  | ?x  _ <$> _ =>
170
    apply elem_of_fmap in H; destruct H as [? [? H]]; try (subst x); go H
171
  | _  _ = _ =>
172
    let H1 := fresh H in let H2 := fresh H in apply elem_of_bind in H;
173
174
175
176
    destruct H as [? [H1 H2]]; go H1; go H2
  | ?x  mret ?y =>
    apply elem_of_ret in H; try first [subst y | subst x]
  | _  mjoin _ = _ =>
177
    let H1 := fresh H in let H2 := fresh H in apply elem_of_join in H;
178
    destruct H as [? [H1 H2]]; go H1; go H2
179
  | _  guard _; _ =>
180
    let H1 := fresh H in let H2 := fresh H in apply elem_of_guard in H;
181
182
    destruct H as [H1 H2]; go H2
  | _  of_option _ => apply elem_of_of_option in H
Robbert Krebbers's avatar
Robbert Krebbers committed
183
  | _  of_list _ => apply elem_of_of_list in H
184
185
186
187
188
  | _ => idtac
  end in go H.
Tactic Notation "decompose_elem_of" :=
  repeat_on_hyps (fun H => decompose_elem_of H).

189
190
Ltac decompose_empty := repeat
  match goal with
191
192
193
194
  | H :    |- _ => clear H
  | H :  =  |- _ => clear H
  | H :   _ |- _ => symmetry in H
  | H :  = _ |- _ => symmetry in H
195
196
197
  | H : _  _   |- _ => apply empty_union in H; destruct H
  | H : _  _   |- _ => apply non_empty_union in H; destruct H
  | H : {[ _ ]}   |- _ => destruct (non_empty_singleton _ H)
198
199
200
  | H : _  _ =  |- _ => apply empty_union_L in H; destruct H
  | H : _  _   |- _ => apply non_empty_union_L in H; destruct H
  | H : {[ _ ]} =  |- _ => destruct (non_empty_singleton_L _ H)
201
  | H : guard _ ; _   |- _ => apply guard_empty in H; destruct H
202
203
  end.

204
205
206
207
(** The first pass of our collection tactic consists of eliminating all
occurrences of [(∪)], [(∩)], [(∖)], [(<$>)], [∅], [{[_]}], [(≡)], and [(⊆)],
by rewriting these into logically equivalent propositions. For example we
rewrite [A → x ∈ X ∪ ∅] into [A → x ∈ X ∨ False]. *)
208
209
210
211
Ltac unfold_elem_of :=
  repeat_on_hyps (fun H =>
    repeat match type of H with
    | context [ _  _ ] => setoid_rewrite elem_of_subseteq in H
Robbert Krebbers's avatar
Robbert Krebbers committed
212
    | context [ _  _ ] => setoid_rewrite subset_spec in H
213
    | context [ _   ] => setoid_rewrite elem_of_equiv_empty in H
214
    | context [ _  _ ] => setoid_rewrite elem_of_equiv_alt in H
215
216
    | context [ _ =  ] => setoid_rewrite elem_of_equiv_empty_L in H
    | context [ _ = _ ] => setoid_rewrite elem_of_equiv_alt_L in H
217
218
219
220
221
    | context [ _   ] => setoid_rewrite elem_of_empty in H
    | context [ _  {[ _ ]} ] => setoid_rewrite elem_of_singleton in H
    | context [ _  _  _ ] => setoid_rewrite elem_of_union in H
    | context [ _  _  _ ] => setoid_rewrite elem_of_intersection in H
    | context [ _  _  _ ] => setoid_rewrite elem_of_difference in H
222
223
224
225
    | context [ _  _ <$> _ ] => setoid_rewrite elem_of_fmap in H
    | context [ _  mret _ ] => setoid_rewrite elem_of_ret in H
    | context [ _  _ = _ ] => setoid_rewrite elem_of_bind in H
    | context [ _  mjoin _ ] => setoid_rewrite elem_of_join in H
226
    | context [ _  guard _; _ ] => setoid_rewrite elem_of_guard in H
Robbert Krebbers's avatar
Robbert Krebbers committed
227
228
    | context [ _  of_option _ ] => setoid_rewrite elem_of_of_option in H
    | context [ _  of_list _ ] => setoid_rewrite elem_of_of_list in H
229
230
    end);
  repeat match goal with
Robbert Krebbers's avatar
Robbert Krebbers committed
231
  | |- context [ _  _ ] => setoid_rewrite elem_of_subseteq
Robbert Krebbers's avatar
Robbert Krebbers committed
232
  | |- context [ _  _ ] => setoid_rewrite subset_spec
233
  | |- context [ _   ] => setoid_rewrite elem_of_equiv_empty
Robbert Krebbers's avatar
Robbert Krebbers committed
234
  | |- context [ _  _ ] => setoid_rewrite elem_of_equiv_alt
235
236
  | |- context [ _ =  ] => setoid_rewrite elem_of_equiv_empty_L
  | |- context [ _ = _ ] => setoid_rewrite elem_of_equiv_alt_L
237
  | |- context [ _   ] => setoid_rewrite elem_of_empty
238
  | |- context [ _  {[ _ ]} ] => setoid_rewrite elem_of_singleton
Robbert Krebbers's avatar
Robbert Krebbers committed
239
240
241
  | |- context [ _  _  _ ] => setoid_rewrite elem_of_union
  | |- context [ _  _  _ ] => setoid_rewrite elem_of_intersection
  | |- context [ _  _  _ ] => setoid_rewrite elem_of_difference
242
243
244
245
  | |- context [ _  _ <$> _ ] => setoid_rewrite elem_of_fmap
  | |- context [ _  mret _ ] => setoid_rewrite elem_of_ret
  | |- context [ _  _ = _ ] => setoid_rewrite elem_of_bind
  | |- context [ _  mjoin _ ] => setoid_rewrite elem_of_join
246
  | |- context [ _  guard _; _ ] => setoid_rewrite elem_of_guard
Robbert Krebbers's avatar
Robbert Krebbers committed
247
248
  | |- context [ _  of_option _ ] => setoid_rewrite elem_of_of_option
  | |- context [ _  of_list _ ] => setoid_rewrite elem_of_of_list
Robbert Krebbers's avatar
Robbert Krebbers committed
249
250
  end.

251
252
253
(** The tactic [solve_elem_of tac] composes the above tactic with [intuition].
For goals that do not involve [≡], [⊆], [map], or quantifiers this tactic is
generally powerful enough. This tactic either fails or proves the goal. *)
254
Tactic Notation "solve_elem_of" tactic3(tac) :=
Robbert Krebbers's avatar
Robbert Krebbers committed
255
  setoid_subst;
256
  decompose_empty;
257
258
259
260
261
262
263
264
265
  unfold_elem_of;
  solve [intuition (simplify_equality; tac)].
Tactic Notation "solve_elem_of" := solve_elem_of auto.

(** For goals with quantifiers we could use the above tactic but with
[firstorder] instead of [intuition] as finishing tactic. However, [firstorder]
fails or loops on very small goals generated by [solve_elem_of] already. We
use the [naive_solver] tactic as a substitute. This tactic either fails or
proves the goal. *)
266
Tactic Notation "esolve_elem_of" tactic3(tac) :=
Robbert Krebbers's avatar
Robbert Krebbers committed
267
  setoid_subst;
268
  decompose_empty;
269
270
271
  unfold_elem_of;
  naive_solver tac.
Tactic Notation "esolve_elem_of" := esolve_elem_of eauto.
272

273
(** * More theorems *)
Robbert Krebbers's avatar
Robbert Krebbers committed
274
275
Section collection.
  Context `{Collection A C}.
276
  Implicit Types X Y : C.
Robbert Krebbers's avatar
Robbert Krebbers committed
277

278
  Global Instance: Lattice C.
279
  Proof. split. apply _. firstorder auto. solve_elem_of. Qed.
280
281
  Global Instance difference_proper :
     Proper (() ==> () ==> ()) (@difference C _).
Robbert Krebbers's avatar
Robbert Krebbers committed
282
283
284
285
  Proof.
    intros X1 X2 HX Y1 Y2 HY; apply elem_of_equiv; intros x.
    by rewrite !elem_of_difference, HX, HY.
  Qed.
286
  Lemma intersection_singletons x : ({[x]} : C)  {[x]}  {[x]}.
Robbert Krebbers's avatar
Robbert Krebbers committed
287
288
289
  Proof. esolve_elem_of. Qed.
  Lemma difference_twice X Y : (X  Y)  Y  X  Y.
  Proof. esolve_elem_of. Qed.
290
  Lemma subseteq_empty_difference X Y : X  Y  X  Y  .
Robbert Krebbers's avatar
Robbert Krebbers committed
291
292
293
294
295
  Proof. esolve_elem_of. Qed.
  Lemma difference_diag X : X  X  .
  Proof. esolve_elem_of. Qed.
  Lemma difference_union_distr_l X Y Z : (X  Y)  Z  X  Z  Y  Z.
  Proof. esolve_elem_of. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
296
297
  Lemma difference_union_distr_r X Y Z : Z  (X  Y)  (Z  X)  (Z  Y).
  Proof. esolve_elem_of. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
298
299
  Lemma difference_intersection_distr_l X Y Z : (X  Y)  Z  X  Z  Y  Z.
  Proof. esolve_elem_of. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
300
301
  Lemma disjoint_union_difference X Y : X  Y    (X  Y)  X  Y.
  Proof. esolve_elem_of. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
302

303
304
305
306
307
308
  Section leibniz.
    Context `{!LeibnizEquiv C}.
    Lemma intersection_singletons_L x : {[x]}  {[x]} = {[x]}.
    Proof. unfold_leibniz. apply intersection_singletons. Qed.
    Lemma difference_twice_L X Y : (X  Y)  Y = X  Y.
    Proof. unfold_leibniz. apply difference_twice. Qed.
309
310
    Lemma subseteq_empty_difference_L X Y : X  Y  X  Y = .
    Proof. unfold_leibniz. apply subseteq_empty_difference. Qed.
311
312
313
314
    Lemma difference_diag_L X : X  X = .
    Proof. unfold_leibniz. apply difference_diag. Qed.
    Lemma difference_union_distr_l_L X Y Z : (X  Y)  Z = X  Z  Y  Z.
    Proof. unfold_leibniz. apply difference_union_distr_l. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
315
316
    Lemma difference_union_distr_r_L X Y Z : Z  (X  Y) = (Z  X)  (Z  Y).
    Proof. unfold_leibniz. apply difference_union_distr_r. Qed.
317
318
319
    Lemma difference_intersection_distr_l_L X Y Z :
      (X  Y)  Z = X  Z  Y  Z.
    Proof. unfold_leibniz. apply difference_intersection_distr_l. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
320
321
    Lemma disjoint_union_difference_L X Y : X  Y =   (X  Y)  X = Y.
    Proof. unfold_leibniz. apply disjoint_union_difference. Qed.
322
323
324
  End leibniz.

  Section dec.
Robbert Krebbers's avatar
Robbert Krebbers committed
325
    Context `{ (x : A) (X : C), Decision (x  X)}.
326
    Lemma not_elem_of_intersection x X Y : x  X  Y  x  X  x  Y.
327
    Proof. rewrite elem_of_intersection. destruct (decide (x  X)); tauto. Qed.
328
    Lemma not_elem_of_difference x X Y : x  X  Y  x  X  x  Y.
329
    Proof. rewrite elem_of_difference. destruct (decide (x  Y)); tauto. Qed.
330
331
    Lemma union_difference X Y : X  Y  Y  X  Y  X.
    Proof.
332
333
      split; intros x; rewrite !elem_of_union, elem_of_difference; [|intuition].
      destruct (decide (x  X)); intuition.
334
335
336
337
338
339
    Qed.
    Lemma non_empty_difference X Y : X  Y  Y  X  .
    Proof.
      intros [HXY1 HXY2] Hdiff. destruct HXY2. intros x.
      destruct (decide (x  X)); esolve_elem_of.
    Qed.
340
341
    Lemma empty_difference_subseteq X Y : X  Y    X  Y.
    Proof. intros ? x ?; apply dec_stable; esolve_elem_of. Qed.
342
343
344
345
346
    Context `{!LeibnizEquiv C}.
    Lemma union_difference_L X Y : X  Y  Y = X  Y  X.
    Proof. unfold_leibniz. apply union_difference. Qed.
    Lemma non_empty_difference_L X Y : X  Y  Y  X  .
    Proof. unfold_leibniz. apply non_empty_difference. Qed.
347
348
    Lemma empty_difference_subseteq_L X Y : X  Y =   X  Y.
    Proof. unfold_leibniz. apply empty_difference_subseteq. Qed.
349
350
351
352
353
354
  End dec.
End collection.

Section collection_ops.
  Context `{CollectionOps A C}.

Robbert Krebbers's avatar
Robbert Krebbers committed
355
356
357
358
359
  Lemma elem_of_intersection_with_list (f : A  A  option A) Xs Y x :
    x  intersection_with_list f Y Xs   xs y,
      Forall2 () xs Xs  y  Y  foldr (λ x, (= f x)) (Some y) xs = Some x.
  Proof.
    split.
360
361
362
363
    * revert x. induction Xs; simpl; intros x HXs; [eexists [], x; intuition|].
      rewrite elem_of_intersection_with in HXs; destruct HXs as (x1&x2&?&?&?).
      destruct (IHXs x2) as (xs & y & hy & ? & ?); trivial.
      eexists (x1 :: xs), y. intuition (simplify_option_equality; auto).
Robbert Krebbers's avatar
Robbert Krebbers committed
364
365
366
367
368
369
370
371
372
373
374
    * intros (xs & y & Hxs & ? & Hx). revert x Hx.
      induction Hxs; intros; simplify_option_equality; [done |].
      rewrite elem_of_intersection_with. naive_solver.
  Qed.

  Lemma intersection_with_list_ind (P Q : A  Prop) f Xs Y :
    ( y, y  Y  P y) 
    Forall (λ X,  x, x  X  Q x) Xs 
    ( x y z, Q x  P y  f x y = Some z  P z) 
     x, x  intersection_with_list f Y Xs  P x.
  Proof.
375
    intros HY HXs Hf. induction Xs; simplify_option_equality; [done |].
Robbert Krebbers's avatar
Robbert Krebbers committed
376
377
378
    intros x Hx. rewrite elem_of_intersection_with in Hx.
    decompose_Forall. destruct Hx as (? & ? & ? & ? & ?). eauto.
  Qed.
379
End collection_ops.
Robbert Krebbers's avatar
Robbert Krebbers committed
380

381
(** * Sets without duplicates up to an equivalence *)
382
Section NoDup.
383
  Context `{SimpleCollection A B} (R : relation A) `{!Equivalence R}.
Robbert Krebbers's avatar
Robbert Krebbers committed
384
385

  Definition elem_of_upto (x : A) (X : B) :=  y, y  X  R x y.
386
  Definition set_NoDup (X : B) :=  x y, x  X  y  X  R x y  x = y.
Robbert Krebbers's avatar
Robbert Krebbers committed
387
388

  Global Instance: Proper (() ==> iff) (elem_of_upto x).
Robbert Krebbers's avatar
Robbert Krebbers committed
389
  Proof. intros ??? E. unfold elem_of_upto. by setoid_rewrite E. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
390
391
392
  Global Instance: Proper (R ==> () ==> iff) elem_of_upto.
  Proof.
    intros ?? E1 ?? E2. split; intros [z [??]]; exists z.
393
394
    * rewrite <-E1, <-E2; intuition.
    * rewrite E1, E2; intuition.
Robbert Krebbers's avatar
Robbert Krebbers committed
395
  Qed.
396
  Global Instance: Proper (() ==> iff) set_NoDup.
Robbert Krebbers's avatar
Robbert Krebbers committed
397
398
399
  Proof. firstorder. Qed.

  Lemma elem_of_upto_elem_of x X : x  X  elem_of_upto x X.
400
  Proof. unfold elem_of_upto. esolve_elem_of. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
401
  Lemma elem_of_upto_empty x : ¬elem_of_upto x .
402
  Proof. unfold elem_of_upto. esolve_elem_of. Qed.
403
  Lemma elem_of_upto_singleton x y : elem_of_upto x {[ y ]}  R x y.
404
  Proof. unfold elem_of_upto. esolve_elem_of. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
405

406
407
  Lemma elem_of_upto_union X Y x :
    elem_of_upto x (X  Y)  elem_of_upto x X  elem_of_upto x Y.
408
  Proof. unfold elem_of_upto. esolve_elem_of. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
409
  Lemma not_elem_of_upto x X : ¬elem_of_upto x X   y, y  X  ¬R x y.
410
  Proof. unfold elem_of_upto. esolve_elem_of. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
411

412
413
414
415
416
417
418
  Lemma set_NoDup_empty: set_NoDup .
  Proof. unfold set_NoDup. solve_elem_of. Qed.
  Lemma set_NoDup_add x X :
    ¬elem_of_upto x X  set_NoDup X  set_NoDup ({[ x ]}  X).
  Proof. unfold set_NoDup, elem_of_upto. esolve_elem_of. Qed.
  Lemma set_NoDup_inv_add x X :
    x  X  set_NoDup ({[ x ]}  X)  ¬elem_of_upto x X.
419
420
  Proof.
    intros Hin Hnodup [y [??]].
421
    rewrite (Hnodup x y) in Hin; solve_elem_of.
422
  Qed.
423
424
425
426
427
  Lemma set_NoDup_inv_union_l X Y : set_NoDup (X  Y)  set_NoDup X.
  Proof. unfold set_NoDup. solve_elem_of. Qed.
  Lemma set_NoDup_inv_union_r X Y : set_NoDup (X  Y)  set_NoDup Y.
  Proof. unfold set_NoDup. solve_elem_of. Qed.
End NoDup.
Robbert Krebbers's avatar
Robbert Krebbers committed
428

429
(** * Quantifiers *)
Robbert Krebbers's avatar
Robbert Krebbers committed
430
Section quantifiers.
431
  Context `{SimpleCollection A B} (P : A  Prop).
Robbert Krebbers's avatar
Robbert Krebbers committed
432

433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
  Definition set_Forall X :=  x, x  X  P x.
  Definition set_Exists X :=  x, x  X  P x.

  Lemma set_Forall_empty : set_Forall .
  Proof. unfold set_Forall. solve_elem_of. Qed.
  Lemma set_Forall_singleton x : set_Forall {[ x ]}  P x.
  Proof. unfold set_Forall. solve_elem_of. Qed.
  Lemma set_Forall_union X Y : set_Forall X  set_Forall Y  set_Forall (X  Y).
  Proof. unfold set_Forall. solve_elem_of. Qed.
  Lemma set_Forall_union_inv_1 X Y : set_Forall (X  Y)  set_Forall X.
  Proof. unfold set_Forall. solve_elem_of. Qed.
  Lemma set_Forall_union_inv_2 X Y : set_Forall (X  Y)  set_Forall Y.
  Proof. unfold set_Forall. solve_elem_of. Qed.

  Lemma set_Exists_empty : ¬set_Exists .
  Proof. unfold set_Exists. esolve_elem_of. Qed.
  Lemma set_Exists_singleton x : set_Exists {[ x ]}  P x.
  Proof. unfold set_Exists. esolve_elem_of. Qed.
  Lemma set_Exists_union_1 X Y : set_Exists X  set_Exists (X  Y).
  Proof. unfold set_Exists. esolve_elem_of. Qed.
  Lemma set_Exists_union_2 X Y : set_Exists Y  set_Exists (X  Y).
  Proof. unfold set_Exists. esolve_elem_of. Qed.
  Lemma set_Exists_union_inv X Y :
    set_Exists (X  Y)  set_Exists X  set_Exists Y.
  Proof. unfold set_Exists. esolve_elem_of. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
458
459
End quantifiers.

460
Section more_quantifiers.
461
  Context `{SimpleCollection A B}.
462

463
464
465
466
467
468
  Lemma set_Forall_weaken (P Q : A  Prop) (Hweaken :  x, P x  Q x) X :
    set_Forall P X  set_Forall Q X.
  Proof. unfold set_Forall. naive_solver. Qed.
  Lemma set_Exists_weaken (P Q : A  Prop) (Hweaken :  x, P x  Q x) X :
    set_Exists P X  set_Exists Q X.
  Proof. unfold set_Exists. naive_solver. Qed.
469
470
End more_quantifiers.

471
472
473
(** * Fresh elements *)
(** We collect some properties on the [fresh] operation. In particular we
generalize [fresh] to generate lists of fresh elements. *)
474
475
476
477
478
479
480
481
482
483
Fixpoint fresh_list `{Fresh A C, Union C, Singleton A C}
    (n : nat) (X : C) : list A :=
  match n with
  | 0 => []
  | S n => let x := fresh X in x :: fresh_list n ({[ x ]}  X)
  end.
Inductive Forall_fresh `{ElemOf A C} (X : C) : list A  Prop :=
  | Forall_fresh_nil : Forall_fresh X []
  | Forall_fresh_cons x xs :
     x  xs  x  X  Forall_fresh X xs  Forall_fresh X (x :: xs).
484

485
486
Section fresh.
  Context `{FreshSpec A C}.
487
  Implicit Types X Y : C.
488

489
  Global Instance fresh_proper: Proper (() ==> (=)) (fresh (C:=C)).
490
  Proof. intros ???. by apply fresh_proper_alt, elem_of_equiv. Qed.
491
492
  Global Instance fresh_list_proper:
    Proper ((=) ==> () ==> (=)) (fresh_list (C:=C)).
493
  Proof.
494
495
    intros ? n ->. induction n as [|n IH]; intros ?? E; f_equal'; [by rewrite E|].
    apply IH. by rewrite E.
496
  Qed.
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511

  Lemma Forall_fresh_NoDup X xs : Forall_fresh X xs  NoDup xs.
  Proof. induction 1; by constructor. Qed.
  Lemma Forall_fresh_elem_of X xs x : Forall_fresh X xs  x  xs  x  X.
  Proof.
    intros HX; revert x; rewrite <-Forall_forall.
    by induction HX; constructor.
  Qed.
  Lemma Forall_fresh_alt X xs :
    Forall_fresh X xs  NoDup xs   x, x  xs  x  X.
  Proof.
    split; eauto using Forall_fresh_NoDup, Forall_fresh_elem_of.
    rewrite <-Forall_forall.
    intros [Hxs Hxs']. induction Hxs; decompose_Forall_hyps; constructor; auto.
  Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
512
513
514
  Lemma Forall_fresh_subseteq X Y xs :
    Forall_fresh X xs  Y  X  Forall_fresh Y xs.
  Proof. rewrite !Forall_fresh_alt; esolve_elem_of. Qed.
515

516
517
  Lemma fresh_list_length n X : length (fresh_list n X) = n.
  Proof. revert X. induction n; simpl; auto. Qed.
518
  Lemma fresh_list_is_fresh n X x : x  fresh_list n X  x  X.
519
  Proof.
520
    revert X. induction n as [|n IH]; intros X; simpl;[by rewrite elem_of_nil|].
521
522
    rewrite elem_of_cons; intros [->| Hin]; [apply is_fresh|].
    apply IH in Hin; solve_elem_of.
523
  Qed.
524
  Lemma NoDup_fresh_list n X : NoDup (fresh_list n X).
525
  Proof.
526
    revert X. induction n; simpl; constructor; auto.
527
528
529
530
531
    intros Hin; apply fresh_list_is_fresh in Hin; solve_elem_of.
  Qed.
  Lemma Forall_fresh_list X n : Forall_fresh X (fresh_list n X).
  Proof.
    rewrite Forall_fresh_alt; eauto using NoDup_fresh_list, fresh_list_is_fresh.
532
533
  Qed.
End fresh.
534

535
(** * Properties of implementations of collections that form a monad *)
536
537
538
Section collection_monad.
  Context `{CollectionMonad M}.

539
540
541
542
543
544
  Global Instance collection_fmap_proper {A B} :
    Proper (pointwise_relation _ (=) ==> () ==> ()) (@fmap M _ A B).
  Proof. intros f g ? X Y [??]; split; esolve_elem_of. Qed.
  Global Instance collection_bind_proper {A B} :
    Proper (((=) ==> ()) ==> () ==> ()) (@mbind M _ A B).
  Proof. unfold respectful; intros f g Hfg X Y [??]; split; esolve_elem_of. Qed.
545
546
  Global Instance collection_join_proper {A} :
    Proper (() ==> ()) (@mjoin M _ A).
Robbert Krebbers's avatar
Robbert Krebbers committed
547
  Proof. intros X Y [??]; split; esolve_elem_of. Qed.
548

549
550
551
552
  Lemma collection_bind_singleton {A B} (f : A  M B) x : {[ x ]} = f  f x.
  Proof. esolve_elem_of. Qed.
  Lemma collection_guard_True {A} `{Decision P} (X : M A) : P  guard P; X  X.
  Proof. esolve_elem_of. Qed.
553
  Lemma collection_fmap_compose {A B C} (f : A  B) (g : B  C) (X : M A) :
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
    g  f <$> X  g <$> (f <$> X).
  Proof. esolve_elem_of. Qed.
  Lemma elem_of_fmap_1 {A B} (f : A  B) (X : M A) (y : B) :
    y  f <$> X   x, y = f x  x  X.
  Proof. esolve_elem_of. Qed.
  Lemma elem_of_fmap_2 {A B} (f : A  B) (X : M A) (x : A) :
    x  X  f x  f <$> X.
  Proof. esolve_elem_of. Qed.
  Lemma elem_of_fmap_2_alt {A B} (f : A  B) (X : M A) (x : A) (y : B) :
    x  X  y = f x  y  f <$> X.
  Proof. esolve_elem_of. Qed.

  Lemma elem_of_mapM {A B} (f : A  M B) l k :
    l  mapM f k  Forall2 (λ x y, x  f y) l k.
  Proof.
    split.
    * revert l. induction k; esolve_elem_of.
    * induction 1; esolve_elem_of.
  Qed.
573
  Lemma collection_mapM_length {A B} (f : A  M B) l k :
574
575
576
    l  mapM f k  length l = length k.
  Proof. revert l; induction k; esolve_elem_of. Qed.
  Lemma elem_of_mapM_fmap {A B} (f : A  B) (g : B  M A) l k :
577
    Forall (λ x,  y, y  g x  f y = x) l  k  mapM g l  fmap f k = l.
578
  Proof.
579
580
    intros Hl. revert k. induction Hl; simpl; intros;
      decompose_elem_of; f_equal'; auto.
581
582
  Qed.
  Lemma elem_of_mapM_Forall {A B} (f : A  M B) (P : B  Prop) l k :
583
    l  mapM f k  Forall (λ x,  y, y  f x  P y) k  Forall P l.
Robbert Krebbers's avatar
Robbert Krebbers committed
584
  Proof. rewrite elem_of_mapM. apply Forall2_Forall_l. Qed.
585
586
  Lemma elem_of_mapM_Forall2_l {A B C} (f : A  M B) (P: B  C  Prop) l1 l2 k :
    l1  mapM f k  Forall2 (λ x y,  z, z  f x  P z y) k l2 
Robbert Krebbers's avatar
Robbert Krebbers committed
587
588
589
590
591
    Forall2 P l1 l2.
  Proof.
    rewrite elem_of_mapM. intros Hl1. revert l2.
    induction Hl1; inversion_clear 1; constructor; auto.
  Qed.
592
End collection_monad.
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622

(** Finite collections *)
Definition set_finite `{ElemOf A B} (X : B) :=  l : list A,  x, x  X  x  l.

Section finite.
  Context `{SimpleCollection A B}.
  Lemma empty_finite : set_finite .
  Proof. by exists []; intros ?; rewrite elem_of_empty. Qed.
  Lemma singleton_finite (x : A) : set_finite {[ x ]}.
  Proof. exists [x]; intros y ->/elem_of_singleton; left. Qed.
  Lemma union_finite X Y : set_finite X  set_finite Y  set_finite (X  Y).
  Proof.
    intros [lX ?] [lY ?]; exists (lX ++ lY); intros x.
    rewrite elem_of_union, elem_of_app; naive_solver.
  Qed.
  Lemma union_finite_inv_l X Y : set_finite (X  Y)  set_finite X.
  Proof. intros [l ?]; exists l; esolve_elem_of. Qed.
  Lemma union_finite_inv_r X Y : set_finite (X  Y)  set_finite Y.
  Proof. intros [l ?]; exists l; esolve_elem_of. Qed.
End finite.

Section more_finite.
  Context `{Collection A B}.
  Lemma intersection_finite_l X Y : set_finite X  set_finite (X  Y).
  Proof. intros [l ?]; exists l; intros x [??]/elem_of_intersection; auto. Qed.
  Lemma intersection_finite_r X Y : set_finite Y  set_finite (X  Y).
  Proof. intros [l ?]; exists l; intros x [??]/elem_of_intersection; auto. Qed.
  Lemma difference_finite X Y : set_finite X  set_finite (X  Y).
  Proof. intros [l ?]; exists l; intros x [??]/elem_of_difference; auto. Qed.
End more_finite.