hashset.v 7.82 KB
Newer Older
Robbert Krebbers's avatar
Robbert Krebbers committed
1
(* Copyright (c) 2012-2015, Robbert Krebbers. *)
2
3
4
5
(* This file is distributed under the terms of the BSD license. *)
(** This file implements finite set using hash maps. Hash sets are represented
using radix-2 search trees. Each hash bucket is thus indexed using an binary
integer of type [Z], and contains an unordered list without duplicates. *)
6
7
Require Export prelude.fin_maps prelude.listset.
Require Import prelude.zmap.
8
9
10
11
12
13
14
15
16
17

Record hashset {A} (hash : A  Z) := Hashset {
  hashset_car : Zmap (list A);
  hashset_prf :
    map_Forall (λ n l, Forall (λ x, hash x = n) l  NoDup l) hashset_car
}.
Arguments Hashset {_ _} _ _.
Arguments hashset_car {_ _} _.

Section hashset.
18
Context `{ x y : A, Decision (x = y)} (hash : A  Z).
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87

Instance hashset_elem_of: ElemOf A (hashset hash) := λ x m,  l,
  hashset_car m !! hash x = Some l  x  l.

Program Instance hashset_empty: Empty (hashset hash) := Hashset  _.
Next Obligation. by intros n X; simpl_map. Qed.
Program Instance hashset_singleton: Singleton A (hashset hash) := λ x,
  Hashset {[ hash x, [x] ]} _.
Next Obligation.
  intros n l. rewrite lookup_singleton_Some. intros [<- <-].
  rewrite Forall_singleton; auto using NoDup_singleton.
Qed.
Program Instance hashset_union: Union (hashset hash) := λ m1 m2,
  let (m1,Hm1) := m1 in let (m2,Hm2) := m2 in
  Hashset (union_with (λ l k, Some (list_union l k)) m1 m2) _. 
Next Obligation.
  intros n l'. rewrite lookup_union_with_Some.
  intros [[??]|[[??]|(l&k&?&?&?)]]; simplify_equality'; auto.
  split; [apply Forall_list_union|apply NoDup_list_union];
    first [by eapply Hm1; eauto | by eapply Hm2; eauto].
Qed.
Program Instance hashset_intersection: Intersection (hashset hash) := λ m1 m2,
  let (m1,Hm1) := m1 in let (m2,Hm2) := m2 in
  Hashset (intersection_with (λ l k,
    let l' := list_intersection l k in guard (l'  []); Some l') m1 m2) _.
Next Obligation.
  intros n l'. rewrite lookup_intersection_with_Some.
  intros (?&?&?&?&?); simplify_option_equality.
  split; [apply Forall_list_intersection|apply NoDup_list_intersection];
    first [by eapply Hm1; eauto | by eapply Hm2; eauto].
Qed.
Program Instance hashset_difference: Difference (hashset hash) := λ m1 m2,
  let (m1,Hm1) := m1 in let (m2,Hm2) := m2 in
  Hashset (difference_with (λ l k,
    let l' := list_difference l k in guard (l'  []); Some l') m1 m2) _.
Next Obligation.
  intros n l'. rewrite lookup_difference_with_Some.
  intros [[??]|(?&?&?&?&?)]; simplify_option_equality; auto.
  split; [apply Forall_list_difference|apply NoDup_list_difference];
    first [by eapply Hm1; eauto | by eapply Hm2; eauto].
Qed.
Instance hashset_elems: Elements A (hashset hash) := λ m,
  map_to_list (hashset_car m) = snd.

Global Instance: FinCollection A (hashset hash).
Proof.
  split; [split; [split| |]| |].
  * intros ? (?&?&?); simplify_map_equality'.
  * unfold elem_of, hashset_elem_of, singleton, hashset_singleton; simpl.
    intros x y. setoid_rewrite lookup_singleton_Some. split.
    { by intros (?&[? <-]&?); decompose_elem_of_list. }
    intros ->; eexists [y]. by rewrite elem_of_list_singleton.
  * unfold elem_of, hashset_elem_of, union, hashset_union.
    intros [m1 Hm1] [m2 Hm2] x; simpl; setoid_rewrite lookup_union_with_Some.
    split.
    { intros (?&[[]|[[]|(l&k&?&?&?)]]&Hx); simplify_equality'; eauto.
      rewrite elem_of_list_union in Hx; destruct Hx; eauto. }
    intros [(l&?&?)|(k&?&?)].
    + destruct (m2 !! hash x) as [k|]; eauto.
      exists (list_union l k). rewrite elem_of_list_union. naive_solver.
    + destruct (m1 !! hash x) as [l|]; eauto 6.
      exists (list_union l k). rewrite elem_of_list_union. naive_solver.
  * unfold elem_of, hashset_elem_of, intersection, hashset_intersection.
    intros [m1 ?] [m2 ?] x; simpl.
    setoid_rewrite lookup_intersection_with_Some. split.
    { intros (?&(l&k&?&?&?)&Hx); simplify_option_equality.
      rewrite elem_of_list_intersection in Hx; naive_solver. }
    intros [(l&?&?) (k&?&?)]. assert (x  list_intersection l k)
      by (by rewrite elem_of_list_intersection).
88
    exists (list_intersection l k); split; [exists l, k|]; split_ands; auto.
89
90
91
92
93
94
95
96
97
    by rewrite option_guard_True by eauto using elem_of_not_nil.
  * unfold elem_of, hashset_elem_of, intersection, hashset_intersection.
    intros [m1 ?] [m2 ?] x; simpl.
    setoid_rewrite lookup_difference_with_Some. split.
    { intros (l'&[[??]|(l&k&?&?&?)]&Hx); simplify_option_equality;
        rewrite ?elem_of_list_difference in Hx; naive_solver. }
    intros [(l&?&?) Hm2]; destruct (m2 !! hash x) as [k|] eqn:?; eauto.
    destruct (decide (x  k)); [destruct Hm2; eauto|].
    assert (x  list_difference l k) by (by rewrite elem_of_list_difference).
98
    exists (list_difference l k); split; [right; exists l,k|]; split_ands; auto.
99
100
101
102
103
104
105
106
107
108
    by rewrite option_guard_True by eauto using elem_of_not_nil.
  * unfold elem_of at 2, hashset_elem_of, elements, hashset_elems.
    intros [m Hm] x; simpl. setoid_rewrite elem_of_list_bind. split.
    { intros ([n l]&Hx&Hn); simpl in *; rewrite elem_of_map_to_list in Hn.
      cut (hash x = n); [intros <-; eauto|].
      eapply (Forall_forall (λ x, hash x = n) l); eauto. eapply Hm; eauto. }
    intros (l&?&?). exists (hash x, l); simpl. by rewrite elem_of_map_to_list.
  * unfold elements, hashset_elems. intros [m Hm]; simpl.
    rewrite map_Forall_to_list in Hm. generalize (NoDup_fst_map_to_list m).
    induction Hm as [|[n l] m' [??]];
109
      csimpl; inversion_clear 1 as [|?? Hn]; [constructor|].
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
    apply NoDup_app; split_ands; eauto.
    setoid_rewrite elem_of_list_bind; intros x ? ([n' l']&?&?); simpl in *.
    assert (hash x = n  hash x = n') as [??]; subst.
    { split; [eapply (Forall_forall (λ x, hash x = n) l); eauto|].
      eapply (Forall_forall (λ x, hash x = n') l'); eauto.
      rewrite Forall_forall in Hm. eapply (Hm (_,_)); eauto. }
    destruct Hn; rewrite elem_of_list_fmap; exists (hash x, l'); eauto.
Qed.
End hashset.

(** These instances are declared using [Hint Extern] to avoid too
eager type class search. *)
Hint Extern 1 (ElemOf _ (hashset _)) =>
  eapply @hashset_elem_of : typeclass_instances.
Hint Extern 1 (Empty (hashset _)) =>
  eapply @hashset_empty : typeclass_instances.
Hint Extern 1 (Singleton _ (hashset _)) =>
  eapply @hashset_singleton : typeclass_instances.
Hint Extern 1 (Union (hashset _)) =>
  eapply @hashset_union : typeclass_instances.
Hint Extern 1 (Intersection (hashset _)) =>
  eapply @hashset_intersection : typeclass_instances.
Hint Extern 1 (Difference (hashset _)) =>
  eapply @hashset_difference : typeclass_instances.
Hint Extern 1 (Elements _ (hashset _)) =>
  eapply @hashset_elems : typeclass_instances.
136
137
138
139
140
141
142
143
144

Section remove_duplicates.
Context `{ x y : A, Decision (x = y)} (hash : A  Z).

Definition remove_dups_fast (l : list A) : list A :=
  match l with
  | [] => []
  | [x] => [x]
  | _ =>
Robbert Krebbers's avatar
Robbert Krebbers committed
145
     let n : Z := length l in
146
     elements (foldr (λ x, ({[ x ]} ))  l :
Robbert Krebbers's avatar
Robbert Krebbers committed
147
       hashset (λ x, hash x `mod` (2 * n))%Z)
148
149
150
151
152
  end.
Lemma elem_of_remove_dups_fast l x : x  remove_dups_fast l  x  l.
Proof.
  destruct l as [|x1 [|x2 l]]; try reflexivity.
  unfold remove_dups_fast; generalize (x1 :: x2 :: l); clear l; intros l.
Robbert Krebbers's avatar
Robbert Krebbers committed
153
  generalize (λ x, hash x `mod` (2 * length l))%Z; intros f.
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
  rewrite elem_of_elements; split.
  * revert x. induction l as [|y l IH]; intros x; simpl.
    { by rewrite elem_of_empty. }
    rewrite elem_of_union, elem_of_singleton. intros [->|]; [left|right]; eauto.
  * induction 1; esolve_elem_of.
Qed.
Lemma NoDup_remove_dups_fast l : NoDup (remove_dups_fast l).
Proof.
  unfold remove_dups_fast; destruct l as [|x1 [|x2 l]].
  apply NoDup_nil_2. apply NoDup_singleton. apply NoDup_elements.
Qed.
Definition listset_normalize (X : listset A) : listset A :=
  let (l) := X in Listset (remove_dups_fast l).
Lemma listset_normalize_correct X : listset_normalize X  X.
Proof.
  destruct X as [l]. apply elem_of_equiv; intro; apply elem_of_remove_dups_fast.
Qed.
End remove_duplicates.