base.v 27.2 KB
Newer Older
1
2
3
4
5
6
(* Copyright (c) 2012, Robbert Krebbers. *)
(* This file is distributed under the terms of the BSD license. *)
(** This file collects type class interfaces, notations, and general theorems
that are used throughout the whole development. Most importantly it contains
abstract interfaces for ordered structures, collections, and various other data
structures. *)
Robbert Krebbers's avatar
Robbert Krebbers committed
7
8
9
10
Global Generalizable All Variables.
Global Set Automatic Coercions Import.
Require Export Morphisms RelationClasses List Bool Utf8 Program Setoid NArith.

11
12
13
14
(** * General *)
(** The following coercion allows us to use Booleans as propositions. *)
Coercion Is_true : bool >-> Sortclass.

Robbert Krebbers's avatar
Robbert Krebbers committed
15
16
(** Ensure that [simpl] unfolds [id], [compose], and [flip] when fully
applied. *)
17
18
Arguments id _ _/.
Arguments compose _ _ _ _ _ _ /.
Robbert Krebbers's avatar
Robbert Krebbers committed
19
Arguments flip _ _ _ _ _ _/.
20

21
22
23
24
(** Change [True] and [False] into notations in order to enable overloading.
We will use this in the file [assertions] to give [True] and [False] a
different interpretation in [assert_scope] used for assertions of our axiomatic
semantics. *)
25
26
Notation "'True'" := True : type_scope.
Notation "'False'" := False : type_scope.
Robbert Krebbers's avatar
Robbert Krebbers committed
27

Robbert Krebbers's avatar
Robbert Krebbers committed
28
29
30
Notation curry := prod_curry.
Notation uncurry := prod_uncurry.

31
32
(** Throughout this development we use [C_scope] for all general purpose
notations that do not belong to a more specific scope. *)
Robbert Krebbers's avatar
Robbert Krebbers committed
33
34
35
Delimit Scope C_scope with C.
Global Open Scope C_scope.

36
(** Introduce some Haskell style like notations. *)
Robbert Krebbers's avatar
Robbert Krebbers committed
37
38
39
40
41
42
43
44
45
Notation "(=)" := eq (only parsing) : C_scope.
Notation "( x =)" := (eq x) (only parsing) : C_scope.
Notation "(= x )" := (λ y, eq y x) (only parsing) : C_scope.
Notation "(≠)" := (λ x y, x  y) (only parsing) : C_scope.
Notation "( x ≠)" := (λ y, x  y) (only parsing) : C_scope.
Notation "(≠ x )" := (λ y, y  x) (only parsing) : C_scope.

Hint Extern 0 (?x = ?x) => reflexivity.

46
47
48
Notation "(→)" := (λ x y, x  y) (only parsing) : C_scope.
Notation "( T →)" := (λ y, T  y) (only parsing) : C_scope.
Notation "(→ T )" := (λ y, y  T) (only parsing) : C_scope.
49

50
Notation "t $ r" := (t r)
51
  (at level 65, right associativity, only parsing) : C_scope.
52
53
54
Notation "($)" := (λ f x, f x) (only parsing) : C_scope.
Notation "($ x )" := (λ f, f x) (only parsing) : C_scope.

Robbert Krebbers's avatar
Robbert Krebbers committed
55
56
57
58
Infix "∘" := compose : C_scope.
Notation "(∘)" := compose (only parsing) : C_scope.
Notation "( f ∘)" := (compose f) (only parsing) : C_scope.
Notation "(∘ f )" := (λ g, compose g f) (only parsing) : C_scope.
59
60
61

(** Set convenient implicit arguments for [existT] and introduce notations. *)
Arguments existT {_ _} _ _.
Robbert Krebbers's avatar
Robbert Krebbers committed
62
63
64
Notation "x ↾ p" := (exist _ x p) (at level 20) : C_scope.
Notation "` x" := (proj1_sig x) : C_scope.

65
66
67
68
(** * Type classes *)
(** ** Provable propositions *)
(** This type class collects provable propositions. It is useful to constraint
type classes by arbitrary propositions. *)
Robbert Krebbers's avatar
Robbert Krebbers committed
69
70
Class PropHolds (P : Prop) := prop_holds: P.

71
72
Hint Extern 0 (PropHolds _) => assumption : typeclass_instances.
Instance: Proper (iff ==> iff) PropHolds.
73
Proof. repeat intro; trivial. Qed.
74
75
76

Ltac solve_propholds :=
  match goal with
77
78
  | |- PropHolds (?P) => apply _
  | |- ?P => change (PropHolds P); apply _
79
80
81
82
83
84
85
  end.

(** ** Decidable propositions *)
(** This type class by (Spitters/van der Weegen, 2011) collects decidable
propositions. For example to declare a parameter expressing decidable equality
on a type [A] we write [`{∀ x y : A, Decision (x = y)}] and use it by writing
[decide (x = y)]. *)
Robbert Krebbers's avatar
Robbert Krebbers committed
86
87
88
Class Decision (P : Prop) := decide : {P} + {¬P}.
Arguments decide _ {_}.

89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
(** ** Inhabited types *)
(** This type class collects types that are inhabited. *)
Class Inhabited (A : Type) : Prop := populate { _ : A }.
Arguments populate {_} _.

Instance unit_inhabited: Inhabited unit := populate ().
Instance list_inhabited {A} : Inhabited (list A) := populate [].
Instance prod_inhabited {A B} (iA : Inhabited A)
    (iB : Inhabited B) : Inhabited (A * B) :=
  match iA, iB with
  | populate x, populate y => populate (x,y)
  end.
Instance sum_inhabited_l {A B} (iA : Inhabited A) : Inhabited (A + B) :=
  match iA with
  | populate x => populate (inl x)
  end.
Instance sum_inhabited_r {A B} (iB : Inhabited A) : Inhabited (A + B) :=
  match iB with
  | populate y => populate (inl y)
  end.
Instance option_inhabited {A} : Inhabited (option A) := populate None.

111
112
113
(** ** Setoid equality *)
(** We define an operational type class for setoid equality. This is based on
(Spitters/van der Weegen, 2011). *)
Robbert Krebbers's avatar
Robbert Krebbers committed
114
115
116
117
118
119
120
121
122
123
Class Equiv A := equiv: relation A.
Infix "≡" := equiv (at level 70, no associativity) : C_scope.
Notation "(≡)" := equiv (only parsing) : C_scope.
Notation "( x ≡)" := (equiv x) (only parsing) : C_scope.
Notation "(≡ x )" := (λ y, y  x) (only parsing) : C_scope.
Notation "(≢)" := (λ x y, ¬x  y) (only parsing) : C_scope.
Notation "x ≢ y":= (¬x  y) (at level 70, no associativity) : C_scope.
Notation "( x ≢)" := (λ y, x  y) (only parsing) : C_scope.
Notation "(≢ x )" := (λ y, y  x) (only parsing) : C_scope.

124
125
126
127
128
129
130
131
(** A [Params f n] instance forces the setoid rewriting mechanism not to
rewrite in the first [n] arguments of the function [f]. We will declare such
instances for all operational type classes in this development. *)
Instance: Params (@equiv) 2.

(** The following instance forces [setoid_replace] to use setoid equality
(for types that have an [Equiv] instance) rather than the standard Leibniz
equality. *)
Robbert Krebbers's avatar
Robbert Krebbers committed
132
Instance equiv_default_relation `{Equiv A} : DefaultRelation () | 3.
133
134
Hint Extern 0 (_  _) => reflexivity.
Hint Extern 0 (_  _) => symmetry; assumption.
Robbert Krebbers's avatar
Robbert Krebbers committed
135

136
(** ** Operations on collections *)
137
(** We define operational type classes for the traditional operations and
138
relations on collections: the empty collection [∅], the union [(∪)],
139
140
intersection [(∩)], and difference [(∖)], the singleton [{[_]}], the subset
[(⊆)] and element of [(∈)] relation, and disjointess [(⊥)]. *)
Robbert Krebbers's avatar
Robbert Krebbers committed
141
142
143
144
Class Empty A := empty: A.
Notation "∅" := empty : C_scope.

Class Union A := union: A  A  A.
145
Instance: Params (@union) 2.
Robbert Krebbers's avatar
Robbert Krebbers committed
146
147
148
149
150
Infix "∪" := union (at level 50, left associativity) : C_scope.
Notation "(∪)" := union (only parsing) : C_scope.
Notation "( x ∪)" := (union x) (only parsing) : C_scope.
Notation "(∪ x )" := (λ y, union y x) (only parsing) : C_scope.

151
152
153
154
155
Definition union_list `{Empty A}
  `{Union A} : list A  A := fold_right () .
Arguments union_list _ _ _ !_ /.
Notation "⋃ l" := (union_list l) (at level 20, format "⋃  l") : C_scope.

Robbert Krebbers's avatar
Robbert Krebbers committed
156
Class Intersection A := intersection: A  A  A.
157
Instance: Params (@intersection) 2.
Robbert Krebbers's avatar
Robbert Krebbers committed
158
159
160
161
162
163
Infix "∩" := intersection (at level 40) : C_scope.
Notation "(∩)" := intersection (only parsing) : C_scope.
Notation "( x ∩)" := (intersection x) (only parsing) : C_scope.
Notation "(∩ x )" := (λ y, intersection y x) (only parsing) : C_scope.

Class Difference A := difference: A  A  A.
164
Instance: Params (@difference) 2.
Robbert Krebbers's avatar
Robbert Krebbers committed
165
166
167
168
169
Infix "∖" := difference (at level 40) : C_scope.
Notation "(∖)" := difference (only parsing) : C_scope.
Notation "( x ∖)" := (difference x) (only parsing) : C_scope.
Notation "(∖ x )" := (λ y, difference y x) (only parsing) : C_scope.

170
171
172
173
174
175
Class Singleton A B := singleton: A  B.
Instance: Params (@singleton) 3.
Notation "{[ x ]}" := (singleton x) : C_scope.
Notation "{[ x ; y ; .. ; z ]}" :=
  (union .. (union (singleton x) (singleton y)) .. (singleton z)) : C_scope.

Robbert Krebbers's avatar
Robbert Krebbers committed
176
Class SubsetEq A := subseteq: A  A  Prop.
177
Instance: Params (@subseteq) 2.
Robbert Krebbers's avatar
Robbert Krebbers committed
178
179
180
181
182
183
184
185
186
Infix "⊆" := subseteq (at level 70) : C_scope.
Notation "(⊆)" := subseteq (only parsing) : C_scope.
Notation "( X ⊆ )" := (subseteq X) (only parsing) : C_scope.
Notation "( ⊆ X )" := (λ Y, subseteq Y X) (only parsing) : C_scope.
Notation "X ⊈ Y" := (¬X  Y) (at level 70) : C_scope.
Notation "(⊈)" := (λ X Y, X  Y) (only parsing) : C_scope.
Notation "( X ⊈ )" := (λ Y, X  Y) (only parsing) : C_scope.
Notation "( ⊈ X )" := (λ Y, Y  X) (only parsing) : C_scope.

187
Hint Extern 0 (_  _) => reflexivity.
Robbert Krebbers's avatar
Robbert Krebbers committed
188

Robbert Krebbers's avatar
Robbert Krebbers committed
189
190
191
192
193
194
195
196
197
198
199
Class Subset A := subset: A  A  Prop.
Instance: Params (@subset) 2.
Infix "⊂" := subset (at level 70) : C_scope.
Notation "(⊂)" := subset (only parsing) : C_scope.
Notation "( X ⊂ )" := (subset X) (only parsing) : C_scope.
Notation "( ⊂ X )" := (λ Y, subset Y X) (only parsing) : C_scope.
Notation "X ⊄  Y" := (¬X  Y) (at level 70) : C_scope.
Notation "(⊄)" := (λ X Y, X  Y) (only parsing) : C_scope.
Notation "( X ⊄ )" := (λ Y, X  Y) (only parsing) : C_scope.
Notation "( ⊄ X )" := (λ Y, Y  X) (only parsing) : C_scope.

Robbert Krebbers's avatar
Robbert Krebbers committed
200
Class ElemOf A B := elem_of: A  B  Prop.
201
Instance: Params (@elem_of) 3.
Robbert Krebbers's avatar
Robbert Krebbers committed
202
203
204
205
206
207
208
209
210
Infix "∈" := elem_of (at level 70) : C_scope.
Notation "(∈)" := elem_of (only parsing) : C_scope.
Notation "( x ∈)" := (elem_of x) (only parsing) : C_scope.
Notation "(∈ X )" := (λ x, elem_of x X) (only parsing) : C_scope.
Notation "x ∉ X" := (¬x  X) (at level 80) : C_scope.
Notation "(∉)" := (λ x X, x  X) (only parsing) : C_scope.
Notation "( x ∉)" := (λ X, x  X) (only parsing) : C_scope.
Notation "(∉ X )" := (λ x, x  X) (only parsing) : C_scope.

Robbert Krebbers's avatar
Robbert Krebbers committed
211
212
213
214
215
216
217
Class Disjoint A := disjoint : A  A  Prop.
Instance: Params (@disjoint) 2.
Infix "⊥" := disjoint (at level 70) : C_scope.
Notation "(⊥)" := disjoint (only parsing) : C_scope.
Notation "( X ⊥)" := (disjoint X) (only parsing) : C_scope.
Notation "(⊥ X )" := (λ Y, disjoint Y X) (only parsing) : C_scope.

218
219
220
221
222
223
224
225
226
227
228
229
Inductive list_disjoint `{Disjoint A} : list A  Prop :=
  | disjoint_nil :
     list_disjoint []
  | disjoint_cons X Xs :
     Forall ( X) Xs 
     list_disjoint Xs 
     list_disjoint (X :: Xs).
Lemma list_disjoint_cons_inv `{Disjoint A} X Xs :
  list_disjoint (X :: Xs) 
  Forall ( X) Xs  list_disjoint Xs.
Proof. inversion_clear 1; auto. Qed.

230
231
232
Instance generic_disjoint `{ElemOf A B} : Disjoint B | 100 :=
  λ X Y,  x, x  X  x  Y.

Robbert Krebbers's avatar
Robbert Krebbers committed
233
234
235
236
Class Filter A B :=
  filter:  (P : A  Prop) `{ x, Decision (P x)}, B  B.
(* Arguments filter {_ _ _} _ {_} !_ / : simpl nomatch. *)

237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
(** ** Monadic operations *)
(** We define operational type classes for the monadic operations bind, join 
and fmap. These type classes are defined in a non-standard way by taking the
function as a parameter of the class. For example, we define
<<
  Class FMapD := fmap: ∀ {A B}, (A → B) → M A → M B.
>>
instead of
<<
  Class FMap {A B} (f : A → B) := fmap: M A → M B.
>>
This approach allows us to define [fmap] on lists such that [simpl] unfolds it
in the appropriate way, and so that it can be used for mutual recursion
(the mapped function [f] is not part of the fixpoint) as well. This is a hack,
and should be replaced by something more appropriate in future versions. *)

(* We use these type classes merely for convenient overloading of notations and
do not formalize any theory on monads (we do not even define a class with the
monad laws). *)
Class MRet (M : Type  Type) := mret:  {A}, A  M A.
Instance: Params (@mret) 3.
Arguments mret {_ _ _} _.

Class MBindD (M : Type  Type) {A B} (f : A  M B) := mbind: M A  M B.
Notation MBind M := ( {A B} (f : A  M B), MBindD M f)%type.
Instance: Params (@mbind) 5.
Arguments mbind {_ _ _} _ {_} !_ / : simpl nomatch.

Class MJoin (M : Type  Type) := mjoin:  {A}, M (M A)  M A.
Instance: Params (@mjoin) 3.
Arguments mjoin {_ _ _} !_ / : simpl nomatch.

Class FMapD (M : Type  Type) {A B} (f : A  B) := fmap: M A  M B.
Notation FMap M := ( {A B} (f : A  B), FMapD M f)%type.
Instance: Params (@fmap) 6.
Arguments fmap {_ _ _} _ {_} !_ / : simpl nomatch.

Notation "m ≫= f" := (mbind f m) (at level 60, right associativity) : C_scope.
Robbert Krebbers's avatar
Robbert Krebbers committed
275
276
277
278
Notation "( m ≫=)" := (λ f, mbind f m) (only parsing) : C_scope.
Notation "(≫= f )" := (mbind f) (only parsing) : C_scope.
Notation "(≫=)" := (λ m f, mbind f m) (only parsing) : C_scope.

279
280
Notation "x ← y ; z" := (y = (λ x : _, z))
  (at level 65, only parsing, next at level 35, right associativity) : C_scope.
Robbert Krebbers's avatar
Robbert Krebbers committed
281
Infix "<$>" := fmap (at level 65, right associativity) : C_scope.
282
283
284
285
286
287

Class MGuard (M : Type  Type) :=
  mguard:  P {dec : Decision P} {A}, M A  M A.
Notation "'guard' P ; o" := (mguard P o)
  (at level 65, only parsing, next at level 35, right associativity) : C_scope.

288
(** ** Operations on maps *)
289
290
(** In this section we define operational type classes for the operations
on maps. In the file [fin_maps] we will axiomatize finite maps.
291
The function lookup [m !! k] should yield the element at key [k] in [m]. *)
Robbert Krebbers's avatar
Robbert Krebbers committed
292
Class Lookup (K A M : Type) :=
293
  lookup: K  M  option A.
294
295
296
297
298
299
Instance: Params (@lookup) 4.

Notation "m !! i" := (lookup i m) (at level 20) : C_scope.
Notation "(!!)" := lookup (only parsing) : C_scope.
Notation "( m !!)" := (λ i, lookup i m) (only parsing) : C_scope.
Notation "(!! i )" := (lookup i) (only parsing) : C_scope.
300
Arguments lookup _ _ _ _ !_ !_ / : simpl nomatch.
301
302
303

(** The function insert [<[k:=a]>m] should update the element at key [k] with
value [a] in [m]. *)
Robbert Krebbers's avatar
Robbert Krebbers committed
304
Class Insert (K A M : Type) :=
305
  insert: K  A  M  M.
306
307
308
Instance: Params (@insert) 4.
Notation "<[ k := a ]>" := (insert k a)
  (at level 5, right associativity, format "<[ k := a ]>") : C_scope.
309
Arguments insert _ _ _ _ !_ _ !_ / : simpl nomatch.
310

311
312
313
(** The function delete [delete k m] should delete the value at key [k] in
[m]. If the key [k] is not a member of [m], the original map should be
returned. *)
314
315
316
317
Class Delete (K M : Type) :=
  delete: K  M  M.
Instance: Params (@delete) 3.
Arguments delete _ _ _ !_ !_ / : simpl nomatch.
318
319

(** The function [alter f k m] should update the value at key [k] using the
320
function [f], which is called with the original value. *)
Robbert Krebbers's avatar
Robbert Krebbers committed
321
Class AlterD (K A M : Type) (f : A  A) :=
322
  alter: K  M  M.
Robbert Krebbers's avatar
Robbert Krebbers committed
323
Notation Alter K A M := ( (f : A  A), AlterD K A M f)%type.
324
325
Instance: Params (@alter) 5.
Arguments alter {_ _ _} _ {_} !_ !_ / : simpl nomatch.
326
327

(** The function [alter f k m] should update the value at key [k] using the
328
329
330
function [f], which is called with the original value at key [k] or [None]
if [k] is not a member of [m]. The value at [k] should be deleted if [f] 
yields [None]. *)
Robbert Krebbers's avatar
Robbert Krebbers committed
331
Class PartialAlter (K A M : Type) :=
332
  partial_alter: (option A  option A)  K  M  M.
333
Instance: Params (@partial_alter) 4.
334
Arguments partial_alter _ _ _ _ _ !_ !_ / : simpl nomatch.
335
336
337

(** The function [dom C m] should yield the domain of [m]. That is a finite
collection of type [C] that contains the keys that are a member of [m]. *)
338
339
340
341
Class Dom (K M : Type) :=
  dom:  C `{Empty C} `{Union C} `{Singleton K C}, M  C.
Instance: Params (@dom) 7.
Arguments dom _ _ _ _ _ _ _ !_ / : simpl nomatch.
342
343
344
345

(** The function [merge f m1 m2] should merge the maps [m1] and [m2] by
constructing a new map whose value at key [k] is [f (m1 !! k) (m2 !! k)]
provided that [k] is a member of either [m1] or [m2].*)
Robbert Krebbers's avatar
Robbert Krebbers committed
346
347
Class Merge (A M : Type) :=
  merge: (option A  option A  option A)  M  M  M.
348
Instance: Params (@merge) 3.
349
Arguments merge _ _ _ _ !_ !_ / : simpl nomatch.
350
351

(** We lift the insert and delete operation to lists of elements. *)
Robbert Krebbers's avatar
Robbert Krebbers committed
352
Definition insert_list `{Insert K A M} (l : list (K * A)) (m : M) : M :=
353
354
  fold_right (λ p, <[ fst p := snd p ]>) m l.
Instance: Params (@insert_list) 4.
355
Definition delete_list `{Delete K M} (l : list K) (m : M) : M :=
356
  fold_right delete m l.
357
358
Instance: Params (@delete_list) 3.

Robbert Krebbers's avatar
Robbert Krebbers committed
359
Definition insert_consecutive `{Insert nat A M}
360
361
362
    (i : nat) (l : list A) (m : M) : M :=
  fold_right (λ x f i, <[i:=x]>(f (S i))) (λ _, m) l i.
Instance: Params (@insert_consecutive) 3.
363

Robbert Krebbers's avatar
Robbert Krebbers committed
364
365
366
367
368
(** The function [union_with f m1 m2] is supposed to yield the union of [m1]
and [m2] using the function [f] to combine values of members that are in
both [m1] and [m2]. *)
Class UnionWith (A M : Type) :=
  union_with: (A  A  option A)  M  M  M.
369
370
Instance: Params (@union_with) 3.

Robbert Krebbers's avatar
Robbert Krebbers committed
371
372
373
(** Similarly for intersection and difference. *)
Class IntersectionWith (A M : Type) :=
  intersection_with: (A  A  option A)  M  M  M.
374
Instance: Params (@intersection_with) 3.
Robbert Krebbers's avatar
Robbert Krebbers committed
375
376
Class DifferenceWith (A M : Type) :=
  difference_with: (A  A  option A)  M  M  M.
377
Instance: Params (@difference_with) 3.
Robbert Krebbers's avatar
Robbert Krebbers committed
378

Robbert Krebbers's avatar
Robbert Krebbers committed
379
380
381
382
Definition intersection_with_list `{IntersectionWith A M}
  (f : A  A  option A) : M  list M  M := fold_right (intersection_with f).
Arguments intersection_with_list _ _ _ _ _ !_ /.

383
384
385
386
(** ** Common properties *)
(** These operational type classes allow us to refer to common mathematical
properties in a generic way. For example, for injectivity of [(k ++)] it
allows us to write [injective (k ++)] instead of [app_inv_head k]. *)
387
388
389
390
391
392
393
394
395
396
397
398
Class Injective {A B} R S (f : A  B) :=
  injective:  x y : A, S (f x) (f y)  R x y.
Class Idempotent {A} R (f : A  A  A) :=
  idempotent:  x, R (f x x) x.
Class Commutative {A B} R (f : B  B  A) :=
  commutative:  x y, R (f x y) (f y x).
Class LeftId {A} R (i : A) (f : A  A  A) :=
  left_id:  x, R (f i x) x.
Class RightId {A} R (i : A) (f : A  A  A) :=
  right_id:  x, R (f x i) x.
Class Associative {A} R (f : A  A  A) :=
  associative:  x y z, R (f x (f y z)) (f (f x y) z).
399
400
401
402
Class LeftAbsorb {A} R (i : A) (f : A  A  A) :=
  left_absorb:  x, R (f i x) i.
Class RightAbsorb {A} R (i : A) (f : A  A  A) :=
  right_absorb:  x, R (f x i) i.
Robbert Krebbers's avatar
Robbert Krebbers committed
403
404
Class AntiSymmetric {A} (R : A  A  Prop) :=
  anti_symmetric:  x y, R x y  R y x  x = y.
Robbert Krebbers's avatar
Robbert Krebbers committed
405
406
407
408
409
410
411

Arguments injective {_ _ _ _} _ {_} _ _ _.
Arguments idempotent {_ _} _ {_} _.
Arguments commutative {_ _ _} _ {_} _ _.
Arguments left_id {_ _} _ _ {_} _.
Arguments right_id {_ _} _ _ {_} _.
Arguments associative {_ _} _ {_} _ _ _.
412
413
Arguments left_absorb {_ _} _ _ {_} _.
Arguments right_absorb {_ _} _ _ {_} _.
Robbert Krebbers's avatar
Robbert Krebbers committed
414
Arguments anti_symmetric {_} _ {_} _ _ _ _.
Robbert Krebbers's avatar
Robbert Krebbers committed
415

416
417
418
(** The following lemmas are more specific versions of the projections of the
above type classes. These lemmas allow us to enforce Coq not to use the setoid
rewriting mechanism. *)
419
420
Lemma idempotent_eq {A} (f : A  A  A) `{!Idempotent (=) f} x :
  f x x = x.
421
Proof. auto. Qed.
422
423
Lemma commutative_eq {A B} (f : B  B  A) `{!Commutative (=) f} x y :
  f x y = f y x.
424
Proof. auto. Qed.
425
426
Lemma left_id_eq {A} (i : A) (f : A  A  A) `{!LeftId (=) i f} x :
  f i x = x.
427
Proof. auto. Qed.
428
429
Lemma right_id_eq {A} (i : A) (f : A  A  A) `{!RightId (=) i f} x :
  f x i = x.
430
Proof. auto. Qed.
431
432
Lemma associative_eq {A} (f : A  A  A) `{!Associative (=) f} x y z :
  f x (f y z) = f (f x y) z.
433
Proof. auto. Qed.
434
435
436
437
438
439
Lemma left_absorb_eq {A} (i : A) (f : A  A  A) `{!LeftAbsorb (=) i f} x :
  f i x = i.
Proof. auto. Qed.
Lemma right_absorb_eq {A} (i : A) (f : A  A  A) `{!RightAbsorb (=) i f} x :
  f x i = i.
Proof. auto. Qed.
440

441
442
(** ** Axiomatization of ordered structures *)
(** A pre-order equiped with a smallest element. *)
Robbert Krebbers's avatar
Robbert Krebbers committed
443
444
445
446
Class BoundedPreOrder A `{Empty A} `{SubsetEq A} := {
  bounded_preorder :>> PreOrder ();
  subseteq_empty x :   x
}.
Robbert Krebbers's avatar
Robbert Krebbers committed
447
448
449
450
Class PartialOrder A `{SubsetEq A} := {
  po_preorder :>> PreOrder ();
  po_antisym :> AntiSymmetric ()
}.
Robbert Krebbers's avatar
Robbert Krebbers committed
451

452
453
454
455
(** We do not include equality in the following interfaces so as to avoid the
need for proofs that the  relations and operations respect setoid equality.
Instead, we will define setoid equality in a generic way as
[λ X Y, X ⊆ Y ∧ Y ⊆ X]. *)
Robbert Krebbers's avatar
Robbert Krebbers committed
456
Class BoundedJoinSemiLattice A `{Empty A} `{SubsetEq A} `{Union A} := {
457
  bjsl_preorder :>> BoundedPreOrder A;
Robbert Krebbers's avatar
Robbert Krebbers committed
458
459
460
461
462
463
464
465
466
467
  subseteq_union_l x y : x  x  y;
  subseteq_union_r x y : y  x  y;
  union_least x y z : x  z  y  z  x  y  z
}.
Class MeetSemiLattice A `{Empty A} `{SubsetEq A} `{Intersection A} := {
  msl_preorder :>> BoundedPreOrder A;
  subseteq_intersection_l x y : x  y  x;
  subseteq_intersection_r x y : x  y  y;
  intersection_greatest x y z : z  x  z  y  z  x  y
}.
468
469
470
471
472
Class LowerBoundedLattice A `{Empty A} `{SubsetEq A}
    `{Union A} `{Intersection A} := {
  lbl_bjsl :>> BoundedJoinSemiLattice A;
  lbl_msl :>> MeetSemiLattice A
}.
473
(** ** Axiomatization of collections *)
474
475
(** The class [SimpleCollection A C] axiomatizes a collection of type [C] with
elements of type [A]. *)
476
Instance: Params (@map) 3.
477
478
Class SimpleCollection A C `{ElemOf A C}
  `{Empty C} `{Singleton A C} `{Union C} := {
479
  not_elem_of_empty (x : A) : x  ;
480
  elem_of_singleton (x y : A) : x  {[ y ]}  x = y;
481
482
  elem_of_union X Y (x : A) : x  X  Y  x  X  x  Y
}.
Robbert Krebbers's avatar
Robbert Krebbers committed
483
484
Class Collection A C `{ElemOf A C} `{Empty C} `{Singleton A C}
    `{Union C} `{Intersection C} `{Difference C} `{IntersectionWith A C} := {
485
  collection_simple :>> SimpleCollection A C;
Robbert Krebbers's avatar
Robbert Krebbers committed
486
  elem_of_intersection X Y (x : A) : x  X  Y  x  X  x  Y;
Robbert Krebbers's avatar
Robbert Krebbers committed
487
488
489
  elem_of_difference X Y (x : A) : x  X  Y  x  X  x  Y;
  elem_of_intersection_with (f : A  A  option A) X Y (x : A) :
    x  intersection_with f X Y   x1 x2, x1  X  x2  Y  f x1 x2 = Some x
Robbert Krebbers's avatar
Robbert Krebbers committed
490
491
}.

492
493
494
(** We axiomative a finite collection as a collection whose elements can be
enumerated as a list. These elements, given by the [elements] function, may be
in any order and should not contain duplicates. *)
Robbert Krebbers's avatar
Robbert Krebbers committed
495
Class Elements A C := elements: C  list A.
496
Instance: Params (@elements) 3.
497

498
499
500
501
502
503
504
505
506
507
(** We redefine the standard library's [In] and [NoDup] using type classes. *)
Inductive elem_of_list {A} : ElemOf A (list A) :=
  | elem_of_list_here (x : A) l : x  x :: l
  | elem_of_list_further (x y : A) l : x  l  x  y :: l.
Existing Instance elem_of_list.

Inductive NoDup {A} : list A  Prop :=
  | NoDup_nil_2 : NoDup []
  | NoDup_cons_2 x l : x  l  NoDup l  NoDup (x :: l).

508
509
(** Decidability of equality of the carrier set is admissible, but we add it
anyway so as to avoid cycles in type class search. *)
Robbert Krebbers's avatar
Robbert Krebbers committed
510
511
512
Class FinCollection A C `{ElemOf A C} `{Empty C} `{Singleton A C}
    `{Union C} `{Intersection C} `{Difference C} `{IntersectionWith A C}
    `{Filter A C} `{Elements A C} `{ x y : A, Decision (x = y)} := {
Robbert Krebbers's avatar
Robbert Krebbers committed
513
  fin_collection :>> Collection A C;
Robbert Krebbers's avatar
Robbert Krebbers committed
514
515
  elem_of_filter X P `{ x, Decision (P x)} x :
    x  filter P X  P x  x  X;
516
  elements_spec X x : x  X  x  elements X;
Robbert Krebbers's avatar
Robbert Krebbers committed
517
  elements_nodup X : NoDup (elements X)
518
519
}.
Class Size C := size: C  nat.
520
Arguments size {_ _} !_ / : simpl nomatch.
521
Instance: Params (@size) 2.
Robbert Krebbers's avatar
Robbert Krebbers committed
522

523
524
525
526
527
528
529
530
531
532
533
534
(** The class [Collection M] axiomatizes a type constructor [M] that can be
used to construct a collection [M A] with elements of type [A]. The advantage
of this class, compared to [Collection], is that it also axiomatizes the
the monadic operations. The disadvantage, is that not many inhabits are
possible (we will only provide an inhabitant using unordered lists without
duplicates removed). More interesting implementations typically need
decidability of equality, or a total order on the elements, which do not fit
in a type constructor of type [Type → Type]. *)
Class CollectionMonad M `{ A, ElemOf A (M A)}
    `{ A, Empty (M A)} `{ A, Singleton A (M A)} `{ A, Union (M A)}
    `{!MBind M} `{!MRet M} `{!FMap M} `{!MJoin M} := {
  collection_monad_simple A :> SimpleCollection A (M A);
Robbert Krebbers's avatar
Robbert Krebbers committed
535
  elem_of_bind {A B} (f : A  M B) (X : M A) (x : B) :
536
537
538
    x  X = f   y, x  f y  y  X;
  elem_of_ret {A} (x y : A) :
    x  mret y  x = y;
Robbert Krebbers's avatar
Robbert Krebbers committed
539
  elem_of_fmap {A B} (f : A  B) (X : M A) (x : B) :
540
    x  f <$> X   y, x = f y  y  X;
Robbert Krebbers's avatar
Robbert Krebbers committed
541
  elem_of_join {A} (X : M (M A)) (x : A) :
542
543
544
    x  mjoin X   Y, x  Y  Y  X
}.

545
546
547
(** The function [fresh X] yields an element that is not contained in [X]. We
will later prove that [fresh] is [Proper] with respect to the induced setoid
equality on collections. *)
Robbert Krebbers's avatar
Robbert Krebbers committed
548
Class Fresh A C := fresh: C  A.
549
Instance: Params (@fresh) 3.
550
551
552
Class FreshSpec A C `{ElemOf A C}
    `{Empty C} `{Singleton A C} `{Union C} `{Fresh A C} := {
  fresh_collection_simple :>> SimpleCollection A C;
553
  fresh_proper_alt X Y : ( x, x  X  x  Y)  fresh X = fresh Y;
Robbert Krebbers's avatar
Robbert Krebbers committed
554
555
556
  is_fresh (X : C) : fresh X  X
}.

557
558
559
(** * Miscellaneous *)
Lemma proj1_sig_inj {A} (P : A  Prop) x (Px : P x) y (Py : P y) :
  xPx = yPy  x = y.
560
Proof. injection 1; trivial. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
561

562
563
564
565
Lemma symmetry_iff `(R : relation A) `{!Symmetric R} (x y : A) :
  R x y  R y x.
Proof. intuition. Qed.

566
567
568
(** ** Pointwise relations *)
(** These instances are in Coq trunk since revision 15455, but are not in Coq
8.4 yet. *)
Robbert Krebbers's avatar
Robbert Krebbers committed
569
570
571
572
573
574
575
576
577
578
Instance pointwise_reflexive {A} `{R : relation B} :
  Reflexive R  Reflexive (pointwise_relation A R) | 9.
Proof. firstorder. Qed.
Instance pointwise_symmetric {A} `{R : relation B} :
  Symmetric R  Symmetric (pointwise_relation A R) | 9.
Proof. firstorder. Qed.
Instance pointwise_transitive {A} `{R : relation B} :
  Transitive R  Transitive (pointwise_relation A R) | 9.
Proof. firstorder. Qed.

579
(** ** Products *)
580
581
582
583
Definition fst_map {A A' B} (f : A  A') (p : A * B) : A' * B :=
  (f (fst p), snd p).
Definition snd_map {A B B'} (f : B  B') (p : A * B) : A * B' :=
  (fst p, f (snd p)).
Robbert Krebbers's avatar
Robbert Krebbers committed
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
Arguments fst_map {_ _ _} _ !_ /.
Arguments snd_map {_ _ _} _ !_ /.

Instance:  {A A' B} (f : A  A'),
  Injective (=) (=) f  Injective (=) (=) (@fst_map A A' B f).
Proof.
  intros ????? [??] [??]; simpl; intro; f_equal.
  * apply (injective f). congruence.
  * congruence.
Qed.
Instance:  {A B B'} (f : B  B'),
  Injective (=) (=) f  Injective (=) (=) (@snd_map A B B' f).
Proof.
  intros ????? [??] [??]; simpl; intro; f_equal.
  * congruence.
  * apply (injective f). congruence.
Qed.

602
603
Definition prod_relation {A B} (R1 : relation A) (R2 : relation B) :
  relation (A * B) := λ x y, R1 (fst x) (fst y)  R2 (snd x) (snd y).
Robbert Krebbers's avatar
Robbert Krebbers committed
604
605
606

Section prod_relation.
  Context `{R1 : relation A} `{R2 : relation B}.
607
608
  Global Instance:
    Reflexive R1  Reflexive R2  Reflexive (prod_relation R1 R2).
Robbert Krebbers's avatar
Robbert Krebbers committed
609
  Proof. firstorder eauto. Qed.
610
611
  Global Instance:
    Symmetric R1  Symmetric R2  Symmetric (prod_relation R1 R2).
Robbert Krebbers's avatar
Robbert Krebbers committed
612
  Proof. firstorder eauto. Qed.
613
614
  Global Instance:
    Transitive R1  Transitive R2  Transitive (prod_relation R1 R2).
Robbert Krebbers's avatar
Robbert Krebbers committed
615
  Proof. firstorder eauto. Qed.
616
617
  Global Instance:
    Equivalence R1  Equivalence R2  Equivalence (prod_relation R1 R2).
Robbert Krebbers's avatar
Robbert Krebbers committed
618
619
620
621
622
623
624
625
626
  Proof. split; apply _. Qed.
  Global Instance: Proper (R1 ==> R2 ==> prod_relation R1 R2) pair.
  Proof. firstorder eauto. Qed.
  Global Instance: Proper (prod_relation R1 R2 ==> R1) fst.
  Proof. firstorder eauto. Qed.
  Global Instance: Proper (prod_relation R1 R2 ==> R2) snd.
  Proof. firstorder eauto. Qed.
End prod_relation.

627
(** ** Other *)
628
629
Definition lift_relation {A B} (R : relation A)
  (f : B  A) : relation B := λ x y, R (f x) (f y).
Robbert Krebbers's avatar
Robbert Krebbers committed
630
631
Definition lift_relation_equivalence {A B} (R : relation A) (f : B  A) :
  Equivalence R  Equivalence (lift_relation R f).
632
Proof. unfold lift_relation. firstorder auto. Qed.
633
634
Hint Extern 0 (Equivalence (lift_relation _ _)) =>
  eapply @lift_relation_equivalence : typeclass_instances.
Robbert Krebbers's avatar
Robbert Krebbers committed
635
636

Instance:  A B (x : B), Commutative (=) (λ _ _ : A, x).
637
Proof. red. trivial. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
638
Instance:  A (x : A), Associative (=) (λ _ _ : A, x).
639
Proof. red. trivial. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
640
Instance:  A, Associative (=) (λ x _ : A, x).
641
Proof. red. trivial. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
642
Instance:  A, Associative (=) (λ _ x : A, x).
643
Proof. red. trivial. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
644
Instance:  A, Idempotent (=) (λ x _ : A, x).
645
Proof. red. trivial. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
646
Instance:  A, Idempotent (=) (λ _ x : A, x).
647
Proof. red. trivial. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
648

649
650
Instance left_id_propholds {A} (R : relation A) i f :
  LeftId R i f   x, PropHolds (R (f i x) x).
651
Proof. red. trivial. Qed.
652
653
Instance right_id_propholds {A} (R : relation A) i f :
  RightId R i f   x, PropHolds (R (f x i) x).
654
Proof. red. trivial. Qed.
655
656
Instance idem_propholds {A} (R : relation A) f :
  Idempotent R f   x, PropHolds (R (f x x) x).
657
Proof. red. trivial. Qed.