fin_maps.v 69.8 KB
Newer Older
Robbert Krebbers's avatar
Robbert Krebbers committed
1
(* Copyright (c) 2012-2015, Robbert Krebbers. *)
2
3
4
(* This file is distributed under the terms of the BSD license. *)
(** Finite maps associate data to keys. This file defines an interface for
finite maps and collects some theory on it. Most importantly, it proves useful
5
induction principles for finite maps and implements the tactic
6
[simplify_map_eq] to simplify goals involving finite maps. *)
7
8
From Coq Require Import Permutation.
From stdpp Require Export relations vector orders.
9

10
11
(** * Axiomatization of finite maps *)
(** We require Leibniz equality to be extensional on finite maps. This of
12
13
14
15
16
course limits the space of finite map implementations, but since we are mainly
interested in finite maps with numbers as indexes, we do not consider this to
be a serious limitation. The main application of finite maps is to implement
the memory, where extensionality of Leibniz equality is very important for a
convenient use in the assertions of our axiomatic semantics. *)
17

Robbert Krebbers's avatar
Robbert Krebbers committed
18
19
(** Finiteness is axiomatized by requiring that each map can be translated
to an association list. The translation to association lists is used to
20
prove well founded recursion on finite maps. *)
21

22
23
24
(** Finite map implementations are required to implement the [merge] function
which enables us to give a generic implementation of [union_with],
[intersection_with], and [difference_with]. *)
25

26
Class FinMapToList K A M := map_to_list: M  list (K * A).
Robbert Krebbers's avatar
Robbert Krebbers committed
27

28
29
30
Class FinMap K M `{FMap M,  A, Lookup K A (M A),  A, Empty (M A),  A,
    PartialAlter K A (M A), OMap M, Merge M,  A, FinMapToList K A (M A),
     i j : K, Decision (i = j)} := {
31
32
  map_eq {A} (m1 m2 : M A) : ( i, m1 !! i = m2 !! i)  m1 = m2;
  lookup_empty {A} i : ( : M A) !! i = None;
33
34
35
36
  lookup_partial_alter {A} f (m : M A) i :
    partial_alter f i m !! i = f (m !! i);
  lookup_partial_alter_ne {A} f (m : M A) i j :
    i  j  partial_alter f i m !! j = m !! j;
37
  lookup_fmap {A B} (f : A  B) (m : M A) i : (f <$> m) !! i = f <$> m !! i;
38
  NoDup_map_to_list {A} (m : M A) : NoDup (map_to_list m);
39
40
  elem_of_map_to_list {A} (m : M A) i x :
    (i,x)  map_to_list m  m !! i = Some x;
41
  lookup_omap {A B} (f : A  option B) m i : omap f m !! i = m !! i = f;
42
43
44
  lookup_merge {A B C} (f : option A  option B  option C)
      `{!PropHolds (f None None = None)} m1 m2 i :
    merge f m1 m2 !! i = f (m1 !! i) (m2 !! i)
Robbert Krebbers's avatar
Robbert Krebbers committed
45
46
}.

47
48
49
(** * Derived operations *)
(** All of the following functions are defined in a generic way for arbitrary
finite map implementations. These generic implementations do not cause a
50
51
significant performance loss to make including them in the finite map interface
worthwhile. *)
52
53
54
55
56
Instance map_insert `{PartialAlter K A M} : Insert K A M :=
  λ i x, partial_alter (λ _, Some x) i.
Instance map_alter `{PartialAlter K A M} : Alter K A M :=
  λ f, partial_alter (fmap f).
Instance map_delete `{PartialAlter K A M} : Delete K M :=
57
  partial_alter (λ _, None).
58
Instance map_singleton `{PartialAlter K A M, Empty M} :
59
  SingletonM K A M := λ i x, <[i:=x]> .
Robbert Krebbers's avatar
Robbert Krebbers committed
60

61
Definition map_of_list `{Insert K A M, Empty M} : list (K * A)  M :=
62
  fold_right (λ p, <[p.1:=p.2]>) .
63
64
65
Definition map_of_collection `{Elements K C, Insert K A M, Empty M}
    (f : K  option A) (X : C) : M :=
  map_of_list (omap (λ i, (i,) <$> f i) (elements X)).
Robbert Krebbers's avatar
Robbert Krebbers committed
66

67
68
69
70
71
72
Instance map_union_with `{Merge M} {A} : UnionWith A (M A) :=
  λ f, merge (union_with f).
Instance map_intersection_with `{Merge M} {A} : IntersectionWith A (M A) :=
  λ f, merge (intersection_with f).
Instance map_difference_with `{Merge M} {A} : DifferenceWith A (M A) :=
  λ f, merge (difference_with f).
Robbert Krebbers's avatar
Robbert Krebbers committed
73

74
75
Instance map_equiv `{ A, Lookup K A (M A), Equiv A} : Equiv (M A) | 18 :=
  λ m1 m2,  i, m1 !! i  m2 !! i.
Robbert Krebbers's avatar
Robbert Krebbers committed
76

77
78
(** The relation [intersection_forall R] on finite maps describes that the
relation [R] holds for each pair in the intersection. *)
79
Definition map_Forall `{Lookup K A M} (P : K  A  Prop) : M  Prop :=
Robbert Krebbers's avatar
Robbert Krebbers committed
80
  λ m,  i x, m !! i = Some x  P i x.
Robbert Krebbers's avatar
Robbert Krebbers committed
81
82
83
Definition map_relation `{ A, Lookup K A (M A)} {A B} (R : A  B  Prop)
    (P : A  Prop) (Q : B  Prop) (m1 : M A) (m2 : M B) : Prop :=  i,
  option_relation R P Q (m1 !! i) (m2 !! i).
84
Definition map_included `{ A, Lookup K A (M A)} {A}
Robbert Krebbers's avatar
Robbert Krebbers committed
85
86
87
88
89
90
91
  (R : relation A) : relation (M A) := map_relation R (λ _, False) (λ _, True).
Definition map_disjoint `{ A, Lookup K A (M A)} {A} : relation (M A) :=
  map_relation (λ _ _, False) (λ _, True) (λ _, True).
Infix "⊥ₘ" := map_disjoint (at level 70) : C_scope.
Hint Extern 0 (_  _) => symmetry; eassumption.
Notation "( m ⊥ₘ.)" := (map_disjoint m) (only parsing) : C_scope.
Notation "(.⊥ₘ m )" := (λ m2, m2  m) (only parsing) : C_scope.
92
Instance map_subseteq `{ A, Lookup K A (M A)} {A} : SubsetEq (M A) :=
Robbert Krebbers's avatar
Robbert Krebbers committed
93
  map_included (=).
Robbert Krebbers's avatar
Robbert Krebbers committed
94
95
96
97
98

(** The union of two finite maps only has a meaningful definition for maps
that are disjoint. However, as working with partial functions is inconvenient
in Coq, we define the union as a total function. In case both finite maps
have a value at the same index, we take the value of the first map. *)
99
Instance map_union `{Merge M} {A} : Union (M A) := union_with (λ x _, Some x).
100
101
102
Instance map_intersection `{Merge M} {A} : Intersection (M A) :=
  intersection_with (λ x _, Some x).

103
104
(** The difference operation removes all values from the first map whose
index contains a value in the second map as well. *)
105
Instance map_difference `{Merge M} {A} : Difference (M A) :=
106
  difference_with (λ _ _, None).
Robbert Krebbers's avatar
Robbert Krebbers committed
107

108
109
110
111
112
113
(** A stronger variant of map that allows the mapped function to use the index
of the elements. Implemented by conversion to lists, so not very efficient. *)
Definition map_imap `{ A, Insert K A (M A),  A, Empty (M A),
     A, FinMapToList K A (M A)} {A B} (f : K  A  option B) (m : M A) : M B :=
  map_of_list (omap (λ ix, (fst ix,) <$> curry f ix) (map_to_list m)).

114
115
116
117
(** * Theorems *)
Section theorems.
Context `{FinMap K M}.

Robbert Krebbers's avatar
Robbert Krebbers committed
118
119
(** ** Setoids *)
Section setoid.
120
121
  Context `{Equiv A} `{!Equivalence (() : relation A)}.
  Global Instance map_equivalence : Equivalence (() : relation (M A)).
Robbert Krebbers's avatar
Robbert Krebbers committed
122
123
  Proof.
    split.
124
125
    - by intros m i.
    - by intros m1 m2 ? i.
126
    - by intros m1 m2 m3 ?? i; trans (m2 !! i).
Robbert Krebbers's avatar
Robbert Krebbers committed
127
128
129
130
131
  Qed.
  Global Instance lookup_proper (i : K) :
    Proper (() ==> ()) (lookup (M:=M A) i).
  Proof. by intros m1 m2 Hm. Qed.
  Global Instance partial_alter_proper :
132
    Proper ((() ==> ()) ==> (=) ==> () ==> ()) (partial_alter (M:=M A)).
Robbert Krebbers's avatar
Robbert Krebbers committed
133
134
135
136
137
138
139
140
  Proof.
    by intros f1 f2 Hf i ? <- m1 m2 Hm j; destruct (decide (i = j)) as [->|];
      rewrite ?lookup_partial_alter, ?lookup_partial_alter_ne by done;
      try apply Hf; apply lookup_proper.
  Qed.
  Global Instance insert_proper (i : K) :
    Proper (() ==> () ==> ()) (insert (M:=M A) i).
  Proof. by intros ???; apply partial_alter_proper; [constructor|]. Qed.
141
142
143
  Global Instance singleton_proper k :
    Proper (() ==> ()) (singletonM k : A  M A).
  Proof. by intros ???; apply insert_proper. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
144
145
146
147
148
149
150
151
152
153
154
155
  Global Instance delete_proper (i : K) :
    Proper (() ==> ()) (delete (M:=M A) i).
  Proof. by apply partial_alter_proper; [constructor|]. Qed.
  Global Instance alter_proper :
    Proper ((() ==> ()) ==> (=) ==> () ==> ()) (alter (A:=A) (M:=M A)).
  Proof.
    intros ?? Hf; apply partial_alter_proper.
    by destruct 1; constructor; apply Hf.
  Qed.
  Lemma merge_ext f g
      `{!PropHolds (f None None = None), !PropHolds (g None None = None)} :
    (() ==> () ==> ())%signature f g 
156
    (() ==> () ==> ())%signature (merge (M:=M) f) (merge g).
Robbert Krebbers's avatar
Robbert Krebbers committed
157
158
159
160
  Proof.
    by intros Hf ?? Hm1 ?? Hm2 i; rewrite !lookup_merge by done; apply Hf.
  Qed.
  Global Instance union_with_proper :
161
    Proper ((() ==> () ==> ()) ==> () ==> () ==>()) (union_with (M:=M A)).
Robbert Krebbers's avatar
Robbert Krebbers committed
162
163
164
  Proof.
    intros ?? Hf ?? Hm1 ?? Hm2 i; apply (merge_ext _ _); auto.
    by do 2 destruct 1; first [apply Hf | constructor].
165
  Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
166
167
  Global Instance map_leibniz `{!LeibnizEquiv A} : LeibnizEquiv (M A).
  Proof.
168
169
    intros m1 m2 Hm; apply map_eq; intros i.
    by unfold_leibniz; apply lookup_proper.
Robbert Krebbers's avatar
Robbert Krebbers committed
170
  Qed.
171
172
173
174
175
  Lemma map_equiv_empty (m : M A) : m    m = .
  Proof.
    split; [intros Hm; apply map_eq; intros i|by intros ->].
    by rewrite lookup_empty, <-equiv_None, Hm, lookup_empty.
  Qed.
176
  Lemma map_equiv_lookup_l (m1 m2 : M A) i x :
177
    m1  m2  m1 !! i = Some x   y, m2 !! i = Some y  x  y.
178
  Proof. generalize (equiv_Some_inv_l (m1 !! i) (m2 !! i) x); naive_solver. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
179
180
181
End setoid.

(** ** General properties *)
182
183
184
185
186
Lemma map_eq_iff {A} (m1 m2 : M A) : m1 = m2   i, m1 !! i = m2 !! i.
Proof. split. by intros ->. apply map_eq. Qed.
Lemma map_subseteq_spec {A} (m1 m2 : M A) :
  m1  m2   i x, m1 !! i = Some x  m2 !! i = Some x.
Proof.
Robbert Krebbers's avatar
Robbert Krebbers committed
187
  unfold subseteq, map_subseteq, map_relation. split; intros Hm i;
188
189
    specialize (Hm i); destruct (m1 !! i), (m2 !! i); naive_solver.
Qed.
190
Global Instance: EmptySpec (M A).
191
Proof.
192
193
  intros A m. rewrite !map_subseteq_spec.
  intros i x. by rewrite lookup_empty.
194
Qed.
195
196
Global Instance:  {A} (R : relation A), PreOrder R  PreOrder (map_included R).
Proof.
Robbert Krebbers's avatar
Robbert Krebbers committed
197
  split; [intros m i; by destruct (m !! i); simpl|].
198
  intros m1 m2 m3 Hm12 Hm23 i; specialize (Hm12 i); specialize (Hm23 i).
199
  destruct (m1 !! i), (m2 !! i), (m3 !! i); simplify_eq/=;
200
    done || etrans; eauto.
201
Qed.
202
Global Instance: PartialOrder (() : relation (M A)).
203
Proof.
204
205
206
  split; [apply _|].
  intros m1 m2; rewrite !map_subseteq_spec.
  intros; apply map_eq; intros i; apply option_eq; naive_solver.
207
208
209
Qed.
Lemma lookup_weaken {A} (m1 m2 : M A) i x :
  m1 !! i = Some x  m1  m2  m2 !! i = Some x.
210
Proof. rewrite !map_subseteq_spec. auto. Qed.
211
212
213
214
215
216
Lemma lookup_weaken_is_Some {A} (m1 m2 : M A) i :
  is_Some (m1 !! i)  m1  m2  is_Some (m2 !! i).
Proof. inversion 1. eauto using lookup_weaken. Qed.
Lemma lookup_weaken_None {A} (m1 m2 : M A) i :
  m2 !! i = None  m1  m2  m1 !! i = None.
Proof.
217
218
  rewrite map_subseteq_spec, !eq_None_not_Some.
  intros Hm2 Hm [??]; destruct Hm2; eauto.
219
220
Qed.
Lemma lookup_weaken_inv {A} (m1 m2 : M A) i x y :
221
222
  m1 !! i = Some x  m1  m2  m2 !! i = Some y  x = y.
Proof. intros Hm1 ? Hm2. eapply lookup_weaken in Hm1; eauto. congruence. Qed.
223
224
225
226
227
228
229
230
231
Lemma lookup_ne {A} (m : M A) i j : m !! i  m !! j  i  j.
Proof. congruence. Qed.
Lemma map_empty {A} (m : M A) : ( i, m !! i = None)  m = .
Proof. intros Hm. apply map_eq. intros. by rewrite Hm, lookup_empty. Qed.
Lemma lookup_empty_is_Some {A} i : ¬is_Some (( : M A) !! i).
Proof. rewrite lookup_empty. by inversion 1. Qed.
Lemma lookup_empty_Some {A} i (x : A) : ¬ !! i = Some x.
Proof. by rewrite lookup_empty. Qed.
Lemma map_subset_empty {A} (m : M A) : m  .
232
233
234
Proof.
  intros [_ []]. rewrite map_subseteq_spec. intros ??. by rewrite lookup_empty.
Qed.
235
236
Lemma map_fmap_empty {A B} (f : A  B) : f <$> ( : M A) = .
Proof. by apply map_eq; intros i; rewrite lookup_fmap, !lookup_empty. Qed.
237
238

(** ** Properties of the [partial_alter] operation *)
239
240
241
Lemma partial_alter_ext {A} (f g : option A  option A) (m : M A) i :
  ( x, m !! i = x  f x = g x)  partial_alter f i m = partial_alter g i m.
Proof.
242
243
  intros. apply map_eq; intros j. by destruct (decide (i = j)) as [->|?];
    rewrite ?lookup_partial_alter, ?lookup_partial_alter_ne; auto.
244
245
Qed.
Lemma partial_alter_compose {A} f g (m : M A) i:
246
247
  partial_alter (f  g) i m = partial_alter f i (partial_alter g i m).
Proof.
248
249
  intros. apply map_eq. intros ii. by destruct (decide (i = ii)) as [->|?];
    rewrite ?lookup_partial_alter, ?lookup_partial_alter_ne.
250
Qed.
251
Lemma partial_alter_commute {A} f g (m : M A) i j :
252
  i  j  partial_alter f i (partial_alter g j m) =
253
254
    partial_alter g j (partial_alter f i m).
Proof.
255
256
257
258
  intros. apply map_eq; intros jj. destruct (decide (jj = j)) as [->|?].
  { by rewrite lookup_partial_alter_ne,
      !lookup_partial_alter, lookup_partial_alter_ne. }
  destruct (decide (jj = i)) as [->|?].
259
  - by rewrite lookup_partial_alter,
260
     !lookup_partial_alter_ne, lookup_partial_alter by congruence.
261
  - by rewrite !lookup_partial_alter_ne by congruence.
262
263
264
265
Qed.
Lemma partial_alter_self_alt {A} (m : M A) i x :
  x = m !! i  partial_alter (λ _, x) i m = m.
Proof.
266
267
  intros. apply map_eq. intros ii. by destruct (decide (i = ii)) as [->|];
    rewrite ?lookup_partial_alter, ?lookup_partial_alter_ne.
268
Qed.
269
Lemma partial_alter_self {A} (m : M A) i : partial_alter (λ _, m !! i) i m = m.
270
Proof. by apply partial_alter_self_alt. Qed.
271
Lemma partial_alter_subseteq {A} f (m : M A) i :
272
  m !! i = None  m  partial_alter f i m.
273
274
275
276
Proof.
  rewrite map_subseteq_spec. intros Hi j x Hj.
  rewrite lookup_partial_alter_ne; congruence.
Qed.
277
Lemma partial_alter_subset {A} f (m : M A) i :
278
  m !! i = None  is_Some (f (m !! i))  m  partial_alter f i m.
279
Proof.
280
281
282
283
  intros Hi Hfi. split; [by apply partial_alter_subseteq|].
  rewrite !map_subseteq_spec. inversion Hfi as [x Hx]. intros Hm.
  apply (Some_ne_None x). rewrite <-(Hm i x); [done|].
  by rewrite lookup_partial_alter.
284
285
286
Qed.

(** ** Properties of the [alter] operation *)
287
288
Lemma alter_ext {A} (f g : A  A) (m : M A) i :
  ( x, m !! i = Some x  f x = g x)  alter f i m = alter g i m.
289
Proof. intro. apply partial_alter_ext. intros [x|] ?; f_equal/=; auto. Qed.
290
Lemma lookup_alter {A} (f : A  A) m i : alter f i m !! i = f <$> m !! i.
291
Proof. unfold alter. apply lookup_partial_alter. Qed.
292
Lemma lookup_alter_ne {A} (f : A  A) m i j : i  j  alter f i m !! j = m !! j.
293
Proof. unfold alter. apply lookup_partial_alter_ne. Qed.
294
295
296
297
298
299
300
301
302
Lemma alter_compose {A} (f g : A  A) (m : M A) i:
  alter (f  g) i m = alter f i (alter g i m).
Proof.
  unfold alter, map_alter. rewrite <-partial_alter_compose.
  apply partial_alter_ext. by intros [?|].
Qed.
Lemma alter_commute {A} (f g : A  A) (m : M A) i j :
  i  j  alter f i (alter g j m) = alter g j (alter f i m).
Proof. apply partial_alter_commute. Qed.
303
304
305
306
Lemma lookup_alter_Some {A} (f : A  A) m i j y :
  alter f i m !! j = Some y 
    (i = j   x, m !! j = Some x  y = f x)  (i  j  m !! j = Some y).
Proof.
307
  destruct (decide (i = j)) as [->|?].
308
  - rewrite lookup_alter. naive_solver (simplify_option_eq; eauto).
309
  - rewrite lookup_alter_ne by done. naive_solver.
310
311
312
313
Qed.
Lemma lookup_alter_None {A} (f : A  A) m i j :
  alter f i m !! j = None  m !! j = None.
Proof.
314
315
  by destruct (decide (i = j)) as [->|?];
    rewrite ?lookup_alter, ?fmap_None, ?lookup_alter_ne.
316
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
317
318
Lemma alter_id {A} (f : A  A) m i :
  ( x, m !! i = Some x  f x = x)  alter f i m = m.
319
Proof.
Robbert Krebbers's avatar
Robbert Krebbers committed
320
  intros Hi; apply map_eq; intros j; destruct (decide (i = j)) as [->|?].
321
  { rewrite lookup_alter; destruct (m !! j); f_equal/=; auto. }
Robbert Krebbers's avatar
Robbert Krebbers committed
322
  by rewrite lookup_alter_ne by done.
323
324
325
326
327
328
329
330
331
332
333
Qed.

(** ** Properties of the [delete] operation *)
Lemma lookup_delete {A} (m : M A) i : delete i m !! i = None.
Proof. apply lookup_partial_alter. Qed.
Lemma lookup_delete_ne {A} (m : M A) i j : i  j  delete i m !! j = m !! j.
Proof. apply lookup_partial_alter_ne. Qed.
Lemma lookup_delete_Some {A} (m : M A) i j y :
  delete i m !! j = Some y  i  j  m !! j = Some y.
Proof.
  split.
334
  - destruct (decide (i = j)) as [->|?];
335
      rewrite ?lookup_delete, ?lookup_delete_ne; intuition congruence.
336
  - intros [??]. by rewrite lookup_delete_ne.
337
Qed.
338
339
340
Lemma lookup_delete_is_Some {A} (m : M A) i j :
  is_Some (delete i m !! j)  i  j  is_Some (m !! j).
Proof. unfold is_Some; setoid_rewrite lookup_delete_Some; naive_solver. Qed.
341
342
343
Lemma lookup_delete_None {A} (m : M A) i j :
  delete i m !! j = None  i = j  m !! j = None.
Proof.
344
345
  destruct (decide (i = j)) as [->|?];
    rewrite ?lookup_delete, ?lookup_delete_ne; tauto.
346
347
348
Qed.
Lemma delete_empty {A} i : delete i ( : M A) = .
Proof. rewrite <-(partial_alter_self ) at 2. by rewrite lookup_empty. Qed.
349
Lemma delete_singleton {A} i (x : A) : delete i {[i := x]} = .
350
351
352
353
354
355
356
Proof. setoid_rewrite <-partial_alter_compose. apply delete_empty. Qed.
Lemma delete_commute {A} (m : M A) i j :
  delete i (delete j m) = delete j (delete i m).
Proof. destruct (decide (i = j)). by subst. by apply partial_alter_commute. Qed.
Lemma delete_insert_ne {A} (m : M A) i j x :
  i  j  delete i (<[j:=x]>m) = <[j:=x]>(delete i m).
Proof. intro. by apply partial_alter_commute. Qed.
357
Lemma delete_notin {A} (m : M A) i : m !! i = None  delete i m = m.
358
Proof.
359
360
  intros. apply map_eq. intros j. by destruct (decide (i = j)) as [->|?];
    rewrite ?lookup_delete, ?lookup_delete_ne.
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
Qed.
Lemma delete_partial_alter {A} (m : M A) i f :
  m !! i = None  delete i (partial_alter f i m) = m.
Proof.
  intros. unfold delete, map_delete. rewrite <-partial_alter_compose.
  unfold compose. by apply partial_alter_self_alt.
Qed.
Lemma delete_insert {A} (m : M A) i x :
  m !! i = None  delete i (<[i:=x]>m) = m.
Proof. apply delete_partial_alter. Qed.
Lemma insert_delete {A} (m : M A) i x :
  m !! i = Some x  <[i:=x]>(delete i m) = m.
Proof.
  intros Hmi. unfold delete, map_delete, insert, map_insert.
  rewrite <-partial_alter_compose. unfold compose. rewrite <-Hmi.
  by apply partial_alter_self_alt.
Qed.
378
Lemma delete_subseteq {A} (m : M A) i : delete i m  m.
379
380
381
Proof.
  rewrite !map_subseteq_spec. intros j x. rewrite lookup_delete_Some. tauto.
Qed.
382
Lemma delete_subseteq_compat {A} (m1 m2 : M A) i :
383
  m1  m2  delete i m1  delete i m2.
384
385
386
387
Proof.
  rewrite !map_subseteq_spec. intros ? j x.
  rewrite !lookup_delete_Some. intuition eauto.
Qed.
388
Lemma delete_subset_alt {A} (m : M A) i x : m !! i = Some x  delete i m  m.
389
Proof.
390
391
392
  split; [apply delete_subseteq|].
  rewrite !map_subseteq_spec. intros Hi. apply (None_ne_Some x).
  by rewrite <-(lookup_delete m i), (Hi i x).
393
Qed.
394
Lemma delete_subset {A} (m : M A) i : is_Some (m !! i)  delete i m  m.
395
396
397
398
399
Proof. inversion 1. eauto using delete_subset_alt. Qed.

(** ** Properties of the [insert] operation *)
Lemma lookup_insert {A} (m : M A) i x : <[i:=x]>m !! i = Some x.
Proof. unfold insert. apply lookup_partial_alter. Qed.
400
Lemma lookup_insert_rev {A}  (m : M A) i x y : <[i:=x]>m !! i = Some y  x = y.
401
Proof. rewrite lookup_insert. congruence. Qed.
402
Lemma lookup_insert_ne {A} (m : M A) i j x : i  j  <[i:=x]>m !! j = m !! j.
403
Proof. unfold insert. apply lookup_partial_alter_ne. Qed.
404
405
Lemma insert_insert {A} (m : M A) i x y : <[i:=x]>(<[i:=y]>m) = <[i:=x]>m.
Proof. unfold insert, map_insert. by rewrite <-partial_alter_compose. Qed.
406
407
408
409
410
411
412
Lemma insert_commute {A} (m : M A) i j x y :
  i  j  <[i:=x]>(<[j:=y]>m) = <[j:=y]>(<[i:=x]>m).
Proof. apply partial_alter_commute. Qed.
Lemma lookup_insert_Some {A} (m : M A) i j x y :
  <[i:=x]>m !! j = Some y  (i = j  x = y)  (i  j  m !! j = Some y).
Proof.
  split.
413
  - destruct (decide (i = j)) as [->|?];
414
      rewrite ?lookup_insert, ?lookup_insert_ne; intuition congruence.
415
  - intros [[-> ->]|[??]]; [apply lookup_insert|]. by rewrite lookup_insert_ne.
416
Qed.
417
418
419
Lemma lookup_insert_is_Some {A} (m : M A) i j x :
  is_Some (<[i:=x]>m !! j)  i = j  i  j  is_Some (m !! j).
Proof. unfold is_Some; setoid_rewrite lookup_insert_Some; naive_solver. Qed.
420
421
422
Lemma lookup_insert_None {A} (m : M A) i j x :
  <[i:=x]>m !! j = None  m !! j = None  i  j.
Proof.
423
424
425
  split; [|by intros [??]; rewrite lookup_insert_ne].
  destruct (decide (i = j)) as [->|];
    rewrite ?lookup_insert, ?lookup_insert_ne; intuition congruence.
426
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
427
Lemma insert_id {A} (m : M A) i x : m !! i = Some x  <[i:=x]>m = m.
428
429
430
431
432
433
434
435
Proof.
  intros; apply map_eq; intros j; destruct (decide (i = j)) as [->|];
    by rewrite ?lookup_insert, ?lookup_insert_ne by done.
Qed.
Lemma insert_included {A} R `{!Reflexive R} (m : M A) i x :
  ( y, m !! i = Some y  R y x)  map_included R m (<[i:=x]>m).
Proof.
  intros ? j; destruct (decide (i = j)) as [->|].
436
437
  - rewrite lookup_insert. destruct (m !! j); simpl; eauto.
  - rewrite lookup_insert_ne by done. by destruct (m !! j); simpl.
438
Qed.
439
Lemma insert_subseteq {A} (m : M A) i x : m !! i = None  m  <[i:=x]>m.
440
Proof. apply partial_alter_subseteq. Qed.
441
Lemma insert_subset {A} (m : M A) i x : m !! i = None  m  <[i:=x]>m.
442
443
Proof. intro. apply partial_alter_subset; eauto. Qed.
Lemma insert_subseteq_r {A} (m1 m2 : M A) i x :
444
  m1 !! i = None  m1  m2  m1  <[i:=x]>m2.
445
Proof.
446
447
448
  rewrite !map_subseteq_spec. intros ?? j ?.
  destruct (decide (j = i)) as [->|?]; [congruence|].
  rewrite lookup_insert_ne; auto.
449
450
Qed.
Lemma insert_delete_subseteq {A} (m1 m2 : M A) i x :
451
  m1 !! i = None  <[i:=x]> m1  m2  m1  delete i m2.
452
Proof.
453
454
455
456
  rewrite !map_subseteq_spec. intros Hi Hix j y Hj.
  destruct (decide (i = j)) as [->|]; [congruence|].
  rewrite lookup_delete_ne by done.
  apply Hix; by rewrite lookup_insert_ne by done.
457
458
Qed.
Lemma delete_insert_subseteq {A} (m1 m2 : M A) i x :
459
  m1 !! i = Some x  delete i m1  m2  m1  <[i:=x]> m2.
460
Proof.
461
462
  rewrite !map_subseteq_spec.
  intros Hix Hi j y Hj. destruct (decide (i = j)) as [->|?].
463
464
  - rewrite lookup_insert. congruence.
  - rewrite lookup_insert_ne by done. apply Hi. by rewrite lookup_delete_ne.
465
466
Qed.
Lemma insert_delete_subset {A} (m1 m2 : M A) i x :
467
  m1 !! i = None  <[i:=x]> m1  m2  m1  delete i m2.
468
Proof.
469
470
471
  intros ? [Hm12 Hm21]; split; [eauto using insert_delete_subseteq|].
  contradict Hm21. apply delete_insert_subseteq; auto.
  eapply lookup_weaken, Hm12. by rewrite lookup_insert.
472
473
Qed.
Lemma insert_subset_inv {A} (m1 m2 : M A) i x :
474
  m1 !! i = None  <[i:=x]> m1  m2 
475
476
   m2', m2 = <[i:=x]>m2'  m1  m2'  m2' !! i = None.
Proof.
477
  intros Hi Hm1m2. exists (delete i m2). split_and?.
478
  - rewrite insert_delete. done. eapply lookup_weaken, strict_include; eauto.
479
    by rewrite lookup_insert.
480
481
  - eauto using insert_delete_subset.
  - by rewrite lookup_delete.
482
Qed.
483
Lemma insert_empty {A} i (x : A) : <[i:=x]> = {[i := x]}.
484
Proof. done. Qed.
485
486
487

(** ** Properties of the singleton maps *)
Lemma lookup_singleton_Some {A} i j (x y : A) :
488
  {[i := x]} !! j = Some y  i = j  x = y.
489
Proof.
490
  rewrite <-insert_empty,lookup_insert_Some, lookup_empty; intuition congruence.
491
Qed.
492
Lemma lookup_singleton_None {A} i j (x : A) : {[i := x]} !! j = None  i  j.
493
Proof. rewrite <-insert_empty,lookup_insert_None, lookup_empty; tauto. Qed.
494
Lemma lookup_singleton {A} i (x : A) : {[i := x]} !! i = Some x.
495
Proof. by rewrite lookup_singleton_Some. Qed.
496
Lemma lookup_singleton_ne {A} i j (x : A) : i  j  {[i := x]} !! j = None.
497
Proof. by rewrite lookup_singleton_None. Qed.
498
Lemma map_non_empty_singleton {A} i (x : A) : {[i := x]}  .
499
500
501
502
Proof.
  intros Hix. apply (f_equal (!! i)) in Hix.
  by rewrite lookup_empty, lookup_singleton in Hix.
Qed.
503
Lemma insert_singleton {A} i (x y : A) : <[i:=y]>{[i := x]} = {[i := y]}.
504
Proof.
505
  unfold singletonM, map_singleton, insert, map_insert.
506
507
  by rewrite <-partial_alter_compose.
Qed.
508
Lemma alter_singleton {A} (f : A  A) i x : alter f i {[i := x]} = {[i := f x]}.
509
Proof.
510
  intros. apply map_eq. intros i'. destruct (decide (i = i')) as [->|?].
511
512
  - by rewrite lookup_alter, !lookup_singleton.
  - by rewrite lookup_alter_ne, !lookup_singleton_ne.
513
514
Qed.
Lemma alter_singleton_ne {A} (f : A  A) i j x :
515
  i  j  alter f i {[j := x]} = {[j := x]}.
516
Proof.
517
518
  intros. apply map_eq; intros i'. by destruct (decide (i = i')) as [->|?];
    rewrite ?lookup_alter, ?lookup_singleton_ne, ?lookup_alter_ne by done.
519
520
Qed.

521
522
523
524
525
(** ** Properties of the map operations *)
Lemma fmap_empty {A B} (f : A  B) : f <$>  = .
Proof. apply map_empty; intros i. by rewrite lookup_fmap, lookup_empty. Qed.
Lemma omap_empty {A B} (f : A  option B) : omap f  = .
Proof. apply map_empty; intros i. by rewrite lookup_omap, lookup_empty. Qed.
526
527
528
Lemma fmap_insert {A B} (f: A  B) m i x: f <$> <[i:=x]>m = <[i:=f x]>(f <$> m).
Proof.
  apply map_eq; intros i'; destruct (decide (i' = i)) as [->|].
529
530
  - by rewrite lookup_fmap, !lookup_insert.
  - by rewrite lookup_fmap, !lookup_insert_ne, lookup_fmap by done.
531
532
533
534
535
Qed.
Lemma omap_insert {A B} (f : A  option B) m i x y :
  f x = Some y  omap f (<[i:=x]>m) = <[i:=y]>(omap f m).
Proof.
  intros; apply map_eq; intros i'; destruct (decide (i' = i)) as [->|].
536
537
  - by rewrite lookup_omap, !lookup_insert.
  - by rewrite lookup_omap, !lookup_insert_ne, lookup_omap by done.
538
Qed.
539
Lemma map_fmap_singleton {A B} (f : A  B) i x : f <$> {[i := x]} = {[i := f x]}.
540
541
542
Proof.
  by unfold singletonM, map_singleton; rewrite fmap_insert, map_fmap_empty.
Qed.
543
Lemma omap_singleton {A B} (f : A  option B) i x y :
544
  f x = Some y  omap f {[ i := x ]} = {[ i := y ]}.
545
Proof.
546
547
  intros. unfold singletonM, map_singleton.
  by erewrite omap_insert, omap_empty by eauto.
548
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
549
550
551
552
553
Lemma map_fmap_id {A} (m : M A) : id <$> m = m.
Proof. apply map_eq; intros i; by rewrite lookup_fmap, option_fmap_id. Qed.
Lemma map_fmap_compose {A B C} (f : A  B) (g : B  C) (m : M A) :
  g  f <$> m = g <$> f <$> m.
Proof. apply map_eq; intros i; by rewrite !lookup_fmap,option_fmap_compose. Qed.
554
555
556
557
558
559
Lemma map_fmap_setoid_ext `{Equiv A, Equiv B} (f1 f2 : A  B) m :
  ( i x, m !! i = Some x  f1 x  f2 x)  f1 <$> m  f2 <$> m.
Proof.
  intros Hi i; rewrite !lookup_fmap.
  destruct (m !! i) eqn:?; constructor; eauto.
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
560
561
562
563
564
565
Lemma map_fmap_ext {A B} (f1 f2 : A  B) m :
  ( i x, m !! i = Some x  f1 x = f2 x)  f1 <$> m = f2 <$> m.
Proof.
  intros Hi; apply map_eq; intros i; rewrite !lookup_fmap.
  by destruct (m !! i) eqn:?; simpl; erewrite ?Hi by eauto.
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
566
567
568
569
570
571
Lemma omap_ext {A B} (f1 f2 : A  option B) m :
  ( i x, m !! i = Some x  f1 x = f2 x)  omap f1 m = omap f2 m.
Proof.
  intros Hi; apply map_eq; intros i; rewrite !lookup_omap.
  by destruct (m !! i) eqn:?; simpl; erewrite ?Hi by eauto.
Qed.
572

573
574
(** ** Properties of conversion to lists *)
Lemma map_to_list_unique {A} (m : M A) i x y :
575
  (i,x)  map_to_list m  (i,y)  map_to_list m  x = y.
576
Proof. rewrite !elem_of_map_to_list. congruence. Qed.
577
Lemma NoDup_fst_map_to_list {A} (m : M A) : NoDup ((map_to_list m).*1).
578
Proof. eauto using NoDup_fmap_fst, map_to_list_unique, NoDup_map_to_list. Qed.
579
580
581
582
583
Lemma elem_of_map_of_list_1_help {A} (l : list (K * A)) i x :
  (i,x)  l  ( y, (i,y)  l  y = x)  map_of_list l !! i = Some x.
Proof.
  induction l as [|[j y] l IH]; csimpl; [by rewrite elem_of_nil|].
  setoid_rewrite elem_of_cons.
584
  intros [?|?] Hdup; simplify_eq; [by rewrite lookup_insert|].
585
  destruct (decide (i = j)) as [->|].
586
587
  - rewrite lookup_insert; f_equal; eauto.
  - rewrite lookup_insert_ne by done; eauto.
588
Qed.
589
Lemma elem_of_map_of_list_1 {A} (l : list (K * A)) i x :
590
  NoDup (l.*1)  (i,x)  l  map_of_list l !! i = Some x.
591
Proof.
592
593
  intros ? Hx; apply elem_of_map_of_list_1_help; eauto using NoDup_fmap_fst.
  intros y; revert Hx. rewrite !elem_of_list_lookup; intros [i' Hi'] [j' Hj'].
594
  cut (i' = j'); [naive_solver|]. apply NoDup_lookup with (l.*1) i;
595
    by rewrite ?list_lookup_fmap, ?Hi', ?Hj'.
596
597
Qed.
Lemma elem_of_map_of_list_2 {A} (l : list (K * A)) i x :
598
  map_of_list l !! i = Some x  (i,x)  l.
599
Proof.
600
601
602
  induction l as [|[j y] l IH]; simpl; [by rewrite lookup_empty|].
  rewrite elem_of_cons. destruct (decide (i = j)) as [->|];
    rewrite ?lookup_insert, ?lookup_insert_ne; intuition congruence.
603
604
Qed.
Lemma elem_of_map_of_list {A} (l : list (K * A)) i x :
605
  NoDup (l.*1)  (i,x)  l  map_of_list l !! i = Some x.
606
Proof. split; auto using elem_of_map_of_list_1, elem_of_map_of_list_2. Qed.
607
Lemma not_elem_of_map_of_list_1 {A} (l : list (K * A)) i :
608
  i  l.*1  map_of_list l !! i = None.
609
Proof.
610
611
  rewrite elem_of_list_fmap, eq_None_not_Some. intros Hi [x ?]; destruct Hi.
  exists (i,x); simpl; auto using elem_of_map_of_list_2.
612
613
Qed.
Lemma not_elem_of_map_of_list_2 {A} (l : list (K * A)) i :
614
  map_of_list l !! i = None  i  l.*1.
615
Proof.
616
  induction l as [|[j y] l IH]; csimpl; [rewrite elem_of_nil; tauto|].
617
  rewrite elem_of_cons. destruct (decide (i = j)); simplify_eq.
618
619
  - by rewrite lookup_insert.
  - by rewrite lookup_insert_ne; intuition.
620
621
Qed.
Lemma not_elem_of_map_of_list {A} (l : list (K * A)) i :
622
  i  l.*1  map_of_list l !! i = None.
623
Proof. red; auto using not_elem_of_map_of_list_1,not_elem_of_map_of_list_2. Qed.
624
Lemma map_of_list_proper {A} (l1 l2 : list (K * A)) :
625
  NoDup (l1.*1)  l1  l2  map_of_list l1 = map_of_list l2.
626
627
628
629
630
Proof.
  intros ? Hperm. apply map_eq. intros i. apply option_eq. intros x.
  by rewrite <-!elem_of_map_of_list; rewrite <-?Hperm.
Qed.
Lemma map_of_list_inj {A} (l1 l2 : list (K * A)) :
631
  NoDup (l1.*1)  NoDup (l2.*1)  map_of_list l1 = map_of_list l2  l1  l2.
632
Proof.
633
  intros ?? Hl1l2. apply NoDup_Permutation; auto using (NoDup_fmap_1 fst).
634
635
  intros [i x]. by rewrite !elem_of_map_of_list, Hl1l2.
Qed.
636
Lemma map_of_to_list {A} (m : M A) : map_of_list (map_to_list m) = m.
637
638
639
Proof.
  apply map_eq. intros i. apply option_eq. intros x.
  by rewrite <-elem_of_map_of_list, elem_of_map_to_list
640
    by auto using NoDup_fst_map_to_list.
641
642
Qed.
Lemma map_to_of_list {A} (l : list (K * A)) :
643
  NoDup (l.*1)  map_to_list (map_of_list l)  l.
644
Proof. auto using map_of_list_inj, NoDup_fst_map_to_list, map_of_to_list. Qed.
645
Lemma map_to_list_inj {A} (m1 m2 : M A) :
646
  map_to_list m1  map_to_list m2  m1 = m2.
647
Proof.
648
  intros. rewrite <-(map_of_to_list m1), <-(map_of_to_list m2).
649
  auto using map_of_list_proper, NoDup_fst_map_to_list.
650
Qed.
651
652
653
654
655
656
Lemma map_to_of_list_flip {A} (m1 : M A) l2 :
  map_to_list m1  l2  m1 = map_of_list l2.
Proof.
  intros. rewrite <-(map_of_to_list m1).
  auto using map_of_list_proper, NoDup_fst_map_to_list.
Qed.
657
Lemma map_to_list_empty {A} : map_to_list  = @nil (K * A).
658
659
660
661
662
Proof.
  apply elem_of_nil_inv. intros [i x].
  rewrite elem_of_map_to_list. apply lookup_empty_Some.
Qed.
Lemma map_to_list_insert {A} (m : M A) i x :
663
  m !! i = None  map_to_list (<[i:=x]>m)  (i,x) :: map_to_list m.
664
Proof.
665
  intros. apply map_of_list_inj; csimpl.
666
667
  - apply NoDup_fst_map_to_list.
  - constructor; auto using NoDup_fst_map_to_list.
668
    rewrite elem_of_list_fmap. intros [[??] [? Hlookup]]; subst; simpl in *.
669
    rewrite elem_of_map_to_list in Hlookup. congruence.
670
  - by rewrite !map_of_to_list.
671
Qed.
672
673
674
675
676
677
Lemma map_to_list_contains {A} (m1 m2 : M A) :
  m1  m2  map_to_list m1 `contains` map_to_list m2.
Proof.
  intros; apply NoDup_contains; auto using NoDup_map_to_list.
  intros [i x]. rewrite !elem_of_map_to_list; eauto using lookup_weaken.
Qed.
678
Lemma map_of_list_nil {A} : map_of_list (@nil (K * A)) = .
679
680
681
682
Proof. done. Qed.
Lemma map_of_list_cons {A} (l : list (K * A)) i x :
  map_of_list ((i, x) :: l) = <[i:=x]>(map_of_list l).
Proof. done. Qed.
683
Lemma map_to_list_empty_inv_alt {A}  (m : M A) : map_to_list m  []  m = .
684
Proof. rewrite <-map_to_list_empty. apply map_to_list_inj. Qed.
685
Lemma map_to_list_empty_inv {A