numbers.v 18.4 KB
Newer Older
Robbert Krebbers's avatar
Robbert Krebbers committed
1
(* Copyright (c) 2012-2015, Robbert Krebbers. *)
2
(* This file is distributed under the terms of the BSD license. *)
3 4 5
(** This file collects some trivial facts on the Coq types [nat] and [N] for
natural numbers, and the type [Z] for integers. It also declares some useful
notations. *)
6
Require Export Eqdep PArith NArith ZArith NPeano.
7
Require Import QArith Qcanon.
8
Require Export base decidable.
9
Open Scope nat_scope.
Robbert Krebbers's avatar
Robbert Krebbers committed
10

11 12
Coercion Z.of_nat : nat >-> Z.

13
(** * Notations and properties of [nat] *)
14 15 16 17
Reserved Notation "x ≤ y ≤ z" (at level 70, y at next level).
Reserved Notation "x ≤ y < z" (at level 70, y at next level).
Reserved Notation "x < y < z" (at level 70, y at next level).
Reserved Notation "x < y ≤ z" (at level 70, y at next level).
18 19
Reserved Notation "x ≤ y ≤ z ≤ z'"
  (at level 70, y at next level, z at next level).
20

21
Infix "≤" := le : nat_scope.
22 23 24 25
Notation "x ≤ y ≤ z" := (x  y  y  z)%nat : nat_scope.
Notation "x ≤ y < z" := (x  y  y < z)%nat : nat_scope.
Notation "x < y < z" := (x < y  y < z)%nat : nat_scope.
Notation "x < y ≤ z" := (x < y  y  z)%nat : nat_scope.
26
Notation "x ≤ y ≤ z ≤ z'" := (x  y  y  z  z  z')%nat : nat_scope.
27 28 29 30 31 32
Notation "(≤)" := le (only parsing) : nat_scope.
Notation "(<)" := lt (only parsing) : nat_scope.

Infix "`div`" := NPeano.div (at level 35) : nat_scope.
Infix "`mod`" := NPeano.modulo (at level 35) : nat_scope.

Robbert Krebbers's avatar
Robbert Krebbers committed
33
Instance nat_eq_dec:  x y : nat, Decision (x = y) := eq_nat_dec.
34 35
Instance nat_le_dec:  x y : nat, Decision (x  y) := le_dec.
Instance nat_lt_dec:  x y : nat, Decision (x < y) := lt_dec.
36
Instance nat_inhabited: Inhabited nat := populate 0%nat.
37 38 39 40
Instance: Injective (=) (=) S.
Proof. by injection 1. Qed.
Instance: PartialOrder ().
Proof. repeat split; repeat intro; auto with lia. Qed.
41

42 43 44 45 46 47
Instance nat_le_pi:  x y : nat, ProofIrrel (x  y).
Proof.
  assert ( x y (p : x  y) y' (q : x  y'),
    y = y'  eq_dep nat (le x) y p y' q) as aux.
  { fix 3. intros x ? [|y p] ? [|y' q].
    * done.
48 49
    * clear nat_le_pi. intros; exfalso; auto with lia.
    * clear nat_le_pi. intros; exfalso; auto with lia.
50 51 52 53 54 55 56
    * injection 1. intros Hy. by case (nat_le_pi x y p y' q Hy). }
  intros x y p q.
  by apply (eq_dep_eq_dec (λ x y, decide (x = y))), aux.
Qed.
Instance nat_lt_pi:  x y : nat, ProofIrrel (x < y).
Proof. apply _. Qed.

Robbert Krebbers's avatar
Robbert Krebbers committed
57 58 59 60 61 62 63 64
Definition sum_list_with {A} (f : A  nat) : list A  nat :=
  fix go l :=
  match l with
  | [] => 0
  | x :: l => f x + go l
  end.
Notation sum_list := (sum_list_with id).

65 66 67
Lemma Nat_lt_succ_succ n : n < S (S n).
Proof. auto with arith. Qed.
Lemma Nat_mul_split_l n x1 x2 y1 y2 :
68 69
  x2 < n  y2 < n  x1 * n + x2 = y1 * n + y2  x1 = y1  x2 = y2.
Proof.
70
  intros Hx2 Hy2 E. cut (x1 = y1); [intros; subst;lia |].
71 72
  revert y1 E. induction x1; simpl; intros [|?]; simpl; auto with lia.
Qed.
73 74 75
Lemma Nat_mul_split_r n x1 x2 y1 y2 :
  x1 < n  y1 < n  x1 + x2 * n = y1 + y2 * n  x1 = y1  x2 = y2.
Proof. intros. destruct (Nat_mul_split_l n x2 x1 y2 y1); auto with lia. Qed.
76

77 78 79
Notation lcm := Nat.lcm.
Notation divide := Nat.divide.
Notation "( x | y )" := (divide x y) : nat_scope.
80 81 82 83
Instance divide_dec x y : Decision (x | y).
Proof.
  refine (cast_if (decide (lcm x y = y))); by rewrite Nat.divide_lcm_iff.
Defined.
84 85 86 87 88 89 90 91
Instance: PartialOrder divide.
Proof.
  repeat split; try apply _. intros ??. apply Nat.divide_antisym_nonneg; lia.
Qed.
Hint Extern 0 (_ | _) => reflexivity.
Lemma Nat_divide_ne_0 x y : (x | y)  y  0  x  0.
Proof. intros Hxy Hy ->. by apply Hy, Nat.divide_0_l. Qed.

92 93 94
(** * Notations and properties of [positive] *)
Open Scope positive_scope.

95
Infix "≤" := Pos.le : positive_scope.
96 97 98 99 100
Notation "x ≤ y ≤ z" := (x  y  y  z) : positive_scope.
Notation "x ≤ y < z" := (x  y  y < z) : positive_scope.
Notation "x < y < z" := (x < y  y < z) : positive_scope.
Notation "x < y ≤ z" := (x < y  y  z) : positive_scope.
Notation "x ≤ y ≤ z ≤ z'" := (x  y  y  z  z  z') : positive_scope.
101 102
Notation "(≤)" := Pos.le (only parsing) : positive_scope.
Notation "(<)" := Pos.lt (only parsing) : positive_scope.
Robbert Krebbers's avatar
Robbert Krebbers committed
103 104 105
Notation "(~0)" := xO (only parsing) : positive_scope.
Notation "(~1)" := xI (only parsing) : positive_scope.

106 107 108 109
Arguments Pos.of_nat _ : simpl never.
Instance positive_eq_dec:  x y : positive, Decision (x = y) := Pos.eq_dec.
Instance positive_inhabited: Inhabited positive := populate 1.

110
Instance: Injective (=) (=) (~0).
Robbert Krebbers's avatar
Robbert Krebbers committed
111
Proof. by injection 1. Qed.
112
Instance: Injective (=) (=) (~1).
Robbert Krebbers's avatar
Robbert Krebbers committed
113 114
Proof. by injection 1. Qed.

115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137
(** Since [positive] represents lists of bits, we define list operations
on it. These operations are in reverse, as positives are treated as snoc
lists instead of cons lists. *)
Fixpoint Papp (p1 p2 : positive) : positive :=
  match p2 with
  | 1 => p1
  | p2~0 => (Papp p1 p2)~0
  | p2~1 => (Papp p1 p2)~1
  end.
Infix "++" := Papp : positive_scope.
Notation "(++)" := Papp (only parsing) : positive_scope.
Notation "( p ++)" := (Papp p) (only parsing) : positive_scope.
Notation "(++ q )" := (λ p, Papp p q) (only parsing) : positive_scope.

Fixpoint Preverse_go (p1 p2 : positive) : positive :=
  match p2 with
  | 1 => p1
  | p2~0 => Preverse_go (p1~0) p2
  | p2~1 => Preverse_go (p1~1) p2
  end.
Definition Preverse : positive  positive := Preverse_go 1.

Global Instance: LeftId (=) 1 (++).
138
Proof. intros p. by induction p; intros; f_equal'. Qed.
139 140 141
Global Instance: RightId (=) 1 (++).
Proof. done. Qed.
Global Instance: Associative (=) (++).
142
Proof. intros ?? p. by induction p; intros; f_equal'. Qed.
143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169
Global Instance:  p : positive, Injective (=) (=) (++ p).
Proof. intros p ???. induction p; simplify_equality; auto. Qed.

Lemma Preverse_go_app_cont p1 p2 p3 :
  Preverse_go (p2 ++ p1) p3 = p2 ++ Preverse_go p1 p3.
Proof.
  revert p1. induction p3; simpl; intros.
  * apply (IHp3 (_~1)).
  * apply (IHp3 (_~0)).
  * done.
Qed.
Lemma Preverse_go_app p1 p2 p3 :
  Preverse_go p1 (p2 ++ p3) = Preverse_go p1 p3 ++ Preverse_go 1 p2.
Proof.
  revert p1. induction p3; intros p1; simpl; auto.
  by rewrite <-Preverse_go_app_cont.
Qed.
Lemma Preverse_app p1 p2 :
  Preverse (p1 ++ p2) = Preverse p2 ++ Preverse p1.
Proof. unfold Preverse. by rewrite Preverse_go_app. Qed.

Lemma Preverse_xO p : Preverse (p~0) = (1~0) ++ Preverse p.
Proof Preverse_app p (1~0).
Lemma Preverse_xI p : Preverse (p~1) = (1~1) ++ Preverse p.
Proof Preverse_app p (1~1).

Fixpoint Plength (p : positive) : nat :=
170
  match p with 1 => 0%nat | p~0 | p~1 => S (Plength p) end.
171 172
Lemma Papp_length p1 p2 :
  Plength (p1 ++ p2) = (Plength p2 + Plength p1)%nat.
173
Proof. by induction p2; f_equal'. Qed.
174 175 176 177

Close Scope positive_scope.

(** * Notations and properties of [N] *)
Robbert Krebbers's avatar
Robbert Krebbers committed
178
Infix "≤" := N.le : N_scope.
179 180 181 182
Notation "x ≤ y ≤ z" := (x  y  y  z)%N : N_scope.
Notation "x ≤ y < z" := (x  y  y < z)%N : N_scope.
Notation "x < y < z" := (x < y  y < z)%N : N_scope.
Notation "x < y ≤ z" := (x < y  y  z)%N : N_scope.
183
Notation "x ≤ y ≤ z ≤ z'" := (x  y  y  z  z  z')%N : N_scope.
Robbert Krebbers's avatar
Robbert Krebbers committed
184
Notation "(≤)" := N.le (only parsing) : N_scope.
185
Notation "(<)" := N.lt (only parsing) : N_scope.
186 187 188
Infix "`div`" := N.div (at level 35) : N_scope.
Infix "`mod`" := N.modulo (at level 35) : N_scope.

189 190
Arguments N.add _ _ : simpl never.

Robbert Krebbers's avatar
Robbert Krebbers committed
191 192 193
Instance: Injective (=) (=) Npos.
Proof. by injection 1. Qed.

Robbert Krebbers's avatar
Robbert Krebbers committed
194 195 196 197 198 199 200
Instance N_eq_dec:  x y : N, Decision (x = y) := N.eq_dec.
Program Instance N_le_dec (x y : N) : Decision (x  y)%N :=
  match Ncompare x y with
  | Gt => right _
  | _ => left _
  end.
Next Obligation. congruence. Qed.
201 202 203 204 205 206
Program Instance N_lt_dec (x y : N) : Decision (x < y)%N :=
  match Ncompare x y with
  | Lt => left _
  | _ => right _
  end.
Next Obligation. congruence. Qed.
207
Instance N_inhabited: Inhabited N := populate 1%N.
208 209 210 211 212
Instance: PartialOrder ()%N.
Proof.
  repeat split; red. apply N.le_refl. apply N.le_trans. apply N.le_antisymm.
Qed.
Hint Extern 0 (_  _)%N => reflexivity.
Robbert Krebbers's avatar
Robbert Krebbers committed
213

214
(** * Notations and properties of [Z] *)
215 216
Open Scope Z_scope.

Robbert Krebbers's avatar
Robbert Krebbers committed
217
Infix "≤" := Z.le : Z_scope.
218 219 220 221
Notation "x ≤ y ≤ z" := (x  y  y  z) : Z_scope.
Notation "x ≤ y < z" := (x  y  y < z) : Z_scope.
Notation "x < y < z" := (x < y  y < z) : Z_scope.
Notation "x < y ≤ z" := (x < y  y  z) : Z_scope.
222
Notation "x ≤ y ≤ z ≤ z'" := (x  y  y  z  z  z') : Z_scope.
Robbert Krebbers's avatar
Robbert Krebbers committed
223
Notation "(≤)" := Z.le (only parsing) : Z_scope.
224
Notation "(<)" := Z.lt (only parsing) : Z_scope.
225

Robbert Krebbers's avatar
Robbert Krebbers committed
226 227
Infix "`div`" := Z.div (at level 35) : Z_scope.
Infix "`mod`" := Z.modulo (at level 35) : Z_scope.
228 229
Infix "`quot`" := Z.quot (at level 35) : Z_scope.
Infix "`rem`" := Z.rem (at level 35) : Z_scope.
230 231
Infix "≪" := Z.shiftl (at level 35) : Z_scope.
Infix "≫" := Z.shiftr (at level 35) : Z_scope.
Robbert Krebbers's avatar
Robbert Krebbers committed
232

233 234 235 236 237
Instance: Injective (=) (=) Zpos.
Proof. by injection 1. Qed.
Instance: Injective (=) (=) Zneg.
Proof. by injection 1. Qed.

Robbert Krebbers's avatar
Robbert Krebbers committed
238
Instance Z_eq_dec:  x y : Z, Decision (x = y) := Z.eq_dec.
239 240 241
Instance Z_le_dec:  x y : Z, Decision (x  y) := Z_le_dec.
Instance Z_lt_dec:  x y : Z, Decision (x < y) := Z_lt_dec.
Instance Z_inhabited: Inhabited Z := populate 1.
242 243 244 245
Instance: PartialOrder ().
Proof.
  repeat split; red. apply Z.le_refl. apply Z.le_trans. apply Z.le_antisymm.
Qed.
246 247 248 249 250 251 252 253 254 255 256 257

Lemma Z_pow_pred_r n m : 0 < m  n * n ^ (Z.pred m) = n ^ m.
Proof.
  intros. rewrite <-Z.pow_succ_r, Z.succ_pred. done. by apply Z.lt_le_pred.
Qed.
Lemma Z_quot_range_nonneg k x y : 0  x < k  0 < y  0  x `quot` y < k.
Proof.
  intros [??] ?.
  destruct (decide (y = 1)); subst; [rewrite Z.quot_1_r; auto |].
  destruct (decide (x = 0)); subst; [rewrite Z.quot_0_l; auto with lia |].
  split. apply Z.quot_pos; lia. transitivity x; auto. apply Z.quot_lt; lia.
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
258

259
(* Note that we cannot disable simpl for [Z.of_nat] as that would break
260
tactics as [lia]. *)
261 262 263 264 265 266 267 268 269 270
Arguments Z.to_nat _ : simpl never.
Arguments Z.mul _ _ : simpl never.
Arguments Z.add _ _ : simpl never.
Arguments Z.opp _ : simpl never.
Arguments Z.pow _ _ : simpl never.
Arguments Z.div _ _ : simpl never.
Arguments Z.modulo _ _ : simpl never.
Arguments Z.quot _ _ : simpl never.
Arguments Z.rem _ _ : simpl never.

271 272 273 274 275
Lemma Z_to_nat_neq_0_pos x : Z.to_nat x  0%nat  0 < x.
Proof. by destruct x. Qed.
Lemma Z_to_nat_neq_0_nonneg x : Z.to_nat x  0%nat  0  x.
Proof. by destruct x. Qed.
Lemma Z_mod_pos x y : 0 < y  0  x `mod` y.
276 277 278 279 280
Proof. apply Z.mod_pos_bound. Qed.

Hint Resolve Z.lt_le_incl : zpos.
Hint Resolve Z.add_nonneg_pos Z.add_pos_nonneg Z.add_nonneg_nonneg : zpos.
Hint Resolve Z.mul_nonneg_nonneg Z.mul_pos_pos : zpos.
281 282
Hint Resolve Z.pow_pos_nonneg Z.pow_nonneg: zpos.
Hint Resolve Z_mod_pos Z.div_pos : zpos.
283 284
Hint Extern 1000 => lia : zpos.

Robbert Krebbers's avatar
Robbert Krebbers committed
285 286
Lemma Z_to_nat_nonpos x : x  0  Z.to_nat x = 0%nat.
Proof. destruct x; simpl; auto using Z2Nat.inj_neg. by intros []. Qed.
287 288
Lemma Z2Nat_inj_pow (x y : nat) : Z.of_nat (x ^ y) = x ^ y.
Proof.
Robbert Krebbers's avatar
Robbert Krebbers committed
289 290 291
  induction y as [|y IH]; [by rewrite Z.pow_0_r, Nat.pow_0_r|].
  by rewrite Nat.pow_succ_r, Nat2Z.inj_succ, Z.pow_succ_r,
    Nat2Z.inj_mul, IH by auto with zpos.
292
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
293 294 295 296 297 298 299 300 301 302 303 304
Lemma Nat2Z_divide n m : (Z.of_nat n | Z.of_nat m)  (n | m)%nat.
Proof.
  split.
  * rewrite <-(Nat2Z.id m) at 2; intros [i ->]; exists (Z.to_nat i).
    destruct (decide (0  i)%Z).
    { by rewrite Z2Nat.inj_mul, Nat2Z.id by lia. }
    by rewrite !Z_to_nat_nonpos by auto using Z.mul_nonpos_nonneg with lia.
  * intros [i ->]. exists (Z.of_nat i). by rewrite Nat2Z.inj_mul.
Qed.
Lemma Z2Nat_divide n m :
  0  n  0  m  (Z.to_nat n | Z.to_nat m)%nat  (n | m).
Proof. intros. by rewrite <-Nat2Z_divide, !Z2Nat.id by done. Qed.
305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322
Lemma Z2Nat_inj_div x y : Z.of_nat (x `div` y) = x `div` y.
Proof.
  destruct (decide (y = 0%nat)); [by subst; destruct x |].
  apply Z.div_unique with (x `mod` y)%nat.
  { left. rewrite <-(Nat2Z.inj_le 0), <-Nat2Z.inj_lt.
    apply Nat.mod_bound_pos; lia. }
  by rewrite <-Nat2Z.inj_mul, <-Nat2Z.inj_add, <-Nat.div_mod.
Qed.
Lemma Z2Nat_inj_mod x y : Z.of_nat (x `mod` y) = x `mod` y.
Proof.
  destruct (decide (y = 0%nat)); [by subst; destruct x |].
  apply Z.mod_unique with (x `div` y)%nat.
  { left. rewrite <-(Nat2Z.inj_le 0), <-Nat2Z.inj_lt.
    apply Nat.mod_bound_pos; lia. }
  by rewrite <-Nat2Z.inj_mul, <-Nat2Z.inj_add, <-Nat.div_mod.
Qed.
Close Scope Z_scope.

323
(** * Notations and properties of [Qc] *)
324
Open Scope Qc_scope.
325 326
Delimit Scope Qc_scope with Qc.
Notation "1" := (Q2Qc 1) : Qc_scope.
327
Notation "2" := (1+1) : Qc_scope.
328 329 330 331
Notation "- 1" := (Qcopp 1) : Qc_scope.
Notation "- 2" := (Qcopp 2) : Qc_scope.
Notation "x - y" := (x + -y) : Qc_scope.
Notation "x / y" := (x * /y) : Qc_scope.
332
Infix "≤" := Qcle : Qc_scope.
333 334 335 336
Notation "x ≤ y ≤ z" := (x  y  y  z) : Qc_scope.
Notation "x ≤ y < z" := (x  y  y < z) : Qc_scope.
Notation "x < y < z" := (x < y  y < z) : Qc_scope.
Notation "x < y ≤ z" := (x < y  y  z) : Qc_scope.
337
Notation "x ≤ y ≤ z ≤ z'" := (x  y  y  z  z  z') : Qc_scope.
338 339 340
Notation "(≤)" := Qcle (only parsing) : Qc_scope.
Notation "(<)" := Qclt (only parsing) : Qc_scope.

341 342 343
Hint Extern 1 (_  _) => reflexivity || discriminate.
Arguments Qred _ : simpl never.

344
Instance Qc_eq_dec:  x y : Qc, Decision (x = y) := Qc_eq_dec.
345
Program Instance Qc_le_dec (x y : Qc) : Decision (x  y) :=
346 347
  if Qclt_le_dec y x then right _ else left _.
Next Obligation. by apply Qclt_not_le. Qed.
348
Program Instance Qc_lt_dec (x y : Qc) : Decision (x < y) :=
349 350 351
  if Qclt_le_dec x y then left _ else right _.
Next Obligation. by apply Qcle_not_lt. Qed.

352 353 354 355 356 357 358 359
Instance: PartialOrder ().
Proof.
  repeat split; red. apply Qcle_refl. apply Qcle_trans. apply Qcle_antisym.
Qed.
Instance: StrictOrder (<).
Proof.
  split; red. intros x Hx. by destruct (Qclt_not_eq x x). apply Qclt_trans.
Qed.
360 361 362 363
Lemma Qcmult_0_l x : 0 * x = 0.
Proof. ring. Qed.
Lemma Qcmult_0_r x : x * 0 = 0.
Proof. ring. Qed.
364
Lemma Qcle_ngt (x y : Qc) : x  y  ¬y < x.
365
Proof. split; auto using Qcle_not_lt, Qcnot_lt_le. Qed.
366
Lemma Qclt_nge (x y : Qc) : x < y  ¬y  x.
367
Proof. split; auto using Qclt_not_le, Qcnot_le_lt. Qed.
368
Lemma Qcplus_le_mono_l (x y z : Qc) : x  y  z + x  z + y.
369 370 371
Proof.
  split; intros.
  * by apply Qcplus_le_compat.
372 373
  * replace x with ((0 - z) + (z + x)) by ring.
    replace y with ((0 - z) + (z + y)) by ring.
374 375
    by apply Qcplus_le_compat.
Qed.
376
Lemma Qcplus_le_mono_r (x y z : Qc) : x  y  x + z  y + z.
377
Proof. rewrite !(Qcplus_comm _ z). apply Qcplus_le_mono_l. Qed.
378
Lemma Qcplus_lt_mono_l (x y z : Qc) : x < y  z + x < z + y.
379
Proof. by rewrite !Qclt_nge, <-Qcplus_le_mono_l. Qed.
380
Lemma Qcplus_lt_mono_r (x y z : Qc) : x < y  x + z < y + z.
381
Proof. by rewrite !Qclt_nge, <-Qcplus_le_mono_r. Qed.
382 383 384 385
Instance: Injective (=) (=) Qcopp.
Proof.
  intros x y H. by rewrite <-(Qcopp_involutive x), H, Qcopp_involutive.
Qed.
386
Instance:  z, Injective (=) (=) (Qcplus z).
387 388 389 390
Proof.
  intros z x y H. by apply (anti_symmetric ());
    rewrite (Qcplus_le_mono_l _ _ z), H.
Qed.
391 392 393 394 395
Instance:  z, Injective (=) (=) (λ x, x + z).
Proof.
  intros z x y H. by apply (anti_symmetric ());
    rewrite (Qcplus_le_mono_r _ _ z), H.
Qed.
396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423
Lemma Qcplus_pos_nonneg (x y : Qc) : 0 < x  0  y  0 < x + y.
Proof.
  intros. apply Qclt_le_trans with (x + 0); [by rewrite Qcplus_0_r|].
  by apply Qcplus_le_mono_l.
Qed.
Lemma Qcplus_nonneg_pos (x y : Qc) : 0  x  0 < y  0 < x + y.
Proof. rewrite (Qcplus_comm x). auto using Qcplus_pos_nonneg. Qed. 
Lemma Qcplus_pos_pos (x y : Qc) : 0 < x  0 < y  0 < x + y.
Proof. auto using Qcplus_pos_nonneg, Qclt_le_weak. Qed.
Lemma Qcplus_nonneg_nonneg (x y : Qc) : 0  x  0  y  0  x + y.
Proof.
  intros. transitivity (x + 0); [by rewrite Qcplus_0_r|].
  by apply Qcplus_le_mono_l.
Qed.
Lemma Qcplus_neg_nonpos (x y : Qc) : x < 0  y  0  x + y < 0.
Proof.
  intros. apply Qcle_lt_trans with (x + 0); [|by rewrite Qcplus_0_r].
  by apply Qcplus_le_mono_l.
Qed.
Lemma Qcplus_nonpos_neg (x y : Qc) : x  0  y < 0  x + y < 0.
Proof. rewrite (Qcplus_comm x). auto using Qcplus_neg_nonpos. Qed.
Lemma Qcplus_neg_neg (x y : Qc) : x < 0  y < 0  x + y < 0.
Proof. auto using Qcplus_nonpos_neg, Qclt_le_weak. Qed.
Lemma Qcplus_nonpos_nonpos (x y : Qc) : x  0  y  0  x + y  0.
Proof.
  intros. transitivity (x + 0); [|by rewrite Qcplus_0_r].
  by apply Qcplus_le_mono_l.
Qed.
424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474
Lemma Qcmult_le_mono_nonneg_l x y z : 0  z  x  y  z * x  z * y.
Proof. intros. rewrite !(Qcmult_comm z). by apply Qcmult_le_compat_r. Qed.
Lemma Qcmult_le_mono_nonneg_r x y z : 0  z  x  y  x * z  y * z.
Proof. intros. by apply Qcmult_le_compat_r. Qed.
Lemma Qcmult_le_mono_pos_l x y z : 0 < z  x  y  z * x  z * y.
Proof.
  split; auto using Qcmult_le_mono_nonneg_l, Qclt_le_weak.
  rewrite !Qcle_ngt, !(Qcmult_comm z).
  intuition auto using Qcmult_lt_compat_r.
Qed.
Lemma Qcmult_le_mono_pos_r x y z : 0 < z  x  y  x * z  y * z.
Proof. rewrite !(Qcmult_comm _ z). by apply Qcmult_le_mono_pos_l. Qed.
Lemma Qcmult_lt_mono_pos_l x y z : 0 < z  x < y  z * x < z * y.
Proof. intros. by rewrite !Qclt_nge, <-Qcmult_le_mono_pos_l. Qed.
Lemma Qcmult_lt_mono_pos_r x y z : 0 < z  x < y  x * z < y * z.
Proof. intros. by rewrite !Qclt_nge, <-Qcmult_le_mono_pos_r. Qed.
Lemma Qcmult_pos_pos x y : 0 < x  0 < y  0 < x * y.
Proof.
  intros. apply Qcle_lt_trans with (0 * y); [by rewrite Qcmult_0_l|].
  by apply Qcmult_lt_mono_pos_r.
Qed.
Lemma Qcmult_nonneg_nonneg x y : 0  x  0  y  0  x * y.
Proof.
  intros. transitivity (0 * y); [by rewrite Qcmult_0_l|].
  by apply Qcmult_le_mono_nonneg_r.
Qed.

Lemma inject_Z_Qred n : Qred (inject_Z n) = inject_Z n.
Proof. apply Qred_identity; auto using Z.gcd_1_r. Qed.
Coercion Qc_of_Z (n : Z) : Qc := Qcmake _ (inject_Z_Qred n).
Lemma Z2Qc_inj_0 : Qc_of_Z 0 = 0.
Proof. by apply Qc_is_canon. Qed.
Lemma Z2Qc_inj n m : Qc_of_Z n = Qc_of_Z m  n = m.
Proof. by injection 1. Qed.
Lemma Z2Qc_inj_iff n m : Qc_of_Z n = Qc_of_Z m  n = m.
Proof. split. auto using Z2Qc_inj. by intros ->. Qed.
Lemma Z2Qc_inj_le n m : (n  m)%Z  Qc_of_Z n  Qc_of_Z m.
Proof. by rewrite Zle_Qle. Qed.
Lemma Z2Qc_inj_lt n m : (n < m)%Z  Qc_of_Z n < Qc_of_Z m.
Proof. by rewrite Zlt_Qlt. Qed.
Lemma Z2Qc_inj_add n m : Qc_of_Z (n + m) = Qc_of_Z n + Qc_of_Z m.
Proof. apply Qc_is_canon; simpl. by rewrite Qred_correct, inject_Z_plus. Qed.
Lemma Z2Qc_inj_mul n m : Qc_of_Z (n * m) = Qc_of_Z n * Qc_of_Z m.
Proof. apply Qc_is_canon; simpl. by rewrite Qred_correct, inject_Z_mult. Qed.
Lemma Z2Qc_inj_opp n : Qc_of_Z (-n) = -Qc_of_Z n.
Proof. apply Qc_is_canon; simpl. by rewrite Qred_correct, inject_Z_opp. Qed.
Lemma Z2Qc_inj_sub n m : Qc_of_Z (n - m) = Qc_of_Z n - Qc_of_Z m.
Proof.
  apply Qc_is_canon; simpl.
  by rewrite !Qred_correct, <-inject_Z_opp, <-inject_Z_plus.
Qed.
475
Close Scope Qc_scope.