list.v 161 KB
Newer Older
Robbert Krebbers's avatar
Robbert Krebbers committed
1
(* Copyright (c) 2012-2015, Robbert Krebbers. *)
2 3 4
(* This file is distributed under the terms of the BSD license. *)
(** This file collects general purpose definitions and theorems on lists that
are not in the Coq standard library. *)
5
From Coq Require Export Permutation.
6
From stdpp Require Export numbers base option.
Robbert Krebbers's avatar
Robbert Krebbers committed
7

8
Arguments length {_} _.
Robbert Krebbers's avatar
Robbert Krebbers committed
9 10
Arguments cons {_} _ _.
Arguments app {_} _ _.
11 12 13 14

Instance: Params (@length) 1.
Instance: Params (@cons) 1.
Instance: Params (@app) 1.
Robbert Krebbers's avatar
Robbert Krebbers committed
15

16 17 18
Notation tail := tl.
Notation take := firstn.
Notation drop := skipn.
19

20
Arguments tail {_} _.
21 22 23
Arguments take {_} !_ !_ /.
Arguments drop {_} !_ !_ /.

24 25 26 27 28 29
Instance: Params (@tail) 1.
Instance: Params (@take) 1.
Instance: Params (@drop) 1.

Arguments Permutation {_} _ _.
Arguments Forall_cons {_} _ _ _ _ _.
30
Remove Hints Permutation_cons : typeclass_instances.
31

Robbert Krebbers's avatar
Robbert Krebbers committed
32 33 34 35 36 37 38
Notation "(::)" := cons (only parsing) : C_scope.
Notation "( x ::)" := (cons x) (only parsing) : C_scope.
Notation "(:: l )" := (λ x, cons x l) (only parsing) : C_scope.
Notation "(++)" := app (only parsing) : C_scope.
Notation "( l ++)" := (app l) (only parsing) : C_scope.
Notation "(++ k )" := (λ l, app l k) (only parsing) : C_scope.

39 40 41 42 43 44 45 46 47
Infix "≡ₚ" := Permutation (at level 70, no associativity) : C_scope.
Notation "(≡ₚ)" := Permutation (only parsing) : C_scope.
Notation "( x ≡ₚ)" := (Permutation x) (only parsing) : C_scope.
Notation "(≡ₚ x )" := (λ y, y  x) (only parsing) : C_scope.
Notation "(≢ₚ)" := (λ x y, ¬x  y) (only parsing) : C_scope.
Notation "x ≢ₚ y":= (¬x  y) (at level 70, no associativity) : C_scope.
Notation "( x ≢ₚ)" := (λ y, x ≢ₚ y) (only parsing) : C_scope.
Notation "(≢ₚ x )" := (λ y, y ≢ₚ x) (only parsing) : C_scope.

Robbert Krebbers's avatar
Robbert Krebbers committed
48 49 50
Instance maybe_cons {A} : Maybe2 (@cons A) := λ l,
  match l with x :: l => Some (x,l) | _ => None end.

51
(** * Definitions *)
52 53 54 55 56 57
(** Setoid equality lifted to lists *)
Inductive list_equiv `{Equiv A} : Equiv (list A) :=
  | nil_equiv : []  []
  | cons_equiv x y l k : x  y  l  k  x :: l  y :: k.
Existing Instance list_equiv.

58 59
(** The operation [l !! i] gives the [i]th element of the list [l], or [None]
in case [i] is out of bounds. *)
60 61
Instance list_lookup {A} : Lookup nat A (list A) :=
  fix go i l {struct l} : option A := let _ : Lookup _ _ _ := @go in
62
  match l with
63
  | [] => None | x :: l => match i with 0 => Some x | S i => l !! i end
64
  end.
65 66 67

(** The operation [alter f i l] applies the function [f] to the [i]th element
of [l]. In case [i] is out of bounds, the list is returned unchanged. *)
68
Instance list_alter {A} : Alter nat A (list A) := λ f,
69
  fix go i l {struct l} :=
70 71
  match l with
  | [] => []
72
  | x :: l => match i with 0 => f x :: l | S i => x :: go i l end
73
  end.
74

75 76
(** The operation [<[i:=x]> l] overwrites the element at position [i] with the
value [x]. In case [i] is out of bounds, the list is returned unchanged. *)
77 78
Instance list_insert {A} : Insert nat A (list A) :=
  fix go i y l {struct l} := let _ : Insert _ _ _ := @go in
79 80 81 82
  match l with
  | [] => []
  | x :: l => match i with 0 => y :: l | S i => x :: <[i:=y]>l end
  end.
83 84 85 86 87
Fixpoint list_inserts {A} (i : nat) (k l : list A) : list A :=
  match k with
  | [] => l
  | y :: k => <[i:=y]>(list_inserts (S i) k l)
  end.
88
Instance: Params (@list_inserts) 1.
89

90 91 92
(** The operation [delete i l] removes the [i]th element of [l] and moves
all consecutive elements one position ahead. In case [i] is out of bounds,
the list is returned unchanged. *)
93 94
Instance list_delete {A} : Delete nat (list A) :=
  fix go (i : nat) (l : list A) {struct l} : list A :=
95 96
  match l with
  | [] => []
97
  | x :: l => match i with 0 => l | S i => x :: @delete _ _ go i l end
98
  end.
99 100 101

(** The function [option_list o] converts an element [Some x] into the
singleton list [[x]], and [None] into the empty list [[]]. *)
Robbert Krebbers's avatar
Robbert Krebbers committed
102
Definition option_list {A} : option A  list A := option_rect _ (λ x, [x]) [].
103 104
Instance: Params (@option_list) 1.
Instance maybe_list_singleton {A} : Maybe (λ x : A, [x]) := λ l,
105
  match l with [x] => Some x | _ => None end.
Robbert Krebbers's avatar
Robbert Krebbers committed
106 107 108 109

(** The function [filter P l] returns the list of elements of [l] that
satisfies [P]. The order remains unchanged. *)
Instance list_filter {A} : Filter A (list A) :=
110
  fix go P _ l := let _ : Filter _ _ := @go in
Robbert Krebbers's avatar
Robbert Krebbers committed
111 112
  match l with
  | [] => []
113
  | x :: l => if decide (P x) then x :: filter P l else filter P l
114 115 116 117
  end.

(** The function [list_find P l] returns the first index [i] whose element
satisfies the predicate [P]. *)
118
Definition list_find {A} P `{ x, Decision (P x)} : list A  option (nat * A) :=
119 120
  fix go l :=
  match l with
121 122
  | [] => None
  | x :: l => if decide (P x) then Some (0,x) else prod_map S id <$> go l
123
  end.
124
Instance: Params (@list_find) 3.
Robbert Krebbers's avatar
Robbert Krebbers committed
125 126 127 128

(** The function [replicate n x] generates a list with length [n] of elements
with value [x]. *)
Fixpoint replicate {A} (n : nat) (x : A) : list A :=
129
  match n with 0 => [] | S n => x :: replicate n x end.
130
Instance: Params (@replicate) 2.
Robbert Krebbers's avatar
Robbert Krebbers committed
131 132 133

(** The function [reverse l] returns the elements of [l] in reverse order. *)
Definition reverse {A} (l : list A) : list A := rev_append l [].
134
Instance: Params (@reverse) 1.
Robbert Krebbers's avatar
Robbert Krebbers committed
135

136 137 138 139
(** The function [last l] returns the last element of the list [l], or [None]
if the list [l] is empty. *)
Fixpoint last {A} (l : list A) : option A :=
  match l with [] => None | [x] => Some x | _ :: l => last l end.
140
Instance: Params (@last) 1.
141

Robbert Krebbers's avatar
Robbert Krebbers committed
142 143 144 145 146 147
(** The function [resize n y l] takes the first [n] elements of [l] in case
[length l ≤ n], and otherwise appends elements with value [x] to [l] to obtain
a list of length [n]. *)
Fixpoint resize {A} (n : nat) (y : A) (l : list A) : list A :=
  match l with
  | [] => replicate n y
148
  | x :: l => match n with 0 => [] | S n => x :: resize n y l end
Robbert Krebbers's avatar
Robbert Krebbers committed
149 150
  end.
Arguments resize {_} !_ _ !_.
151
Instance: Params (@resize) 2.
Robbert Krebbers's avatar
Robbert Krebbers committed
152

153 154 155
(** The function [reshape k l] transforms [l] into a list of lists whose sizes
are specified by [k]. In case [l] is too short, the resulting list will be
padded with empty lists. In case [l] is too long, it will be truncated. *)
156 157
Fixpoint reshape {A} (szs : list nat) (l : list A) : list (list A) :=
  match szs with
158
  | [] => [] | sz :: szs => take sz l :: reshape szs (drop sz l)
159
  end.
160
Instance: Params (@reshape) 2.
161

162
Definition sublist_lookup {A} (i n : nat) (l : list A) : option (list A) :=
163 164 165 166
  guard (i + n  length l); Some (take n (drop i l)).
Definition sublist_alter {A} (f : list A  list A)
    (i n : nat) (l : list A) : list A :=
  take i l ++ f (take n (drop i l)) ++ drop (i + n) l.
167

168 169 170 171
(** Functions to fold over a list. We redefine [foldl] with the arguments in
the same order as in Haskell. *)
Notation foldr := fold_right.
Definition foldl {A B} (f : A  B  A) : A  list B  A :=
172
  fix go a l := match l with [] => a | x :: l => go (f a x) l end.
173 174 175

(** The monadic operations. *)
Instance list_ret: MRet list := λ A x, x :: @nil A.
176 177
Instance list_fmap : FMap list := λ A B f,
  fix go (l : list A) := match l with [] => [] | x :: l => f x :: go l end.
178 179 180 181 182 183
Instance list_omap : OMap list := λ A B f,
  fix go (l : list A) :=
  match l with
  | [] => []
  | x :: l => match f x with Some y => y :: go l | None => go l end
  end.
184 185
Instance list_bind : MBind list := λ A B f,
  fix go (l : list A) := match l with [] => [] | x :: l => f x ++ go l end.
186 187
Instance list_join: MJoin list :=
  fix go A (ls : list (list A)) : list A :=
188
  match ls with [] => [] | l :: ls => l ++ @mjoin _ go _ ls end.
189
Definition mapM `{MBind M, MRet M} {A B} (f : A  M B) : list A  M (list B) :=
190
  fix go l :=
191
  match l with [] => mret [] | x :: l => y  f x; k  go l; mret (y :: k) end.
192 193 194 195 196

(** We define stronger variants of map and fold that allow the mapped
function to use the index of the elements. *)
Definition imap_go {A B} (f : nat  A  B) : nat  list A  list B :=
  fix go (n : nat) (l : list A) :=
197
  match l with [] => [] | x :: l => f n x :: go (S n) l end.
198
Definition imap {A B} (f : nat  A  B) : list A  list B := imap_go f 0.
199 200
Arguments imap : simpl never.

201 202 203 204
Definition zipped_map {A B} (f : list A  list A  A  B) :
  list A  list A  list B := fix go l k :=
  match k with [] => [] | x :: k => f l k x :: go (x :: l) k end.

Robbert Krebbers's avatar
Robbert Krebbers committed
205 206 207 208 209 210 211 212 213
Definition imap2_go {A B C} (f : nat  A  B  C) :
    nat  list A  list B  list C:=
  fix go (n : nat) (l : list A) (k : list B) :=
  match l, k with
  | [], _ |_, [] => [] | x :: l, y :: k => f n x y :: go (S n) l k
  end.
Definition imap2 {A B C} (f : nat  A  B  C) :
  list A  list B  list C := imap2_go f 0.

214 215 216 217 218 219 220
Inductive zipped_Forall {A} (P : list A  list A  A  Prop) :
    list A  list A  Prop :=
  | zipped_Forall_nil l : zipped_Forall P l []
  | zipped_Forall_cons l k x :
     P l k x  zipped_Forall P (x :: l) k  zipped_Forall P l (x :: k).
Arguments zipped_Forall_nil {_ _} _.
Arguments zipped_Forall_cons {_ _} _ _ _ _ _.
221

222 223 224 225 226 227 228
(** The function [mask f βs l] applies the function [f] to elements in [l] at
positions that are [true] in [βs]. *)
Fixpoint mask {A} (f : A  A) (βs : list bool) (l : list A) : list A :=
  match βs, l with
  | β :: βs, x :: l => (if β then f x else x) :: mask f βs l
  | _, _ => l
  end.
229 230 231 232

(** The function [permutations l] yields all permutations of [l]. *)
Fixpoint interleave {A} (x : A) (l : list A) : list (list A) :=
  match l with
233
  | [] => [[x]]| y :: l => (x :: y :: l) :: ((y ::) <$> interleave x l)
234 235
  end.
Fixpoint permutations {A} (l : list A) : list (list A) :=
236
  match l with [] => [[]] | x :: l => permutations l = interleave x end.
237

238 239
(** The predicate [suffix_of] holds if the first list is a suffix of the second.
The predicate [prefix_of] holds if the first list is a prefix of the second. *)
240 241
Definition suffix_of {A} : relation (list A) := λ l1 l2,  k, l2 = k ++ l1.
Definition prefix_of {A} : relation (list A) := λ l1 l2,  k, l2 = l1 ++ k.
242 243
Infix "`suffix_of`" := suffix_of (at level 70) : C_scope.
Infix "`prefix_of`" := prefix_of (at level 70) : C_scope.
244 245
Hint Extern 0 (_ `prefix_of` _) => reflexivity.
Hint Extern 0 (_ `suffix_of` _) => reflexivity.
Robbert Krebbers's avatar
Robbert Krebbers committed
246

247
Section prefix_suffix_ops.
248 249
  Context `{EqDecision A}.

250 251 252 253 254 255
  Definition max_prefix_of : list A  list A  list A * list A * list A :=
    fix go l1 l2 :=
    match l1, l2 with
    | [], l2 => ([], l2, [])
    | l1, [] => (l1, [], [])
    | x1 :: l1, x2 :: l2 =>
256
      if decide_rel (=) x1 x2
257
      then prod_map id (x1 ::) (go l1 l2) else (x1 :: l1, x2 :: l2, [])
258 259 260 261 262
    end.
  Definition max_suffix_of (l1 l2 : list A) : list A * list A * list A :=
    match max_prefix_of (reverse l1) (reverse l2) with
    | (k1, k2, k3) => (reverse k1, reverse k2, reverse k3)
    end.
263 264
  Definition strip_prefix (l1 l2 : list A) := (max_prefix_of l1 l2).1.2.
  Definition strip_suffix (l1 l2 : list A) := (max_suffix_of l1 l2).1.2.
265
End prefix_suffix_ops.
Robbert Krebbers's avatar
Robbert Krebbers committed
266

267
(** A list [l1] is a sublist of [l2] if [l2] is obtained by removing elements
268 269 270
from [l1] without changing the order. *)
Inductive sublist {A} : relation (list A) :=
  | sublist_nil : sublist [] []
271
  | sublist_skip x l1 l2 : sublist l1 l2  sublist (x :: l1) (x :: l2)
272
  | sublist_cons x l1 l2 : sublist l1 l2  sublist l1 (x :: l2).
273
Infix "`sublist`" := sublist (at level 70) : C_scope.
274
Hint Extern 0 (_ `sublist` _) => reflexivity.
275 276

(** A list [l2] contains a list [l1] if [l2] is obtained by removing elements
277
from [l1] while possiblity changing the order. *)
278 279 280 281
Inductive contains {A} : relation (list A) :=
  | contains_nil : contains [] []
  | contains_skip x l1 l2 : contains l1 l2  contains (x :: l1) (x :: l2)
  | contains_swap x y l : contains (y :: x :: l) (x :: y :: l)
282
  | contains_cons x l1 l2 : contains l1 l2  contains l1 (x :: l2)
283 284
  | contains_trans l1 l2 l3 : contains l1 l2  contains l2 l3  contains l1 l3.
Infix "`contains`" := contains (at level 70) : C_scope.
285
Hint Extern 0 (_ `contains` _) => reflexivity.
286 287

Section contains_dec_help.
288
  Context `{EqDecision A}.
289 290 291 292 293 294 295
  Fixpoint list_remove (x : A) (l : list A) : option (list A) :=
    match l with
    | [] => None
    | y :: l => if decide (x = y) then Some l else (y ::) <$> list_remove x l
    end.
  Fixpoint list_remove_list (k : list A) (l : list A) : option (list A) :=
    match k with
296
    | [] => Some l | x :: k => list_remove x l = list_remove_list k
297 298
    end.
End contains_dec_help.
299

300 301 302 303 304
Inductive Forall3 {A B C} (P : A  B  C  Prop) :
     list A  list B  list C  Prop :=
  | Forall3_nil : Forall3 P [] [] []
  | Forall3_cons x y z l k k' :
     P x y z  Forall3 P l k k'  Forall3 P (x :: l) (y :: k) (z :: k').
305

306 307
(** Set operations on lists *)
Instance list_subseteq {A} : SubsetEq (list A) := λ l1 l2,  x, x  l1  x  l2.
308

309
Section list_set.
310 311
  Context `{dec : EqDecision A}.
  Global Instance elem_of_list_dec (x : A) :  l, Decision (x  l).
312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330
  Proof.
   refine (
    fix go l :=
    match l return Decision (x  l) with
    | [] => right _
    | y :: l => cast_if_or (decide (x = y)) (go l)
    end); clear go dec; subst; try (by constructor); abstract by inversion 1.
  Defined.
  Fixpoint remove_dups (l : list A) : list A :=
    match l with
    | [] => []
    | x :: l =>
      if decide_rel () x l then remove_dups l else x :: remove_dups l
    end.
  Fixpoint list_difference (l k : list A) : list A :=
    match l with
    | [] => []
    | x :: l =>
      if decide_rel () x k
331
      then list_difference l k else x :: list_difference l k
332
    end.
333
  Definition list_union (l k : list A) : list A := list_difference l k ++ k.
334 335 336 337 338
  Fixpoint list_intersection (l k : list A) : list A :=
    match l with
    | [] => []
    | x :: l =>
      if decide_rel () x k
339
      then x :: list_intersection l k else list_intersection l k
340 341 342 343 344 345 346 347 348
    end.
  Definition list_intersection_with (f : A  A  option A) :
    list A  list A  list A := fix go l k :=
    match l with
    | [] => []
    | x :: l => foldr (λ y,
        match f x y with None => id | Some z => (z ::) end) (go l k) k
    end.
End list_set.
349 350

(** * Basic tactics on lists *)
351
(** The tactic [discriminate_list] discharges a goal if it contains
352 353
a list equality involving [(::)] and [(++)] of two lists that have a different
length as one of its hypotheses. *)
354
Tactic Notation "discriminate_list" hyp(H) :=
355
  apply (f_equal length) in H;
356
  repeat (csimpl in H || rewrite app_length in H); exfalso; lia.
357 358
Tactic Notation "discriminate_list" :=
  match goal with H : @eq (list _) _ _ |- _ => discriminate_list H end.
359

360
(** The tactic [simplify_list_eq] simplifies hypotheses involving
361 362
equalities on lists using injectivity of [(::)] and [(++)]. Also, it simplifies
lookups in singleton lists. *)
363
Lemma app_inj_1 {A} (l1 k1 l2 k2 : list A) :
364 365
  length l1 = length k1  l1 ++ l2 = k1 ++ k2  l1 = k1  l2 = k2.
Proof. revert k1. induction l1; intros [|??]; naive_solver. Qed.
366
Lemma app_inj_2 {A} (l1 k1 l2 k2 : list A) :
367 368
  length l2 = length k2  l1 ++ l2 = k1 ++ k2  l1 = k1  l2 = k2.
Proof.
369
  intros ? Hl. apply app_inj_1; auto.
370 371
  apply (f_equal length) in Hl. rewrite !app_length in Hl. lia.
Qed.
372
Ltac simplify_list_eq :=
373
  repeat match goal with
374
  | _ => progress simplify_eq/=
375
  | H : _ ++ _ = _ ++ _ |- _ => first
376
    [ apply app_inv_head in H | apply app_inv_tail in H
377 378
    | apply app_inj_1 in H; [destruct H|done]
    | apply app_inj_2 in H; [destruct H|done] ]
Robbert Krebbers's avatar
Robbert Krebbers committed
379
  | H : [?x] !! ?i = Some ?y |- _ =>
380
    destruct i; [change (Some x = Some y) in H | discriminate]
381
  end.
382

383 384
(** * General theorems *)
Section general_properties.
Robbert Krebbers's avatar
Robbert Krebbers committed
385
Context {A : Type}.
386 387
Implicit Types x y z : A.
Implicit Types l k : list A.
Robbert Krebbers's avatar
Robbert Krebbers committed
388

389
Global Instance: Inj2 (=) (=) (=) (@cons A).
390
Proof. by injection 1. Qed.
391
Global Instance:  k, Inj (=) (=) (k ++).
392
Proof. intros ???. apply app_inv_head. Qed.
393
Global Instance:  k, Inj (=) (=) (++ k).
394
Proof. intros ???. apply app_inv_tail. Qed.
395
Global Instance: Assoc (=) (@app A).
396 397 398 399 400
Proof. intros ???. apply app_assoc. Qed.
Global Instance: LeftId (=) [] (@app A).
Proof. done. Qed.
Global Instance: RightId (=) [] (@app A).
Proof. intro. apply app_nil_r. Qed.
401

402
Lemma app_nil l1 l2 : l1 ++ l2 = []  l1 = []  l2 = [].
403
Proof. split. apply app_eq_nil. by intros [-> ->]. Qed.
404 405
Lemma app_singleton l1 l2 x :
  l1 ++ l2 = [x]  l1 = []  l2 = [x]  l1 = [x]  l2 = [].
406
Proof. split. apply app_eq_unit. by intros [[-> ->]|[-> ->]]. Qed.
407 408 409
Lemma cons_middle x l1 l2 : l1 ++ x :: l2 = l1 ++ [x] ++ l2.
Proof. done. Qed.
Lemma list_eq l1 l2 : ( i, l1 !! i = l2 !! i)  l1 = l2.
410
Proof.
411
  revert l2. induction l1 as [|x l1 IH]; intros [|y l2] H.
412 413 414
  - done.
  - discriminate (H 0).
  - discriminate (H 0).
415
  - f_equal; [by injection (H 0)|]. apply (IH _ $ λ i, H (S i)).
416
Qed.
417 418
Global Instance list_eq_dec {dec : EqDecision A} : EqDecision (list A) :=
  list_eq_dec dec.
419 420 421
Global Instance list_eq_nil_dec l : Decision (l = []).
Proof. by refine match l with [] => left _ | _ => right _ end. Defined.
Lemma list_singleton_reflect l :
422
  option_reflect (λ x, l = [x]) (length l  1) (maybe (λ x, [x]) l).
423 424 425 426
Proof. by destruct l as [|? []]; constructor. Defined.

Definition nil_length : length (@nil A) = 0 := eq_refl.
Definition cons_length x l : length (x :: l) = S (length l) := eq_refl.
427
Lemma nil_or_length_pos l : l = []  length l  0.
428
Proof. destruct l; simpl; auto with lia. Qed.
429
Lemma nil_length_inv l : length l = 0  l = [].
430 431
Proof. by destruct l. Qed.
Lemma lookup_nil i : @nil A !! i = None.
432
Proof. by destruct i. Qed.
433
Lemma lookup_tail l i : tail l !! i = l !! S i.
434
Proof. by destruct l. Qed.
435
Lemma lookup_lt_Some l i x : l !! i = Some x  i < length l.
436
Proof. revert i. induction l; intros [|?] ?; naive_solver auto with arith. Qed.
437 438 439
Lemma lookup_lt_is_Some_1 l i : is_Some (l !! i)  i < length l.
Proof. intros [??]; eauto using lookup_lt_Some. Qed.
Lemma lookup_lt_is_Some_2 l i : i < length l  is_Some (l !! i).
440
Proof. revert i. induction l; intros [|?] ?; naive_solver eauto with lia. Qed.
441 442 443 444 445 446 447 448
Lemma lookup_lt_is_Some l i : is_Some (l !! i)  i < length l.
Proof. split; auto using lookup_lt_is_Some_1, lookup_lt_is_Some_2. Qed.
Lemma lookup_ge_None l i : l !! i = None  length l  i.
Proof. rewrite eq_None_not_Some, lookup_lt_is_Some. lia. Qed.
Lemma lookup_ge_None_1 l i : l !! i = None  length l  i.
Proof. by rewrite lookup_ge_None. Qed.
Lemma lookup_ge_None_2 l i : length l  i  l !! i = None.
Proof. by rewrite lookup_ge_None. Qed.
449 450 451
Lemma list_eq_same_length l1 l2 n :
  length l2 = n  length l1 = n 
  ( i x y, i < n  l1 !! i = Some x  l2 !! i = Some y  x = y)  l1 = l2.
Robbert Krebbers's avatar
Robbert Krebbers committed
452
Proof.
453
  intros <- Hlen Hl; apply list_eq; intros i. destruct (l2 !! i) as [x|] eqn:Hx.
454
  - destruct (lookup_lt_is_Some_2 l1 i) as [y Hy].
455 456
    { rewrite Hlen; eauto using lookup_lt_Some. }
    rewrite Hy; f_equal; apply (Hl i); eauto using lookup_lt_Some.
457
  - by rewrite lookup_ge_None, Hlen, <-lookup_ge_None.
Robbert Krebbers's avatar
Robbert Krebbers committed
458
Qed.
459
Lemma lookup_app_l l1 l2 i : i < length l1  (l1 ++ l2) !! i = l1 !! i.
460
Proof. revert i. induction l1; intros [|?]; naive_solver auto with lia. Qed.
461 462
Lemma lookup_app_l_Some l1 l2 i x : l1 !! i = Some x  (l1 ++ l2) !! i = Some x.
Proof. intros. rewrite lookup_app_l; eauto using lookup_lt_Some. Qed.
463
Lemma lookup_app_r l1 l2 i :
464
  length l1  i  (l1 ++ l2) !! i = l2 !! (i - length l1).
465 466 467 468 469 470
Proof. revert i. induction l1; intros [|?]; simpl; auto with lia. Qed.
Lemma lookup_app_Some l1 l2 i x :
  (l1 ++ l2) !! i = Some x 
    l1 !! i = Some x  length l1  i  l2 !! (i - length l1) = Some x.
Proof.
  split.
471
  - revert i. induction l1 as [|y l1 IH]; intros [|i] ?;
472
      simplify_eq/=; auto with lia.
473
    destruct (IH i) as [?|[??]]; auto with lia.
474
  - intros [?|[??]]; auto using lookup_app_l_Some. by rewrite lookup_app_r.
475
Qed.
476 477 478
Lemma list_lookup_middle l1 l2 x n :
  n = length l1  (l1 ++ x :: l2) !! n = Some x.
Proof. intros ->. by induction l1. Qed.
479

Ralf Jung's avatar
Ralf Jung committed
480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499
Lemma nth_lookup_or_length l i d :
  {l !! i = Some (nth i l d)} + {(length l  i)%nat}.
Proof.
  revert i; induction l; intros i.
  - right. simpl. omega.
  - destruct i; simpl.
    + left. done.
    + destruct (IHl i) as [->|]; [by left|].
      right. omega.
Qed.

Lemma nth_lookup l i d x :
  l !! i = Some x  nth i l d = x.
Proof.
  revert i; induction l; intros i; [done|].
  destruct i; simpl.
  - congruence.
  - apply IHl.
Qed.

500
Lemma list_insert_alter l i x : <[i:=x]>l = alter (λ _, x) i l.
501
Proof. by revert i; induction l; intros []; intros; f_equal/=. Qed.
502
Lemma alter_length f l i : length (alter f i l) = length l.
503
Proof. revert i. by induction l; intros [|?]; f_equal/=. Qed.
504
Lemma insert_length l i x : length (<[i:=x]>l) = length l.
505
Proof. revert i. by induction l; intros [|?]; f_equal/=. Qed.
506
Lemma list_lookup_alter f l i : alter f i l !! i = f <$> l !! i.
507
Proof. revert i. induction l. done. intros [|i]. done. apply (IHl i). Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
508
Lemma list_lookup_alter_ne f l i j : i  j  alter f i l !! j = l !! j.
509
Proof. revert i j. induction l; [done|]. intros [] []; naive_solver. Qed.
510
Lemma list_lookup_insert l i x : i < length l  <[i:=x]>l !! i = Some x.
511
Proof. revert i. induction l; intros [|?] ?; f_equal/=; auto with lia. Qed.
512
Lemma list_lookup_insert_ne l i j x : i  j  <[i:=x]>l !! j = l !! j.
513
Proof. revert i j. induction l; [done|]. intros [] []; naive_solver. Qed.
514 515 516 517 518 519
Lemma list_lookup_insert_Some l i x j y :
  <[i:=x]>l !! j = Some y 
    i = j  x = y  j < length l  i  j  l !! j = Some y.
Proof.
  destruct (decide (i = j)) as [->|];
    [split|rewrite list_lookup_insert_ne by done; tauto].
520
  - intros Hy. assert (j < length l).
521 522
    { rewrite <-(insert_length l j x); eauto using lookup_lt_Some. }
    rewrite list_lookup_insert in Hy by done; naive_solver.
523
  - intros [(?&?&?)|[??]]; rewrite ?list_lookup_insert; naive_solver.
524 525 526
Qed.
Lemma list_insert_commute l i j x y :
  i  j  <[i:=x]>(<[j:=y]>l) = <[j:=y]>(<[i:=x]>l).
527
Proof. revert i j. by induction l; intros [|?] [|?] ?; f_equal/=; auto. Qed.
528 529
Lemma list_lookup_other l i x :
  length l  1  l !! i = Some x   j y, j  i  l !! j = Some y.
Robbert Krebbers's avatar
Robbert Krebbers committed
530
Proof.
531
  intros. destruct i, l as [|x0 [|x1 l]]; simplify_eq/=.
532 533
  - by exists 1, x1.
  - by exists 0, x0.
Robbert Krebbers's avatar
Robbert Krebbers committed
534
Qed.
535 536
Lemma alter_app_l f l1 l2 i :
  i < length l1  alter f i (l1 ++ l2) = alter f i l1 ++ l2.
537
Proof. revert i. induction l1; intros [|?] ?; f_equal/=; auto with lia. Qed.
538
Lemma alter_app_r f l1 l2 i :
539
  alter f (length l1 + i) (l1 ++ l2) = l1 ++ alter f i l2.
540
Proof. revert i. induction l1; intros [|?]; f_equal/=; auto. Qed.
541 542
Lemma alter_app_r_alt f l1 l2 i :
  length l1  i  alter f i (l1 ++ l2) = l1 ++ alter f (i - length l1) l2.
543 544 545 546
Proof.
  intros. assert (i = length l1 + (i - length l1)) as Hi by lia.
  rewrite Hi at 1. by apply alter_app_r.
Qed.
547
Lemma list_alter_id f l i : ( x, f x = x)  alter f i l = l.
548
Proof. intros ?. revert i. induction l; intros [|?]; f_equal/=; auto. Qed.
549 550
Lemma list_alter_ext f g l k i :
  ( x, l !! i = Some x  f x = g x)  l = k  alter f i l = alter g i k.
551
Proof. intros H ->. revert i H. induction k; intros [|?] ?; f_equal/=; auto. Qed.
552 553
Lemma list_alter_compose f g l i :
  alter (f  g) i l = alter f i (alter g i l).
554
Proof. revert i. induction l; intros [|?]; f_equal/=; auto. Qed.
555 556
Lemma list_alter_commute f g l i j :
  i  j  alter f i (alter g j l) = alter g j (alter f i l).
557
Proof. revert i j. induction l; intros [|?][|?] ?; f_equal/=; auto with lia. Qed.
558 559
Lemma insert_app_l l1 l2 i x :
  i < length l1  <[i:=x]>(l1 ++ l2) = <[i:=x]>l1 ++ l2.
560
Proof. revert i. induction l1; intros [|?] ?; f_equal/=; auto with lia. Qed.
561
Lemma insert_app_r l1 l2 i x : <[length l1+i:=x]>(l1 ++ l2) = l1 ++ <[i:=x]>l2.
562
Proof. revert i. induction l1; intros [|?]; f_equal/=; auto. Qed.
563 564
Lemma insert_app_r_alt l1 l2 i x :
  length l1  i  <[i:=x]>(l1 ++ l2) = l1 ++ <[i - length l1:=x]>l2.
565 566 567 568
Proof.
  intros. assert (i = length l1 + (i - length l1)) as Hi by lia.
  rewrite Hi at 1. by apply insert_app_r.
Qed.
569
Lemma delete_middle l1 l2 x : delete (length l1) (l1 ++ x :: l2) = l1 ++ l2.
570
Proof. induction l1; f_equal/=; auto. Qed.
571

572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608
Lemma inserts_length l i k : length (list_inserts i k l) = length l.
Proof.
  revert i. induction k; intros ?; csimpl; rewrite ?insert_length; auto.
Qed.
Lemma list_lookup_inserts l i k j :
  i  j < i + length k  j < length l 
  list_inserts i k l !! j = k !! (j - i).
Proof.
  revert i j. induction k as [|y k IH]; csimpl; intros i j ??; [lia|].
  destruct (decide (i = j)) as [->|].
  { by rewrite list_lookup_insert, Nat.sub_diag
      by (rewrite inserts_length; lia). }
  rewrite list_lookup_insert_ne, IH by lia.
  by replace (j - i) with (S (j - S i)) by lia.
Qed.
Lemma list_lookup_inserts_lt l i k j :
  j < i  list_inserts i k l !! j = l !! j.
Proof.
  revert i j. induction k; intros i j ?; csimpl;
    rewrite ?list_lookup_insert_ne by lia; auto with lia.
Qed.
Lemma list_lookup_inserts_ge l i k j :
  i + length k  j  list_inserts i k l !! j = l !! j.
Proof.
  revert i j. induction k; csimpl; intros i j ?;
    rewrite ?list_lookup_insert_ne by lia; auto with lia.
Qed.
Lemma list_lookup_inserts_Some l i k j y :
  list_inserts i k l !! j = Some y 
    (j < i  i + length k  j)  l !! j = Some y 
    i  j < i + length k  j < length l  k !! (j - i) = Some y.
Proof.
  destruct (decide (j < i)).
  { rewrite list_lookup_inserts_lt by done; intuition lia. }
  destruct (decide (i + length k  j)).
  { rewrite list_lookup_inserts_ge by done; intuition lia. }
  split.
609
  - intros Hy. assert (j < length l).
610 611
    { rewrite <-(inserts_length l i k); eauto using lookup_lt_Some. }
    rewrite list_lookup_inserts in Hy by lia. intuition lia.
612
  - intuition. by rewrite list_lookup_inserts by lia.
613 614 615 616 617 618 619 620
Qed.
Lemma list_insert_inserts_lt l i j x k :
  i < j  <[i:=x]>(list_inserts j k l) = list_inserts j k (<[i:=x]>l).
Proof.
  revert i j. induction k; intros i j ?; simpl;
    rewrite 1?list_insert_commute by lia; auto with f_equal.
Qed.

621
(** ** Properties of the [elem_of] predicate *)
622
Lemma not_elem_of_nil x : x  [].
623
Proof. by inversion 1. Qed.
624
Lemma elem_of_nil x : x  []  False.
625
Proof. intuition. by destruct (not_elem_of_nil x). Qed.
626
Lemma elem_of_nil_inv l : ( x, x  l)  l = [].
627
Proof. destruct l. done. by edestruct 1; constructor. Qed.
628 629
Lemma elem_of_not_nil x l : x  l  l  [].
Proof. intros ? ->. by apply (elem_of_nil x). Qed.
630
Lemma elem_of_cons l x y : x  y :: l  x = y  x  l.
Robbert Krebbers's avatar
Robbert Krebbers committed
631
Proof. by split; [inversion 1; subst|intros [->|?]]; constructor. Qed.
632
Lemma not_elem_of_cons l x y : x  y :: l  x  y  x  l.
Robbert Krebbers's avatar
Robbert Krebbers committed
633
Proof. rewrite elem_of_cons. tauto. Qed.
634
Lemma elem_of_app l1 l2 x : x  l1 ++ l2  x  l1  x  l2.
635
Proof.
636
  induction l1.
637 638
  - split; [by right|]. intros [Hx|]; [|done]. by destruct (elem_of_nil x).
  - simpl. rewrite !elem_of_cons, IHl1. tauto.
639
Qed.
640
Lemma not_elem_of_app l1 l2 x : x  l1 ++ l2  x  l1  x  l2.
Robbert Krebbers's avatar
Robbert Krebbers committed
641
Proof. rewrite elem_of_app. tauto. Qed.
642
Lemma elem_of_list_singleton x y : x  [y]  x = y.
643
Proof. rewrite elem_of_cons, elem_of_nil. tauto. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
644
Global Instance elem_of_list_permutation_proper x : Proper (() ==> iff) (x ).
645
Proof. induction 1; rewrite ?elem_of_nil, ?elem_of_cons; intuition. Qed.
646
Lemma elem_of_list_split l x : x  l   l1 l2, l = l1 ++ x :: l2.
647
Proof.
648
  induction 1 as [x l|x y l ? [l1 [l2 ->]]]; [by eexists [], l|].
649
  by exists (y :: l1), l2.
650
Qed.
651
Lemma elem_of_list_lookup_1 l x : x  l   i, l !! i = Some x.
652
Proof.
653 654
  induction 1 as [|???? IH]; [by exists 0 |].
  destruct IH as [i ?]; auto. by exists (S i).
655
Qed.
656
Lemma elem_of_list_lookup_2 l i x : l !! i = Some x  x  l.
657
Proof.
658
  revert i. induction l; intros [|i] ?; simplify_eq/=; constructor; eauto.
659
Qed.
660 661
Lemma elem_of_list_lookup l x : x  l   i, l !! i = Some x.
Proof. firstorder eauto using elem_of_list_lookup_1, elem_of_list_lookup_2. Qed.
662 663 664 665
Lemma elem_of_list_omap {B} (f : A  option B) l (y : B) :
  y  omap f l   x, x  l  f x = Some y.
Proof.
  split.
666
  - induction l as [|x l]; csimpl; repeat case_match; inversion 1; subst;
667
      setoid_rewrite elem_of_cons; naive_solver.
668
  - intros (x&Hx&?). by induction Hx; csimpl; repeat case_match;
669
      simplify_eq; try constructor; auto.
670
Qed.
671

672
(** ** Properties of the [NoDup] predicate *)
673 674
Lemma NoDup_nil : NoDup (@nil A)  True.
Proof. split; constructor. Qed.
675
Lemma NoDup_cons x l : NoDup (x :: l)  x  l  NoDup l.
676
Proof. split. by inversion 1. intros [??]. by constructor. Qed.
677
Lemma NoDup_cons_11 x l : NoDup (x :: l)  x  l.
678
Proof. rewrite NoDup_cons. by intros [??]. Qed.
679
Lemma NoDup_cons_12 x l : NoDup (x :: l)  NoDup l.
680
Proof. rewrite NoDup_cons. by intros [??]. Qed.
681
Lemma NoDup_singleton x : NoDup [x].
682
Proof. constructor. apply not_elem_of_nil. constructor. Qed.
683
Lemma NoDup_app l k : NoDup (l ++ k)  NoDup l  ( x, x  l  x  k)  NoDup k.
Robbert Krebbers's avatar
Robbert Krebbers committed
684
Proof.
685
  induction l; simpl.
686 687
  - rewrite NoDup_nil. setoid_rewrite elem_of_nil. naive_solver.
  - rewrite !NoDup_cons.
Robbert Krebbers's avatar
Robbert Krebbers committed
688
    setoid_rewrite elem_of_cons. setoid_rewrite elem_of_app. naive_solver.
Robbert Krebbers's avatar
Robbert Krebbers committed
689
Qed.
690
Global Instance NoDup_proper: Proper (() ==> iff) (@NoDup A).
691 692
Proof.
  induction 1 as [|x l k Hlk IH | |].
693 694 695 696
  - by rewrite !NoDup_nil.
  - by rewrite !NoDup_cons, IH, Hlk.
  - rewrite !NoDup_cons, !elem_of_cons. intuition.
  - intuition.
697
Qed.
698 699
Lemma NoDup_lookup l i j x :
  NoDup l  l !! i = Some x  l !! j = Some x  i = j.
700 701
Proof.
  intros Hl. revert i j. induction Hl as [|x' l Hx Hl IH].
702 703
  { intros; simplify_eq. }
  intros [|i] [|j] ??; simplify_eq/=; eauto with f_equal;
704 705
    exfalso; eauto using elem_of_list_lookup_2.
Qed.
706 707
Lemma NoDup_alt l :
  NoDup l   i j x, l !! i = Some x  l !! j = Some x  i = j.
708
Proof.
709 710
  split; eauto using NoDup_lookup.
  induction l as [|x l IH]; intros Hl; constructor.
711
  - rewrite elem_of_list_lookup. intros [i ?].
712
    by feed pose proof (Hl (S i) 0 x); auto.
713
  - apply IH. intros i j x' ??. by apply (inj S), (Hl (S i) (S j) x').
714
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
715

716
Section no_dup_dec.
717
  Context `{!EqDecision A}.
718 719 720 721
  Global Instance NoDup_dec:  l, Decision (NoDup l) :=
    fix NoDup_dec l :=
    match l return Decision (NoDup l) with
    | [] => left NoDup_nil_2
722
    | x :: l =>
723 724 725 726 727 728 729 730
      match decide_rel () x l with
      | left Hin => right (λ H, NoDup_cons_11 _ _ H Hin)
      | right Hin =>
        match NoDup_dec l with
        | left H => left (NoDup_cons_2 _ _ Hin H)
        | right H => right (H  NoDup_cons_12 _ _)
        end
      end
731
    end.
732
  Lemma elem_of_remove_dups l x : x  remove_dups l  x  l.
733 734
  Proof