numbers.v 21.3 KB
Newer Older
Robbert Krebbers's avatar
Robbert Krebbers committed
1
(* Copyright (c) 2012-2015, Robbert Krebbers. *)
2
(* This file is distributed under the terms of the BSD license. *)
3 4 5
(** This file collects some trivial facts on the Coq types [nat] and [N] for
natural numbers, and the type [Z] for integers. It also declares some useful
notations. *)
6 7 8
From Coq Require Export Eqdep PArith NArith ZArith NPeano.
From Coq Require Import QArith Qcanon.
From stdpp Require Export base decidable option.
9
Open Scope nat_scope.
Robbert Krebbers's avatar
Robbert Krebbers committed
10

11
Coercion Z.of_nat : nat >-> Z.
12 13
Instance comparison_eq_dec (c1 c2 : comparison) : Decision (c1 = c2).
Proof. solve_decision. Defined.
14

15
(** * Notations and properties of [nat] *)
Robbert Krebbers's avatar
Robbert Krebbers committed
16
Arguments minus !_ !_ /.
17 18 19 20
Reserved Notation "x ≤ y ≤ z" (at level 70, y at next level).
Reserved Notation "x ≤ y < z" (at level 70, y at next level).
Reserved Notation "x < y < z" (at level 70, y at next level).
Reserved Notation "x < y ≤ z" (at level 70, y at next level).
21 22
Reserved Notation "x ≤ y ≤ z ≤ z'"
  (at level 70, y at next level, z at next level).
23

24
Infix "≤" := le : nat_scope.
25 26 27 28
Notation "x ≤ y ≤ z" := (x  y  y  z)%nat : nat_scope.
Notation "x ≤ y < z" := (x  y  y < z)%nat : nat_scope.
Notation "x < y < z" := (x < y  y < z)%nat : nat_scope.
Notation "x < y ≤ z" := (x < y  y  z)%nat : nat_scope.
29
Notation "x ≤ y ≤ z ≤ z'" := (x  y  y  z  z  z')%nat : nat_scope.
30 31 32
Notation "(≤)" := le (only parsing) : nat_scope.
Notation "(<)" := lt (only parsing) : nat_scope.

Robbert Krebbers's avatar
Robbert Krebbers committed
33 34
Infix "`div`" := Nat.div (at level 35) : nat_scope.
Infix "`mod`" := Nat.modulo (at level 35) : nat_scope.
Robbert Krebbers's avatar
Robbert Krebbers committed
35 36
Infix "`max`" := Nat.max (at level 35) : nat_scope.
Infix "`min`" := Nat.min (at level 35) : nat_scope.
37

Robbert Krebbers's avatar
Robbert Krebbers committed
38
Instance nat_eq_dec:  x y : nat, Decision (x = y) := eq_nat_dec.
39 40
Instance nat_le_dec:  x y : nat, Decision (x  y) := le_dec.
Instance nat_lt_dec:  x y : nat, Decision (x < y) := lt_dec.
41
Instance nat_inhabited: Inhabited nat := populate 0%nat.
42
Instance: Inj (=) (=) S.
43 44 45
Proof. by injection 1. Qed.
Instance: PartialOrder ().
Proof. repeat split; repeat intro; auto with lia. Qed.
46

47 48 49 50 51
Instance nat_le_pi:  x y : nat, ProofIrrel (x  y).
Proof.
  assert ( x y (p : x  y) y' (q : x  y'),
    y = y'  eq_dep nat (le x) y p y' q) as aux.
  { fix 3. intros x ? [|y p] ? [|y' q].
52 53 54 55
    - done.
    - clear nat_le_pi. intros; exfalso; auto with lia.
    - clear nat_le_pi. intros; exfalso; auto with lia.
    - injection 1. intros Hy. by case (nat_le_pi x y p y' q Hy). }
56
  intros x y p q.
57
  by apply (Eqdep_dec.eq_dep_eq_dec (λ x y, decide (x = y))), aux.
58 59 60 61
Qed.
Instance nat_lt_pi:  x y : nat, ProofIrrel (x < y).
Proof. apply _. Qed.

Robbert Krebbers's avatar
Robbert Krebbers committed
62 63 64 65 66 67 68 69
Definition sum_list_with {A} (f : A  nat) : list A  nat :=
  fix go l :=
  match l with
  | [] => 0
  | x :: l => f x + go l
  end.
Notation sum_list := (sum_list_with id).

70 71 72
Lemma Nat_lt_succ_succ n : n < S (S n).
Proof. auto with arith. Qed.
Lemma Nat_mul_split_l n x1 x2 y1 y2 :
73 74
  x2 < n  y2 < n  x1 * n + x2 = y1 * n + y2  x1 = y1  x2 = y2.
Proof.
75
  intros Hx2 Hy2 E. cut (x1 = y1); [intros; subst;lia |].
76 77
  revert y1 E. induction x1; simpl; intros [|?]; simpl; auto with lia.
Qed.
78 79 80
Lemma Nat_mul_split_r n x1 x2 y1 y2 :
  x1 < n  y1 < n  x1 + x2 * n = y1 + y2 * n  x1 = y1  x2 = y2.
Proof. intros. destruct (Nat_mul_split_l n x2 x1 y2 y1); auto with lia. Qed.
81

82 83 84
Notation lcm := Nat.lcm.
Notation divide := Nat.divide.
Notation "( x | y )" := (divide x y) : nat_scope.
85 86 87 88
Instance divide_dec x y : Decision (x | y).
Proof.
  refine (cast_if (decide (lcm x y = y))); by rewrite Nat.divide_lcm_iff.
Defined.
89 90 91 92 93 94 95 96
Instance: PartialOrder divide.
Proof.
  repeat split; try apply _. intros ??. apply Nat.divide_antisym_nonneg; lia.
Qed.
Hint Extern 0 (_ | _) => reflexivity.
Lemma Nat_divide_ne_0 x y : (x | y)  y  0  x  0.
Proof. intros Hxy Hy ->. by apply Hy, Nat.divide_0_l. Qed.

97 98 99
(** * Notations and properties of [positive] *)
Open Scope positive_scope.

100
Infix "≤" := Pos.le : positive_scope.
101 102 103 104 105
Notation "x ≤ y ≤ z" := (x  y  y  z) : positive_scope.
Notation "x ≤ y < z" := (x  y  y < z) : positive_scope.
Notation "x < y < z" := (x < y  y < z) : positive_scope.
Notation "x < y ≤ z" := (x < y  y  z) : positive_scope.
Notation "x ≤ y ≤ z ≤ z'" := (x  y  y  z  z  z') : positive_scope.
106 107
Notation "(≤)" := Pos.le (only parsing) : positive_scope.
Notation "(<)" := Pos.lt (only parsing) : positive_scope.
Robbert Krebbers's avatar
Robbert Krebbers committed
108 109 110
Notation "(~0)" := xO (only parsing) : positive_scope.
Notation "(~1)" := xI (only parsing) : positive_scope.

111 112 113
Arguments Pos.of_nat : simpl never.
Arguments Pmult : simpl never.

114 115 116
Instance positive_eq_dec:  x y : positive, Decision (x = y) := Pos.eq_dec.
Instance positive_inhabited: Inhabited positive := populate 1.

117 118
Instance maybe_xO : Maybe xO := λ p, match p with p~0 => Some p | _ => None end.
Instance maybe_x1 : Maybe xI := λ p, match p with p~1 => Some p | _ => None end.
119
Instance: Inj (=) (=) (~0).
Robbert Krebbers's avatar
Robbert Krebbers committed
120
Proof. by injection 1. Qed.
121
Instance: Inj (=) (=) (~1).
Robbert Krebbers's avatar
Robbert Krebbers committed
122 123
Proof. by injection 1. Qed.

124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146
(** Since [positive] represents lists of bits, we define list operations
on it. These operations are in reverse, as positives are treated as snoc
lists instead of cons lists. *)
Fixpoint Papp (p1 p2 : positive) : positive :=
  match p2 with
  | 1 => p1
  | p2~0 => (Papp p1 p2)~0
  | p2~1 => (Papp p1 p2)~1
  end.
Infix "++" := Papp : positive_scope.
Notation "(++)" := Papp (only parsing) : positive_scope.
Notation "( p ++)" := (Papp p) (only parsing) : positive_scope.
Notation "(++ q )" := (λ p, Papp p q) (only parsing) : positive_scope.

Fixpoint Preverse_go (p1 p2 : positive) : positive :=
  match p2 with
  | 1 => p1
  | p2~0 => Preverse_go (p1~0) p2
  | p2~1 => Preverse_go (p1~1) p2
  end.
Definition Preverse : positive  positive := Preverse_go 1.

Global Instance: LeftId (=) 1 (++).
147
Proof. intros p. by induction p; intros; f_equal/=. Qed.
148 149
Global Instance: RightId (=) 1 (++).
Proof. done. Qed.
150
Global Instance: Assoc (=) (++).
151
Proof. intros ?? p. by induction p; intros; f_equal/=. Qed.
152
Global Instance:  p : positive, Inj (=) (=) (++ p).
153
Proof. intros p ???. induction p; simplify_eq; auto. Qed.
154 155 156 157

Lemma Preverse_go_app p1 p2 p3 :
  Preverse_go p1 (p2 ++ p3) = Preverse_go p1 p3 ++ Preverse_go 1 p2.
Proof.
158 159 160 161
  revert p3 p1 p2.
  cut ( p1 p2 p3, Preverse_go (p2 ++ p3) p1 = p2 ++ Preverse_go p3 p1).
  { by intros go p3; induction p3; intros p1 p2; simpl; auto; rewrite <-?go. }
  intros p1; induction p1 as [p1 IH|p1 IH|]; intros p2 p3; simpl; auto.
162 163
  - apply (IH _ (_~1)).
  - apply (IH _ (_~0)).
164
Qed.
165
Lemma Preverse_app p1 p2 : Preverse (p1 ++ p2) = Preverse p2 ++ Preverse p1.
166 167 168 169 170 171 172
Proof. unfold Preverse. by rewrite Preverse_go_app. Qed.
Lemma Preverse_xO p : Preverse (p~0) = (1~0) ++ Preverse p.
Proof Preverse_app p (1~0).
Lemma Preverse_xI p : Preverse (p~1) = (1~1) ++ Preverse p.
Proof Preverse_app p (1~1).

Fixpoint Plength (p : positive) : nat :=
173
  match p with 1 => 0%nat | p~0 | p~1 => S (Plength p) end.
174
Lemma Papp_length p1 p2 : Plength (p1 ++ p2) = (Plength p2 + Plength p1)%nat.
175
Proof. by induction p2; f_equal/=. Qed.
176 177 178 179

Close Scope positive_scope.

(** * Notations and properties of [N] *)
Robbert Krebbers's avatar
Robbert Krebbers committed
180
Infix "≤" := N.le : N_scope.
181 182 183 184
Notation "x ≤ y ≤ z" := (x  y  y  z)%N : N_scope.
Notation "x ≤ y < z" := (x  y  y < z)%N : N_scope.
Notation "x < y < z" := (x < y  y < z)%N : N_scope.
Notation "x < y ≤ z" := (x < y  y  z)%N : N_scope.
185
Notation "x ≤ y ≤ z ≤ z'" := (x  y  y  z  z  z')%N : N_scope.
Robbert Krebbers's avatar
Robbert Krebbers committed
186
Notation "(≤)" := N.le (only parsing) : N_scope.
187
Notation "(<)" := N.lt (only parsing) : N_scope.
188 189 190
Infix "`div`" := N.div (at level 35) : N_scope.
Infix "`mod`" := N.modulo (at level 35) : N_scope.

191 192
Arguments N.add _ _ : simpl never.

193
Instance: Inj (=) (=) Npos.
Robbert Krebbers's avatar
Robbert Krebbers committed
194 195
Proof. by injection 1. Qed.

Robbert Krebbers's avatar
Robbert Krebbers committed
196 197
Instance N_eq_dec:  x y : N, Decision (x = y) := N.eq_dec.
Program Instance N_le_dec (x y : N) : Decision (x  y)%N :=
198 199
  match Ncompare x y with Gt => right _ | _ => left _ end.
Solve Obligations with naive_solver.
200
Program Instance N_lt_dec (x y : N) : Decision (x < y)%N :=
201 202
  match Ncompare x y with Lt => left _ | _ => right _ end.
Solve Obligations with naive_solver.
203
Instance N_inhabited: Inhabited N := populate 1%N.
204 205 206 207 208
Instance: PartialOrder ()%N.
Proof.
  repeat split; red. apply N.le_refl. apply N.le_trans. apply N.le_antisymm.
Qed.
Hint Extern 0 (_  _)%N => reflexivity.
Robbert Krebbers's avatar
Robbert Krebbers committed
209

210
(** * Notations and properties of [Z] *)
211 212
Open Scope Z_scope.

Robbert Krebbers's avatar
Robbert Krebbers committed
213
Infix "≤" := Z.le : Z_scope.
214 215 216 217
Notation "x ≤ y ≤ z" := (x  y  y  z) : Z_scope.
Notation "x ≤ y < z" := (x  y  y < z) : Z_scope.
Notation "x < y < z" := (x < y  y < z) : Z_scope.
Notation "x < y ≤ z" := (x < y  y  z) : Z_scope.
218
Notation "x ≤ y ≤ z ≤ z'" := (x  y  y  z  z  z') : Z_scope.
Robbert Krebbers's avatar
Robbert Krebbers committed
219
Notation "(≤)" := Z.le (only parsing) : Z_scope.
220
Notation "(<)" := Z.lt (only parsing) : Z_scope.
221

Robbert Krebbers's avatar
Robbert Krebbers committed
222 223
Infix "`div`" := Z.div (at level 35) : Z_scope.
Infix "`mod`" := Z.modulo (at level 35) : Z_scope.
224 225
Infix "`quot`" := Z.quot (at level 35) : Z_scope.
Infix "`rem`" := Z.rem (at level 35) : Z_scope.
226 227
Infix "≪" := Z.shiftl (at level 35) : Z_scope.
Infix "≫" := Z.shiftr (at level 35) : Z_scope.
Robbert Krebbers's avatar
Robbert Krebbers committed
228

229
Instance: Inj (=) (=) Zpos.
230
Proof. by injection 1. Qed.
231
Instance: Inj (=) (=) Zneg.
232 233
Proof. by injection 1. Qed.

Robbert Krebbers's avatar
Robbert Krebbers committed
234
Instance Z_eq_dec:  x y : Z, Decision (x = y) := Z.eq_dec.
235 236 237
Instance Z_le_dec:  x y : Z, Decision (x  y) := Z_le_dec.
Instance Z_lt_dec:  x y : Z, Decision (x < y) := Z_lt_dec.
Instance Z_inhabited: Inhabited Z := populate 1.
238 239 240 241
Instance: PartialOrder ().
Proof.
  repeat split; red. apply Z.le_refl. apply Z.le_trans. apply Z.le_antisymm.
Qed.
242 243 244 245 246 247 248 249 250 251

Lemma Z_pow_pred_r n m : 0 < m  n * n ^ (Z.pred m) = n ^ m.
Proof.
  intros. rewrite <-Z.pow_succ_r, Z.succ_pred. done. by apply Z.lt_le_pred.
Qed.
Lemma Z_quot_range_nonneg k x y : 0  x < k  0 < y  0  x `quot` y < k.
Proof.
  intros [??] ?.
  destruct (decide (y = 1)); subst; [rewrite Z.quot_1_r; auto |].
  destruct (decide (x = 0)); subst; [rewrite Z.quot_0_l; auto with lia |].
252
  split. apply Z.quot_pos; lia. trans x; auto. apply Z.quot_lt; lia.
253
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
254

255
(* Note that we cannot disable simpl for [Z.of_nat] as that would break
256
tactics as [lia]. *)
257 258 259 260 261 262 263 264 265 266
Arguments Z.to_nat _ : simpl never.
Arguments Z.mul _ _ : simpl never.
Arguments Z.add _ _ : simpl never.
Arguments Z.opp _ : simpl never.
Arguments Z.pow _ _ : simpl never.
Arguments Z.div _ _ : simpl never.
Arguments Z.modulo _ _ : simpl never.
Arguments Z.quot _ _ : simpl never.
Arguments Z.rem _ _ : simpl never.

267 268 269 270 271
Lemma Z_to_nat_neq_0_pos x : Z.to_nat x  0%nat  0 < x.
Proof. by destruct x. Qed.
Lemma Z_to_nat_neq_0_nonneg x : Z.to_nat x  0%nat  0  x.
Proof. by destruct x. Qed.
Lemma Z_mod_pos x y : 0 < y  0  x `mod` y.
272 273 274 275 276
Proof. apply Z.mod_pos_bound. Qed.

Hint Resolve Z.lt_le_incl : zpos.
Hint Resolve Z.add_nonneg_pos Z.add_pos_nonneg Z.add_nonneg_nonneg : zpos.
Hint Resolve Z.mul_nonneg_nonneg Z.mul_pos_pos : zpos.
277 278
Hint Resolve Z.pow_pos_nonneg Z.pow_nonneg: zpos.
Hint Resolve Z_mod_pos Z.div_pos : zpos.
279 280
Hint Extern 1000 => lia : zpos.

Robbert Krebbers's avatar
Robbert Krebbers committed
281 282
Lemma Z_to_nat_nonpos x : x  0  Z.to_nat x = 0%nat.
Proof. destruct x; simpl; auto using Z2Nat.inj_neg. by intros []. Qed.
283 284
Lemma Z2Nat_inj_pow (x y : nat) : Z.of_nat (x ^ y) = x ^ y.
Proof.
Robbert Krebbers's avatar
Robbert Krebbers committed
285 286 287
  induction y as [|y IH]; [by rewrite Z.pow_0_r, Nat.pow_0_r|].
  by rewrite Nat.pow_succ_r, Nat2Z.inj_succ, Z.pow_succ_r,
    Nat2Z.inj_mul, IH by auto with zpos.
288
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
289 290 291
Lemma Nat2Z_divide n m : (Z.of_nat n | Z.of_nat m)  (n | m)%nat.
Proof.
  split.
292
  - rewrite <-(Nat2Z.id m) at 2; intros [i ->]; exists (Z.to_nat i).
Robbert Krebbers's avatar
Robbert Krebbers committed
293 294 295
    destruct (decide (0  i)%Z).
    { by rewrite Z2Nat.inj_mul, Nat2Z.id by lia. }
    by rewrite !Z_to_nat_nonpos by auto using Z.mul_nonpos_nonneg with lia.
296
  - intros [i ->]. exists (Z.of_nat i). by rewrite Nat2Z.inj_mul.
Robbert Krebbers's avatar
Robbert Krebbers committed
297 298 299 300
Qed.
Lemma Z2Nat_divide n m :
  0  n  0  m  (Z.to_nat n | Z.to_nat m)%nat  (n | m).
Proof. intros. by rewrite <-Nat2Z_divide, !Z2Nat.id by done. Qed.
301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318
Lemma Z2Nat_inj_div x y : Z.of_nat (x `div` y) = x `div` y.
Proof.
  destruct (decide (y = 0%nat)); [by subst; destruct x |].
  apply Z.div_unique with (x `mod` y)%nat.
  { left. rewrite <-(Nat2Z.inj_le 0), <-Nat2Z.inj_lt.
    apply Nat.mod_bound_pos; lia. }
  by rewrite <-Nat2Z.inj_mul, <-Nat2Z.inj_add, <-Nat.div_mod.
Qed.
Lemma Z2Nat_inj_mod x y : Z.of_nat (x `mod` y) = x `mod` y.
Proof.
  destruct (decide (y = 0%nat)); [by subst; destruct x |].
  apply Z.mod_unique with (x `div` y)%nat.
  { left. rewrite <-(Nat2Z.inj_le 0), <-Nat2Z.inj_lt.
    apply Nat.mod_bound_pos; lia. }
  by rewrite <-Nat2Z.inj_mul, <-Nat2Z.inj_add, <-Nat.div_mod.
Qed.
Close Scope Z_scope.

319
(** * Notations and properties of [Qc] *)
320
Open Scope Qc_scope.
321 322
Delimit Scope Qc_scope with Qc.
Notation "1" := (Q2Qc 1) : Qc_scope.
323
Notation "2" := (1+1) : Qc_scope.
324 325 326 327
Notation "- 1" := (Qcopp 1) : Qc_scope.
Notation "- 2" := (Qcopp 2) : Qc_scope.
Notation "x - y" := (x + -y) : Qc_scope.
Notation "x / y" := (x * /y) : Qc_scope.
328
Infix "≤" := Qcle : Qc_scope.
329 330 331 332
Notation "x ≤ y ≤ z" := (x  y  y  z) : Qc_scope.
Notation "x ≤ y < z" := (x  y  y < z) : Qc_scope.
Notation "x < y < z" := (x < y  y < z) : Qc_scope.
Notation "x < y ≤ z" := (x < y  y  z) : Qc_scope.
333
Notation "x ≤ y ≤ z ≤ z'" := (x  y  y  z  z  z') : Qc_scope.
334 335 336
Notation "(≤)" := Qcle (only parsing) : Qc_scope.
Notation "(<)" := Qclt (only parsing) : Qc_scope.

337 338 339
Hint Extern 1 (_  _) => reflexivity || discriminate.
Arguments Qred _ : simpl never.

340
Instance Qc_eq_dec:  x y : Qc, Decision (x = y) := Qc_eq_dec.
341
Program Instance Qc_le_dec (x y : Qc) : Decision (x  y) :=
342
  if Qclt_le_dec y x then right _ else left _.
343 344
Next Obligation. intros x y; apply Qclt_not_le. Qed.
Next Obligation. done. Qed.
345
Program Instance Qc_lt_dec (x y : Qc) : Decision (x < y) :=
346
  if Qclt_le_dec x y then left _ else right _.
347 348
Solve Obligations with done.
Next Obligation. intros x y; apply Qcle_not_lt. Qed.
349

350 351 352 353 354 355 356 357
Instance: PartialOrder ().
Proof.
  repeat split; red. apply Qcle_refl. apply Qcle_trans. apply Qcle_antisym.
Qed.
Instance: StrictOrder (<).
Proof.
  split; red. intros x Hx. by destruct (Qclt_not_eq x x). apply Qclt_trans.
Qed.
358 359 360 361
Lemma Qcmult_0_l x : 0 * x = 0.
Proof. ring. Qed.
Lemma Qcmult_0_r x : x * 0 = 0.
Proof. ring. Qed.
362 363
Lemma Qcplus_diag x : (x + x)%Qc = (2 * x)%Qc.
Proof. ring. Qed.
364
Lemma Qcle_ngt (x y : Qc) : x  y  ¬y < x.
365
Proof. split; auto using Qcle_not_lt, Qcnot_lt_le. Qed.
366
Lemma Qclt_nge (x y : Qc) : x < y  ¬y  x.
367
Proof. split; auto using Qclt_not_le, Qcnot_le_lt. Qed.
368
Lemma Qcplus_le_mono_l (x y z : Qc) : x  y  z + x  z + y.
369 370
Proof.
  split; intros.
371 372
  - by apply Qcplus_le_compat.
  - replace x with ((0 - z) + (z + x)) by ring.
373
    replace y with ((0 - z) + (z + y)) by ring.
374 375
    by apply Qcplus_le_compat.
Qed.
376
Lemma Qcplus_le_mono_r (x y z : Qc) : x  y  x + z  y + z.
377
Proof. rewrite !(Qcplus_comm _ z). apply Qcplus_le_mono_l. Qed.
378
Lemma Qcplus_lt_mono_l (x y z : Qc) : x < y  z + x < z + y.
379
Proof. by rewrite !Qclt_nge, <-Qcplus_le_mono_l. Qed.
380
Lemma Qcplus_lt_mono_r (x y z : Qc) : x < y  x + z < y + z.
381
Proof. by rewrite !Qclt_nge, <-Qcplus_le_mono_r. Qed.
382
Instance: Inj (=) (=) Qcopp.
383 384 385
Proof.
  intros x y H. by rewrite <-(Qcopp_involutive x), H, Qcopp_involutive.
Qed.
386
Instance:  z, Inj (=) (=) (Qcplus z).
387
Proof.
388
  intros z x y H. by apply (anti_symm ());
389 390
    rewrite (Qcplus_le_mono_l _ _ z), H.
Qed.
391
Instance:  z, Inj (=) (=) (λ x, x + z).
392
Proof.
393
  intros z x y H. by apply (anti_symm ());
394 395
    rewrite (Qcplus_le_mono_r _ _ z), H.
Qed.
396 397 398 399 400 401 402 403 404 405 406
Lemma Qcplus_pos_nonneg (x y : Qc) : 0 < x  0  y  0 < x + y.
Proof.
  intros. apply Qclt_le_trans with (x + 0); [by rewrite Qcplus_0_r|].
  by apply Qcplus_le_mono_l.
Qed.
Lemma Qcplus_nonneg_pos (x y : Qc) : 0  x  0 < y  0 < x + y.
Proof. rewrite (Qcplus_comm x). auto using Qcplus_pos_nonneg. Qed. 
Lemma Qcplus_pos_pos (x y : Qc) : 0 < x  0 < y  0 < x + y.
Proof. auto using Qcplus_pos_nonneg, Qclt_le_weak. Qed.
Lemma Qcplus_nonneg_nonneg (x y : Qc) : 0  x  0  y  0  x + y.
Proof.
407
  intros. trans (x + 0); [by rewrite Qcplus_0_r|].
408 409 410 411 412 413 414 415 416 417 418 419 420
  by apply Qcplus_le_mono_l.
Qed.
Lemma Qcplus_neg_nonpos (x y : Qc) : x < 0  y  0  x + y < 0.
Proof.
  intros. apply Qcle_lt_trans with (x + 0); [|by rewrite Qcplus_0_r].
  by apply Qcplus_le_mono_l.
Qed.
Lemma Qcplus_nonpos_neg (x y : Qc) : x  0  y < 0  x + y < 0.
Proof. rewrite (Qcplus_comm x). auto using Qcplus_neg_nonpos. Qed.
Lemma Qcplus_neg_neg (x y : Qc) : x < 0  y < 0  x + y < 0.
Proof. auto using Qcplus_nonpos_neg, Qclt_le_weak. Qed.
Lemma Qcplus_nonpos_nonpos (x y : Qc) : x  0  y  0  x + y  0.
Proof.
421
  intros. trans (x + 0); [|by rewrite Qcplus_0_r].
422 423
  by apply Qcplus_le_mono_l.
Qed.
424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446
Lemma Qcmult_le_mono_nonneg_l x y z : 0  z  x  y  z * x  z * y.
Proof. intros. rewrite !(Qcmult_comm z). by apply Qcmult_le_compat_r. Qed.
Lemma Qcmult_le_mono_nonneg_r x y z : 0  z  x  y  x * z  y * z.
Proof. intros. by apply Qcmult_le_compat_r. Qed.
Lemma Qcmult_le_mono_pos_l x y z : 0 < z  x  y  z * x  z * y.
Proof.
  split; auto using Qcmult_le_mono_nonneg_l, Qclt_le_weak.
  rewrite !Qcle_ngt, !(Qcmult_comm z).
  intuition auto using Qcmult_lt_compat_r.
Qed.
Lemma Qcmult_le_mono_pos_r x y z : 0 < z  x  y  x * z  y * z.
Proof. rewrite !(Qcmult_comm _ z). by apply Qcmult_le_mono_pos_l. Qed.
Lemma Qcmult_lt_mono_pos_l x y z : 0 < z  x < y  z * x < z * y.
Proof. intros. by rewrite !Qclt_nge, <-Qcmult_le_mono_pos_l. Qed.
Lemma Qcmult_lt_mono_pos_r x y z : 0 < z  x < y  x * z < y * z.
Proof. intros. by rewrite !Qclt_nge, <-Qcmult_le_mono_pos_r. Qed.
Lemma Qcmult_pos_pos x y : 0 < x  0 < y  0 < x * y.
Proof.
  intros. apply Qcle_lt_trans with (0 * y); [by rewrite Qcmult_0_l|].
  by apply Qcmult_lt_mono_pos_r.
Qed.
Lemma Qcmult_nonneg_nonneg x y : 0  x  0  y  0  x * y.
Proof.
447
  intros. trans (0 * y); [by rewrite Qcmult_0_l|].
448 449 450 451 452 453 454 455
  by apply Qcmult_le_mono_nonneg_r.
Qed.

Lemma inject_Z_Qred n : Qred (inject_Z n) = inject_Z n.
Proof. apply Qred_identity; auto using Z.gcd_1_r. Qed.
Coercion Qc_of_Z (n : Z) : Qc := Qcmake _ (inject_Z_Qred n).
Lemma Z2Qc_inj_0 : Qc_of_Z 0 = 0.
Proof. by apply Qc_is_canon. Qed.
456 457 458 459
Lemma Z2Qc_inj_1 : Qc_of_Z 1 = 1.
Proof. by apply Qc_is_canon. Qed.
Lemma Z2Qc_inj_2 : Qc_of_Z 2 = 2.
Proof. by apply Qc_is_canon. Qed.
460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478
Lemma Z2Qc_inj n m : Qc_of_Z n = Qc_of_Z m  n = m.
Proof. by injection 1. Qed.
Lemma Z2Qc_inj_iff n m : Qc_of_Z n = Qc_of_Z m  n = m.
Proof. split. auto using Z2Qc_inj. by intros ->. Qed.
Lemma Z2Qc_inj_le n m : (n  m)%Z  Qc_of_Z n  Qc_of_Z m.
Proof. by rewrite Zle_Qle. Qed.
Lemma Z2Qc_inj_lt n m : (n < m)%Z  Qc_of_Z n < Qc_of_Z m.
Proof. by rewrite Zlt_Qlt. Qed.
Lemma Z2Qc_inj_add n m : Qc_of_Z (n + m) = Qc_of_Z n + Qc_of_Z m.
Proof. apply Qc_is_canon; simpl. by rewrite Qred_correct, inject_Z_plus. Qed.
Lemma Z2Qc_inj_mul n m : Qc_of_Z (n * m) = Qc_of_Z n * Qc_of_Z m.
Proof. apply Qc_is_canon; simpl. by rewrite Qred_correct, inject_Z_mult. Qed.
Lemma Z2Qc_inj_opp n : Qc_of_Z (-n) = -Qc_of_Z n.
Proof. apply Qc_is_canon; simpl. by rewrite Qred_correct, inject_Z_opp. Qed.
Lemma Z2Qc_inj_sub n m : Qc_of_Z (n - m) = Qc_of_Z n - Qc_of_Z m.
Proof.
  apply Qc_is_canon; simpl.
  by rewrite !Qred_correct, <-inject_Z_opp, <-inject_Z_plus.
Qed.
479
Close Scope Qc_scope.
480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508

(** * Positive rationals *)
(** The theory of positive rationals is very incomplete. We merely provide
some operations and theorems that are relevant for fractional permissions. *)
Record Qp := mk_Qp { Qp_car :> Qc ; Qp_prf : (0 < Qp_car)%Qc }.
Hint Resolve Qp_prf.
Delimit Scope Qp_scope with Qp.
Bind Scope Qp_scope with Qp.
Arguments Qp_car _%Qp.

Definition Qp_one : Qp := mk_Qp 1 eq_refl.
Program Definition Qp_plus (x y : Qp) : Qp := mk_Qp (x + y) _.
Next Obligation. by intros x y; apply Qcplus_pos_pos. Qed.
Definition Qp_minus (x y : Qp) : option Qp :=
  let z := (x - y)%Qc in
  match decide (0 < z)%Qc with left Hz => Some (mk_Qp z Hz) | _ => None end.
Program Definition Qp_div (x : Qp) (y : positive) : Qp := mk_Qp (x / ('y)%Z) _.  
Next Obligation.
  intros x y. assert (0 < ('y)%Z)%Qc.
  { apply (Z2Qc_inj_lt 0%Z (' y)), Pos2Z.is_pos. }
  by rewrite (Qcmult_lt_mono_pos_r _ _ ('y)%Z), Qcmult_0_l,
    <-Qcmult_assoc, Qcmult_inv_l, Qcmult_1_r.
Qed.

Notation "1" := Qp_one : Qp_scope.
Infix "+" := Qp_plus : Qp_scope.
Infix "-" := Qp_minus : Qp_scope.
Infix "/" := Qp_div : Qp_scope.

Robbert Krebbers's avatar
Robbert Krebbers committed
509 510
Instance Qp_inhabited : Inhabited Qp := populate 1%Qp.

511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544
Lemma Qp_eq x y : x = y  Qp_car x = Qp_car y.
Proof.
  split; [by intros ->|].
  destruct x, y; intros; simplify_eq/=; f_equal; apply (proof_irrel _).
Qed.
Instance Qp_plus_assoc : Assoc (=) Qp_plus.
Proof. intros x y z; apply Qp_eq, Qcplus_assoc. Qed.
Instance Qp_plus_comm : Comm (=) Qp_plus.
Proof. intros x y; apply Qp_eq, Qcplus_comm. Qed.

Lemma Qp_minus_diag x : (x - x)%Qp = None.
Proof. unfold Qp_minus. by rewrite Qcplus_opp_r. Qed.
Lemma Qp_op_minus x y : ((x + y) - x)%Qp = Some y.
Proof.
  unfold Qp_minus; simpl.
  rewrite (Qcplus_comm x), <- Qcplus_assoc, Qcplus_opp_r, Qcplus_0_r.
  destruct (decide _) as [|[]]; auto. by f_equal; apply Qp_eq.
Qed.

Lemma Qp_div_1 x : (x / 1 = x)%Qp.
Proof.
  apply Qp_eq; simpl.
  rewrite <-(Qcmult_div_r x 1) at 2 by done. by rewrite Qcmult_1_l.
Qed.
Lemma Qp_div_S x y : (x / (2 * y) + x / (2 * y) = x / y)%Qp.
Proof.
  apply Qp_eq; simpl.
  rewrite <-Qcmult_plus_distr_l, Pos2Z.inj_mul, Z2Qc_inj_mul, Z2Qc_inj_2.
  rewrite Qcplus_diag. by field_simplify.
Qed.
Lemma Qp_div_2 x : (x / 2 + x / 2 = x)%Qp.
Proof.
  change 2%positive with (2 * 1)%positive. by rewrite Qp_div_S, Qp_div_1.
Qed.