list.v 153 KB
Newer Older
Robbert Krebbers's avatar
Robbert Krebbers committed
1
(* Copyright (c) 2012-2015, Robbert Krebbers. *)
2 3 4
(* This file is distributed under the terms of the BSD license. *)
(** This file collects general purpose definitions and theorems on lists that
are not in the Coq standard library. *)
5
From Coq Require Export Permutation.
6
From stdpp Require Export numbers base option.
Robbert Krebbers's avatar
Robbert Krebbers committed
7

8
Arguments length {_} _.
Robbert Krebbers's avatar
Robbert Krebbers committed
9 10 11
Arguments cons {_} _ _.
Arguments app {_} _ _.
Arguments Permutation {_} _ _.
12
Arguments Forall_cons {_} _ _ _ _ _.
Robbert Krebbers's avatar
Robbert Krebbers committed
13

14 15 16
Notation tail := tl.
Notation take := firstn.
Notation drop := skipn.
17

18 19 20
Arguments take {_} !_ !_ /.
Arguments drop {_} !_ !_ /.

Robbert Krebbers's avatar
Robbert Krebbers committed
21 22 23 24 25 26 27
Notation "(::)" := cons (only parsing) : C_scope.
Notation "( x ::)" := (cons x) (only parsing) : C_scope.
Notation "(:: l )" := (λ x, cons x l) (only parsing) : C_scope.
Notation "(++)" := app (only parsing) : C_scope.
Notation "( l ++)" := (app l) (only parsing) : C_scope.
Notation "(++ k )" := (λ l, app l k) (only parsing) : C_scope.

28 29 30 31 32 33 34 35 36
Infix "≡ₚ" := Permutation (at level 70, no associativity) : C_scope.
Notation "(≡ₚ)" := Permutation (only parsing) : C_scope.
Notation "( x ≡ₚ)" := (Permutation x) (only parsing) : C_scope.
Notation "(≡ₚ x )" := (λ y, y  x) (only parsing) : C_scope.
Notation "(≢ₚ)" := (λ x y, ¬x  y) (only parsing) : C_scope.
Notation "x ≢ₚ y":= (¬x  y) (at level 70, no associativity) : C_scope.
Notation "( x ≢ₚ)" := (λ y, x ≢ₚ y) (only parsing) : C_scope.
Notation "(≢ₚ x )" := (λ y, y ≢ₚ x) (only parsing) : C_scope.

Robbert Krebbers's avatar
Robbert Krebbers committed
37 38 39
Instance maybe_cons {A} : Maybe2 (@cons A) := λ l,
  match l with x :: l => Some (x,l) | _ => None end.

40
(** * Definitions *)
41 42 43 44 45 46
(** Setoid equality lifted to lists *)
Inductive list_equiv `{Equiv A} : Equiv (list A) :=
  | nil_equiv : []  []
  | cons_equiv x y l k : x  y  l  k  x :: l  y :: k.
Existing Instance list_equiv.

47 48
(** The operation [l !! i] gives the [i]th element of the list [l], or [None]
in case [i] is out of bounds. *)
Robbert Krebbers's avatar
Robbert Krebbers committed
49
Instance list_lookup {A} : Lookup nat A (list A) :=
50
  fix go i l {struct l} : option A := let _ : Lookup _ _ _ := @go in
51
  match l with
52
  | [] => None | x :: l => match i with 0 => Some x | S i => l !! i end
53
  end.
54 55 56

(** The operation [alter f i l] applies the function [f] to the [i]th element
of [l]. In case [i] is out of bounds, the list is returned unchanged. *)
57 58
Instance list_alter {A} : Alter nat A (list A) := λ f,
  fix go i l {struct l} :=
59 60
  match l with
  | [] => []
61
  | x :: l => match i with 0 => f x :: l | S i => x :: go i l end
62
  end.
63

64 65
(** The operation [<[i:=x]> l] overwrites the element at position [i] with the
value [x]. In case [i] is out of bounds, the list is returned unchanged. *)
66 67 68 69 70 71
Instance list_insert {A} : Insert nat A (list A) :=
  fix go i y l {struct l} := let _ : Insert _ _ _ := @go in
  match l with
  | [] => []
  | x :: l => match i with 0 => y :: l | S i => x :: <[i:=y]>l end
  end.
72 73 74 75 76
Fixpoint list_inserts {A} (i : nat) (k l : list A) : list A :=
  match k with
  | [] => l
  | y :: k => <[i:=y]>(list_inserts (S i) k l)
  end.
77

78 79 80
(** The operation [delete i l] removes the [i]th element of [l] and moves
all consecutive elements one position ahead. In case [i] is out of bounds,
the list is returned unchanged. *)
81 82
Instance list_delete {A} : Delete nat (list A) :=
  fix go (i : nat) (l : list A) {struct l} : list A :=
83 84
  match l with
  | [] => []
85
  | x :: l => match i with 0 => l | S i => x :: @delete _ _ go i l end
86
  end.
87 88 89

(** The function [option_list o] converts an element [Some x] into the
singleton list [[x]], and [None] into the empty list [[]]. *)
Robbert Krebbers's avatar
Robbert Krebbers committed
90
Definition option_list {A} : option A  list A := option_rect _ (λ x, [x]) [].
91 92
Definition list_singleton {A} (l : list A) : option A :=
  match l with [x] => Some x | _ => None end.
Robbert Krebbers's avatar
Robbert Krebbers committed
93 94 95 96

(** The function [filter P l] returns the list of elements of [l] that
satisfies [P]. The order remains unchanged. *)
Instance list_filter {A} : Filter A (list A) :=
97
  fix go P _ l := let _ : Filter _ _ := @go in
Robbert Krebbers's avatar
Robbert Krebbers committed
98 99
  match l with
  | [] => []
100
  | x :: l => if decide (P x) then x :: filter P l else filter P l
101 102 103 104
  end.

(** The function [list_find P l] returns the first index [i] whose element
satisfies the predicate [P]. *)
105
Definition list_find {A} P `{ x, Decision (P x)} : list A  option (nat * A) :=
106 107
  fix go l :=
  match l with
108 109
  | [] => None
  | x :: l => if decide (P x) then Some (0,x) else prod_map S id <$> go l
110
  end.
Robbert Krebbers's avatar
Robbert Krebbers committed
111 112 113 114

(** The function [replicate n x] generates a list with length [n] of elements
with value [x]. *)
Fixpoint replicate {A} (n : nat) (x : A) : list A :=
115
  match n with 0 => [] | S n => x :: replicate n x end.
Robbert Krebbers's avatar
Robbert Krebbers committed
116 117 118 119

(** The function [reverse l] returns the elements of [l] in reverse order. *)
Definition reverse {A} (l : list A) : list A := rev_append l [].

120 121 122 123
(** The function [last l] returns the last element of the list [l], or [None]
if the list [l] is empty. *)
Fixpoint last {A} (l : list A) : option A :=
  match l with [] => None | [x] => Some x | _ :: l => last l end.
124

Robbert Krebbers's avatar
Robbert Krebbers committed
125 126 127 128 129 130
(** The function [resize n y l] takes the first [n] elements of [l] in case
[length l ≤ n], and otherwise appends elements with value [x] to [l] to obtain
a list of length [n]. *)
Fixpoint resize {A} (n : nat) (y : A) (l : list A) : list A :=
  match l with
  | [] => replicate n y
131
  | x :: l => match n with 0 => [] | S n => x :: resize n y l end
Robbert Krebbers's avatar
Robbert Krebbers committed
132 133 134
  end.
Arguments resize {_} !_ _ !_.

135 136 137
(** The function [reshape k l] transforms [l] into a list of lists whose sizes
are specified by [k]. In case [l] is too short, the resulting list will be
padded with empty lists. In case [l] is too long, it will be truncated. *)
138 139
Fixpoint reshape {A} (szs : list nat) (l : list A) : list (list A) :=
  match szs with
140
  | [] => [] | sz :: szs => take sz l :: reshape szs (drop sz l)
141 142
  end.

143
Definition sublist_lookup {A} (i n : nat) (l : list A) : option (list A) :=
144 145 146 147
  guard (i + n  length l); Some (take n (drop i l)).
Definition sublist_alter {A} (f : list A  list A)
    (i n : nat) (l : list A) : list A :=
  take i l ++ f (take n (drop i l)) ++ drop (i + n) l.
148

149 150 151 152
(** Functions to fold over a list. We redefine [foldl] with the arguments in
the same order as in Haskell. *)
Notation foldr := fold_right.
Definition foldl {A B} (f : A  B  A) : A  list B  A :=
153
  fix go a l := match l with [] => a | x :: l => go (f a x) l end.
154 155 156

(** The monadic operations. *)
Instance list_ret: MRet list := λ A x, x :: @nil A.
157 158
Instance list_fmap : FMap list := λ A B f,
  fix go (l : list A) := match l with [] => [] | x :: l => f x :: go l end.
159 160 161 162 163 164
Instance list_omap : OMap list := λ A B f,
  fix go (l : list A) :=
  match l with
  | [] => []
  | x :: l => match f x with Some y => y :: go l | None => go l end
  end.
165 166
Instance list_bind : MBind list := λ A B f,
  fix go (l : list A) := match l with [] => [] | x :: l => f x ++ go l end.
167 168
Instance list_join: MJoin list :=
  fix go A (ls : list (list A)) : list A :=
169
  match ls with [] => [] | l :: ls => l ++ @mjoin _ go _ ls end.
170
Definition mapM `{MBind M, MRet M} {A B} (f : A  M B) : list A  M (list B) :=
171
  fix go l :=
172
  match l with [] => mret [] | x :: l => y  f x; k  go l; mret (y :: k) end.
173 174 175 176 177

(** We define stronger variants of map and fold that allow the mapped
function to use the index of the elements. *)
Definition imap_go {A B} (f : nat  A  B) : nat  list A  list B :=
  fix go (n : nat) (l : list A) :=
178
  match l with [] => [] | x :: l => f n x :: go (S n) l end.
179
Definition imap {A B} (f : nat  A  B) : list A  list B := imap_go f 0.
180 181 182 183
Definition zipped_map {A B} (f : list A  list A  A  B) :
  list A  list A  list B := fix go l k :=
  match k with [] => [] | x :: k => f l k x :: go (x :: l) k end.

Robbert Krebbers's avatar
Robbert Krebbers committed
184 185 186 187 188 189 190 191 192
Definition imap2_go {A B C} (f : nat  A  B  C) :
    nat  list A  list B  list C:=
  fix go (n : nat) (l : list A) (k : list B) :=
  match l, k with
  | [], _ |_, [] => [] | x :: l, y :: k => f n x y :: go (S n) l k
  end.
Definition imap2 {A B C} (f : nat  A  B  C) :
  list A  list B  list C := imap2_go f 0.

193 194 195 196 197 198 199
Inductive zipped_Forall {A} (P : list A  list A  A  Prop) :
    list A  list A  Prop :=
  | zipped_Forall_nil l : zipped_Forall P l []
  | zipped_Forall_cons l k x :
     P l k x  zipped_Forall P (x :: l) k  zipped_Forall P l (x :: k).
Arguments zipped_Forall_nil {_ _} _.
Arguments zipped_Forall_cons {_ _} _ _ _ _ _.
200

201 202 203 204 205 206 207
(** The function [mask f βs l] applies the function [f] to elements in [l] at
positions that are [true] in [βs]. *)
Fixpoint mask {A} (f : A  A) (βs : list bool) (l : list A) : list A :=
  match βs, l with
  | β :: βs, x :: l => (if β then f x else x) :: mask f βs l
  | _, _ => l
  end.
208 209 210 211

(** The function [permutations l] yields all permutations of [l]. *)
Fixpoint interleave {A} (x : A) (l : list A) : list (list A) :=
  match l with
212
  | [] => [[x]]| y :: l => (x :: y :: l) :: ((y ::) <$> interleave x l)
213 214
  end.
Fixpoint permutations {A} (l : list A) : list (list A) :=
215
  match l with [] => [[]] | x :: l => permutations l = interleave x end.
216

217 218
(** The predicate [suffix_of] holds if the first list is a suffix of the second.
The predicate [prefix_of] holds if the first list is a prefix of the second. *)
219 220
Definition suffix_of {A} : relation (list A) := λ l1 l2,  k, l2 = k ++ l1.
Definition prefix_of {A} : relation (list A) := λ l1 l2,  k, l2 = l1 ++ k.
221 222
Infix "`suffix_of`" := suffix_of (at level 70) : C_scope.
Infix "`prefix_of`" := prefix_of (at level 70) : C_scope.
223 224
Hint Extern 0 (_ `prefix_of` _) => reflexivity.
Hint Extern 0 (_ `suffix_of` _) => reflexivity.
Robbert Krebbers's avatar
Robbert Krebbers committed
225

226 227 228 229 230 231 232 233
Section prefix_suffix_ops.
  Context `{ x y : A, Decision (x = y)}.
  Definition max_prefix_of : list A  list A  list A * list A * list A :=
    fix go l1 l2 :=
    match l1, l2 with
    | [], l2 => ([], l2, [])
    | l1, [] => (l1, [], [])
    | x1 :: l1, x2 :: l2 =>
234
      if decide_rel (=) x1 x2
235
      then prod_map id (x1 ::) (go l1 l2) else (x1 :: l1, x2 :: l2, [])
236 237 238 239 240
    end.
  Definition max_suffix_of (l1 l2 : list A) : list A * list A * list A :=
    match max_prefix_of (reverse l1) (reverse l2) with
    | (k1, k2, k3) => (reverse k1, reverse k2, reverse k3)
    end.
241 242
  Definition strip_prefix (l1 l2 : list A) := (max_prefix_of l1 l2).1.2.
  Definition strip_suffix (l1 l2 : list A) := (max_suffix_of l1 l2).1.2.
243
End prefix_suffix_ops.
Robbert Krebbers's avatar
Robbert Krebbers committed
244

245
(** A list [l1] is a sublist of [l2] if [l2] is obtained by removing elements
246 247 248
from [l1] without changing the order. *)
Inductive sublist {A} : relation (list A) :=
  | sublist_nil : sublist [] []
249
  | sublist_skip x l1 l2 : sublist l1 l2  sublist (x :: l1) (x :: l2)
250
  | sublist_cons x l1 l2 : sublist l1 l2  sublist l1 (x :: l2).
251
Infix "`sublist`" := sublist (at level 70) : C_scope.
252
Hint Extern 0 (_ `sublist` _) => reflexivity.
253 254

(** A list [l2] contains a list [l1] if [l2] is obtained by removing elements
255
from [l1] while possiblity changing the order. *)
256 257 258 259
Inductive contains {A} : relation (list A) :=
  | contains_nil : contains [] []
  | contains_skip x l1 l2 : contains l1 l2  contains (x :: l1) (x :: l2)
  | contains_swap x y l : contains (y :: x :: l) (x :: y :: l)
260
  | contains_cons x l1 l2 : contains l1 l2  contains l1 (x :: l2)
261 262
  | contains_trans l1 l2 l3 : contains l1 l2  contains l2 l3  contains l1 l3.
Infix "`contains`" := contains (at level 70) : C_scope.
263
Hint Extern 0 (_ `contains` _) => reflexivity.
264 265 266 267 268 269 270 271 272 273

Section contains_dec_help.
  Context {A} {dec :  x y : A, Decision (x = y)}.
  Fixpoint list_remove (x : A) (l : list A) : option (list A) :=
    match l with
    | [] => None
    | y :: l => if decide (x = y) then Some l else (y ::) <$> list_remove x l
    end.
  Fixpoint list_remove_list (k : list A) (l : list A) : option (list A) :=
    match k with
274
    | [] => Some l | x :: k => list_remove x l = list_remove_list k
275 276
    end.
End contains_dec_help.
277

278 279 280 281 282
Inductive Forall3 {A B C} (P : A  B  C  Prop) :
     list A  list B  list C  Prop :=
  | Forall3_nil : Forall3 P [] [] []
  | Forall3_cons x y z l k k' :
     P x y z  Forall3 P l k k'  Forall3 P (x :: l) (y :: k) (z :: k').
283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307

(** Set operations on lists *)
Section list_set.
  Context {A} {dec :  x y : A, Decision (x = y)}.
  Global Instance elem_of_list_dec {dec :  x y : A, Decision (x = y)}
    (x : A) :  l, Decision (x  l).
  Proof.
   refine (
    fix go l :=
    match l return Decision (x  l) with
    | [] => right _
    | y :: l => cast_if_or (decide (x = y)) (go l)
    end); clear go dec; subst; try (by constructor); abstract by inversion 1.
  Defined.
  Fixpoint remove_dups (l : list A) : list A :=
    match l with
    | [] => []
    | x :: l =>
      if decide_rel () x l then remove_dups l else x :: remove_dups l
    end.
  Fixpoint list_difference (l k : list A) : list A :=
    match l with
    | [] => []
    | x :: l =>
      if decide_rel () x k
308
      then list_difference l k else x :: list_difference l k
309
    end.
310
  Definition list_union (l k : list A) : list A := list_difference l k ++ k.
311 312 313 314 315
  Fixpoint list_intersection (l k : list A) : list A :=
    match l with
    | [] => []
    | x :: l =>
      if decide_rel () x k
316
      then x :: list_intersection l k else list_intersection l k
317 318 319 320 321 322 323 324 325
    end.
  Definition list_intersection_with (f : A  A  option A) :
    list A  list A  list A := fix go l k :=
    match l with
    | [] => []
    | x :: l => foldr (λ y,
        match f x y with None => id | Some z => (z ::) end) (go l k) k
    end.
End list_set.
326 327

(** * Basic tactics on lists *)
328
(** The tactic [discriminate_list] discharges a goal if it contains
329 330
a list equality involving [(::)] and [(++)] of two lists that have a different
length as one of its hypotheses. *)
331
Tactic Notation "discriminate_list" hyp(H) :=
332
  apply (f_equal length) in H;
333
  repeat (csimpl in H || rewrite app_length in H); exfalso; lia.
334 335
Tactic Notation "discriminate_list" :=
  match goal with H : @eq (list _) _ _ |- _ => discriminate_list H end.
336

337
(** The tactic [simplify_list_eq] simplifies hypotheses involving
338 339
equalities on lists using injectivity of [(::)] and [(++)]. Also, it simplifies
lookups in singleton lists. *)
340
Lemma app_inj_1 {A} (l1 k1 l2 k2 : list A) :
341 342
  length l1 = length k1  l1 ++ l2 = k1 ++ k2  l1 = k1  l2 = k2.
Proof. revert k1. induction l1; intros [|??]; naive_solver. Qed.
343
Lemma app_inj_2 {A} (l1 k1 l2 k2 : list A) :
344 345
  length l2 = length k2  l1 ++ l2 = k1 ++ k2  l1 = k1  l2 = k2.
Proof.
346
  intros ? Hl. apply app_inj_1; auto.
347 348
  apply (f_equal length) in Hl. rewrite !app_length in Hl. lia.
Qed.
349
Ltac simplify_list_eq :=
350
  repeat match goal with
351
  | _ => progress simplify_eq/=
352
  | H : _ ++ _ = _ ++ _ |- _ => first
353
    [ apply app_inv_head in H | apply app_inv_tail in H
354 355
    | apply app_inj_1 in H; [destruct H|done]
    | apply app_inj_2 in H; [destruct H|done] ]
Robbert Krebbers's avatar
Robbert Krebbers committed
356
  | H : [?x] !! ?i = Some ?y |- _ =>
357
    destruct i; [change (Some x = Some y) in H | discriminate]
358
  end.
359

360 361
(** * General theorems *)
Section general_properties.
Robbert Krebbers's avatar
Robbert Krebbers committed
362
Context {A : Type}.
363 364
Implicit Types x y z : A.
Implicit Types l k : list A.
Robbert Krebbers's avatar
Robbert Krebbers committed
365

366 367 368 369 370
Section setoid.
  Context `{Equiv A} `{!Equivalence (() : relation A)}.
  Global Instance map_equivalence : Equivalence (() : relation (list A)).
  Proof.
    split.
371 372 373
    - intros l; induction l; constructor; auto.
    - induction 1; constructor; auto.
    - intros l1 l2 l3 Hl; revert l3.
374
      induction Hl; inversion_clear 1; constructor; try etrans; eauto.
375 376 377 378 379 380 381 382 383
  Qed.
  Global Instance cons_proper : Proper (() ==> () ==> ()) (@cons A).
  Proof. by constructor. Qed.
  Global Instance app_proper : Proper (() ==> () ==> ()) (@app A).
  Proof.
    induction 1 as [|x y l k ?? IH]; intros ?? Htl; simpl; auto.
    by apply cons_equiv, IH.
  Qed.
  Global Instance list_leibniz `{!LeibnizEquiv A} : LeibnizEquiv (list A).
384
  Proof. induction 1; f_equal; fold_leibniz; auto. Qed.
385 386
End setoid.

387
Global Instance: Inj2 (=) (=) (=) (@cons A).
388
Proof. by injection 1. Qed.
389
Global Instance:  k, Inj (=) (=) (k ++).
390
Proof. intros ???. apply app_inv_head. Qed.
391
Global Instance:  k, Inj (=) (=) (++ k).
392
Proof. intros ???. apply app_inv_tail. Qed.
393
Global Instance: Assoc (=) (@app A).
394 395 396 397 398
Proof. intros ???. apply app_assoc. Qed.
Global Instance: LeftId (=) [] (@app A).
Proof. done. Qed.
Global Instance: RightId (=) [] (@app A).
Proof. intro. apply app_nil_r. Qed.
399

400
Lemma app_nil l1 l2 : l1 ++ l2 = []  l1 = []  l2 = [].
401
Proof. split. apply app_eq_nil. by intros [-> ->]. Qed.
402 403
Lemma app_singleton l1 l2 x :
  l1 ++ l2 = [x]  l1 = []  l2 = [x]  l1 = [x]  l2 = [].
404
Proof. split. apply app_eq_unit. by intros [[-> ->]|[-> ->]]. Qed.
405 406 407
Lemma cons_middle x l1 l2 : l1 ++ x :: l2 = l1 ++ [x] ++ l2.
Proof. done. Qed.
Lemma list_eq l1 l2 : ( i, l1 !! i = l2 !! i)  l1 = l2.
408 409
Proof.
  revert l2. induction l1; intros [|??] H.
410 411 412 413
  - done.
  - discriminate (H 0).
  - discriminate (H 0).
  - f_equal; [by injection (H 0)|]. apply (IHl1 _ $ λ i, H (S i)).
414
Qed.
415
Global Instance list_eq_dec {dec :  x y, Decision (x = y)} :  l k,
416
  Decision (l = k) := list_eq_dec dec.
417 418 419 420 421 422 423 424
Global Instance list_eq_nil_dec l : Decision (l = []).
Proof. by refine match l with [] => left _ | _ => right _ end. Defined.
Lemma list_singleton_reflect l :
  option_reflect (λ x, l = [x]) (length l  1) (list_singleton l).
Proof. by destruct l as [|? []]; constructor. Defined.

Definition nil_length : length (@nil A) = 0 := eq_refl.
Definition cons_length x l : length (x :: l) = S (length l) := eq_refl.
425
Lemma nil_or_length_pos l : l = []  length l  0.
426
Proof. destruct l; simpl; auto with lia. Qed.
427
Lemma nil_length_inv l : length l = 0  l = [].
428 429
Proof. by destruct l. Qed.
Lemma lookup_nil i : @nil A !! i = None.
430
Proof. by destruct i. Qed.
431
Lemma lookup_tail l i : tail l !! i = l !! S i.
432
Proof. by destruct l. Qed.
433 434
Lemma lookup_lt_Some l i x : l !! i = Some x  i < length l.
Proof.
435
  revert i. induction l; intros [|?] ?; simplify_eq/=; auto with arith.
436 437 438 439 440
Qed.
Lemma lookup_lt_is_Some_1 l i : is_Some (l !! i)  i < length l.
Proof. intros [??]; eauto using lookup_lt_Some. Qed.
Lemma lookup_lt_is_Some_2 l i : i < length l  is_Some (l !! i).
Proof.
441
  revert i. induction l; intros [|?] ?; simplify_eq/=; eauto with lia.
442 443 444 445 446 447 448 449 450
Qed.
Lemma lookup_lt_is_Some l i : is_Some (l !! i)  i < length l.
Proof. split; auto using lookup_lt_is_Some_1, lookup_lt_is_Some_2. Qed.
Lemma lookup_ge_None l i : l !! i = None  length l  i.
Proof. rewrite eq_None_not_Some, lookup_lt_is_Some. lia. Qed.
Lemma lookup_ge_None_1 l i : l !! i = None  length l  i.
Proof. by rewrite lookup_ge_None. Qed.
Lemma lookup_ge_None_2 l i : length l  i  l !! i = None.
Proof. by rewrite lookup_ge_None. Qed.
451 452 453
Lemma list_eq_same_length l1 l2 n :
  length l2 = n  length l1 = n 
  ( i x y, i < n  l1 !! i = Some x  l2 !! i = Some y  x = y)  l1 = l2.
Robbert Krebbers's avatar
Robbert Krebbers committed
454
Proof.
455
  intros <- Hlen Hl; apply list_eq; intros i. destruct (l2 !! i) as [x|] eqn:Hx.
456
  - destruct (lookup_lt_is_Some_2 l1 i) as [y Hy].
457 458
    { rewrite Hlen; eauto using lookup_lt_Some. }
    rewrite Hy; f_equal; apply (Hl i); eauto using lookup_lt_Some.
459
  - by rewrite lookup_ge_None, Hlen, <-lookup_ge_None.
Robbert Krebbers's avatar
Robbert Krebbers committed
460
Qed.
461
Lemma lookup_app_l l1 l2 i : i < length l1  (l1 ++ l2) !! i = l1 !! i.
462
Proof. revert i. induction l1; intros [|?]; simpl; auto with lia. Qed.
463 464
Lemma lookup_app_l_Some l1 l2 i x : l1 !! i = Some x  (l1 ++ l2) !! i = Some x.
Proof. intros. rewrite lookup_app_l; eauto using lookup_lt_Some. Qed.
465
Lemma lookup_app_r l1 l2 i :
466
  length l1  i  (l1 ++ l2) !! i = l2 !! (i - length l1).
467 468 469 470 471 472
Proof. revert i. induction l1; intros [|?]; simpl; auto with lia. Qed.
Lemma lookup_app_Some l1 l2 i x :
  (l1 ++ l2) !! i = Some x 
    l1 !! i = Some x  length l1  i  l2 !! (i - length l1) = Some x.
Proof.
  split.
473
  - revert i. induction l1 as [|y l1 IH]; intros [|i] ?;
474
      simplify_eq/=; auto with lia.
475
    destruct (IH i) as [?|[??]]; auto with lia.
476
  - intros [?|[??]]; auto using lookup_app_l_Some. by rewrite lookup_app_r.
477
Qed.
478 479 480
Lemma list_lookup_middle l1 l2 x n :
  n = length l1  (l1 ++ x :: l2) !! n = Some x.
Proof. intros ->. by induction l1. Qed.
481

482
Lemma list_insert_alter l i x : <[i:=x]>l = alter (λ _, x) i l.
483
Proof. by revert i; induction l; intros []; intros; f_equal/=. Qed.
484
Lemma alter_length f l i : length (alter f i l) = length l.
485
Proof. revert i. by induction l; intros [|?]; f_equal/=. Qed.
486
Lemma insert_length l i x : length (<[i:=x]>l) = length l.
487
Proof. revert i. by induction l; intros [|?]; f_equal/=. Qed.
488
Lemma list_lookup_alter f l i : alter f i l !! i = f <$> l !! i.
489
Proof. revert i. induction l. done. intros [|i]. done. apply (IHl i). Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
490
Lemma list_lookup_alter_ne f l i j : i  j  alter f i l !! j = l !! j.
491
Proof.
492
  revert i j. induction l; [done|]. intros [][] ?; csimpl; auto with congruence.
493
Qed.
494
Lemma list_lookup_insert l i x : i < length l  <[i:=x]>l !! i = Some x.
495
Proof. revert i. induction l; intros [|?] ?; f_equal/=; auto with lia. Qed.
496
Lemma list_lookup_insert_ne l i j x : i  j  <[i:=x]>l !! j = l !! j.
497
Proof.
498
  revert i j. induction l; [done|]. intros [] [] ?; simpl; auto with congruence.
499
Qed.
500 501 502 503 504 505
Lemma list_lookup_insert_Some l i x j y :
  <[i:=x]>l !! j = Some y 
    i = j  x = y  j < length l  i  j  l !! j = Some y.
Proof.
  destruct (decide (i = j)) as [->|];
    [split|rewrite list_lookup_insert_ne by done; tauto].
506
  - intros Hy. assert (j < length l).
507 508
    { rewrite <-(insert_length l j x); eauto using lookup_lt_Some. }
    rewrite list_lookup_insert in Hy by done; naive_solver.
509
  - intros [(?&?&?)|[??]]; rewrite ?list_lookup_insert; naive_solver.
510 511 512
Qed.
Lemma list_insert_commute l i j x y :
  i  j  <[i:=x]>(<[j:=y]>l) = <[j:=y]>(<[i:=x]>l).
513
Proof. revert i j. by induction l; intros [|?] [|?] ?; f_equal/=; auto. Qed.
514 515
Lemma list_lookup_other l i x :
  length l  1  l !! i = Some x   j y, j  i  l !! j = Some y.
Robbert Krebbers's avatar
Robbert Krebbers committed
516
Proof.
517
  intros. destruct i, l as [|x0 [|x1 l]]; simplify_eq/=.
518 519
  - by exists 1, x1.
  - by exists 0, x0.
Robbert Krebbers's avatar
Robbert Krebbers committed
520
Qed.
521 522
Lemma alter_app_l f l1 l2 i :
  i < length l1  alter f i (l1 ++ l2) = alter f i l1 ++ l2.
523
Proof. revert i. induction l1; intros [|?] ?; f_equal/=; auto with lia. Qed.
524
Lemma alter_app_r f l1 l2 i :
525
  alter f (length l1 + i) (l1 ++ l2) = l1 ++ alter f i l2.
526
Proof. revert i. induction l1; intros [|?]; f_equal/=; auto. Qed.
527 528
Lemma alter_app_r_alt f l1 l2 i :
  length l1  i  alter f i (l1 ++ l2) = l1 ++ alter f (i - length l1) l2.
529 530 531 532
Proof.
  intros. assert (i = length l1 + (i - length l1)) as Hi by lia.
  rewrite Hi at 1. by apply alter_app_r.
Qed.
533
Lemma list_alter_id f l i : ( x, f x = x)  alter f i l = l.
534
Proof. intros ?. revert i. induction l; intros [|?]; f_equal/=; auto. Qed.
535 536
Lemma list_alter_ext f g l k i :
  ( x, l !! i = Some x  f x = g x)  l = k  alter f i l = alter g i k.
537
Proof. intros H ->. revert i H. induction k; intros [|?] ?; f_equal/=; auto. Qed.
538 539
Lemma list_alter_compose f g l i :
  alter (f  g) i l = alter f i (alter g i l).
540
Proof. revert i. induction l; intros [|?]; f_equal/=; auto. Qed.
541 542
Lemma list_alter_commute f g l i j :
  i  j  alter f i (alter g j l) = alter g j (alter f i l).
543
Proof. revert i j. induction l; intros [|?][|?] ?; f_equal/=; auto with lia. Qed.
544 545
Lemma insert_app_l l1 l2 i x :
  i < length l1  <[i:=x]>(l1 ++ l2) = <[i:=x]>l1 ++ l2.
546
Proof. revert i. induction l1; intros [|?] ?; f_equal/=; auto with lia. Qed.
547
Lemma insert_app_r l1 l2 i x : <[length l1+i:=x]>(l1 ++ l2) = l1 ++ <[i:=x]>l2.
548
Proof. revert i. induction l1; intros [|?]; f_equal/=; auto. Qed.
549 550
Lemma insert_app_r_alt l1 l2 i x :
  length l1  i  <[i:=x]>(l1 ++ l2) = l1 ++ <[i - length l1:=x]>l2.
551 552 553 554
Proof.
  intros. assert (i = length l1 + (i - length l1)) as Hi by lia.
  rewrite Hi at 1. by apply insert_app_r.
Qed.
555
Lemma delete_middle l1 l2 x : delete (length l1) (l1 ++ x :: l2) = l1 ++ l2.
556
Proof. induction l1; f_equal/=; auto. Qed.
557

558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594
Lemma inserts_length l i k : length (list_inserts i k l) = length l.
Proof.
  revert i. induction k; intros ?; csimpl; rewrite ?insert_length; auto.
Qed.
Lemma list_lookup_inserts l i k j :
  i  j < i + length k  j < length l 
  list_inserts i k l !! j = k !! (j - i).
Proof.
  revert i j. induction k as [|y k IH]; csimpl; intros i j ??; [lia|].
  destruct (decide (i = j)) as [->|].
  { by rewrite list_lookup_insert, Nat.sub_diag
      by (rewrite inserts_length; lia). }
  rewrite list_lookup_insert_ne, IH by lia.
  by replace (j - i) with (S (j - S i)) by lia.
Qed.
Lemma list_lookup_inserts_lt l i k j :
  j < i  list_inserts i k l !! j = l !! j.
Proof.
  revert i j. induction k; intros i j ?; csimpl;
    rewrite ?list_lookup_insert_ne by lia; auto with lia.
Qed.
Lemma list_lookup_inserts_ge l i k j :
  i + length k  j  list_inserts i k l !! j = l !! j.
Proof.
  revert i j. induction k; csimpl; intros i j ?;
    rewrite ?list_lookup_insert_ne by lia; auto with lia.
Qed.
Lemma list_lookup_inserts_Some l i k j y :
  list_inserts i k l !! j = Some y 
    (j < i  i + length k  j)  l !! j = Some y 
    i  j < i + length k  j < length l  k !! (j - i) = Some y.
Proof.
  destruct (decide (j < i)).
  { rewrite list_lookup_inserts_lt by done; intuition lia. }
  destruct (decide (i + length k  j)).
  { rewrite list_lookup_inserts_ge by done; intuition lia. }
  split.
595
  - intros Hy. assert (j < length l).
596 597
    { rewrite <-(inserts_length l i k); eauto using lookup_lt_Some. }
    rewrite list_lookup_inserts in Hy by lia. intuition lia.
598
  - intuition. by rewrite list_lookup_inserts by lia.
599 600 601 602 603 604 605 606
Qed.
Lemma list_insert_inserts_lt l i j x k :
  i < j  <[i:=x]>(list_inserts j k l) = list_inserts j k (<[i:=x]>l).
Proof.
  revert i j. induction k; intros i j ?; simpl;
    rewrite 1?list_insert_commute by lia; auto with f_equal.
Qed.

607
(** ** Properties of the [elem_of] predicate *)
608
Lemma not_elem_of_nil x : x  [].
609
Proof. by inversion 1. Qed.
610
Lemma elem_of_nil x : x  []  False.
611
Proof. intuition. by destruct (not_elem_of_nil x). Qed.
612
Lemma elem_of_nil_inv l : ( x, x  l)  l = [].
613
Proof. destruct l. done. by edestruct 1; constructor. Qed.
614 615
Lemma elem_of_not_nil x l : x  l  l  [].
Proof. intros ? ->. by apply (elem_of_nil x). Qed.
616
Lemma elem_of_cons l x y : x  y :: l  x = y  x  l.
Robbert Krebbers's avatar
Robbert Krebbers committed
617
Proof. by split; [inversion 1; subst|intros [->|?]]; constructor. Qed.
618
Lemma not_elem_of_cons l x y : x  y :: l  x  y  x  l.
Robbert Krebbers's avatar
Robbert Krebbers committed
619
Proof. rewrite elem_of_cons. tauto. Qed.
620
Lemma elem_of_app l1 l2 x : x  l1 ++ l2  x  l1  x  l2.
621
Proof.
622
  induction l1.
623 624
  - split; [by right|]. intros [Hx|]; [|done]. by destruct (elem_of_nil x).
  - simpl. rewrite !elem_of_cons, IHl1. tauto.
625
Qed.
626
Lemma not_elem_of_app l1 l2 x : x  l1 ++ l2  x  l1  x  l2.
Robbert Krebbers's avatar
Robbert Krebbers committed
627
Proof. rewrite elem_of_app. tauto. Qed.
628
Lemma elem_of_list_singleton x y : x  [y]  x = y.
629
Proof. rewrite elem_of_cons, elem_of_nil. tauto. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
630
Global Instance elem_of_list_permutation_proper x : Proper (() ==> iff) (x ).
631
Proof. induction 1; rewrite ?elem_of_nil, ?elem_of_cons; intuition. Qed.
632
Lemma elem_of_list_split l x : x  l   l1 l2, l = l1 ++ x :: l2.
633
Proof.
634
  induction 1 as [x l|x y l ? [l1 [l2 ->]]]; [by eexists [], l|].
635
  by exists (y :: l1), l2.
636
Qed.
637
Lemma elem_of_list_lookup_1 l x : x  l   i, l !! i = Some x.
638
Proof.
639 640
  induction 1 as [|???? IH]; [by exists 0 |].
  destruct IH as [i ?]; auto. by exists (S i).
641
Qed.
642
Lemma elem_of_list_lookup_2 l i x : l !! i = Some x  x  l.
643
Proof.
644
  revert i. induction l; intros [|i] ?; simplify_eq/=; constructor; eauto.
645
Qed.
646 647
Lemma elem_of_list_lookup l x : x  l   i, l !! i = Some x.
Proof. firstorder eauto using elem_of_list_lookup_1, elem_of_list_lookup_2. Qed.
648 649 650 651
Lemma elem_of_list_omap {B} (f : A  option B) l (y : B) :
  y  omap f l   x, x  l  f x = Some y.
Proof.
  split.
652
  - induction l as [|x l]; csimpl; repeat case_match; inversion 1; subst;
653
      setoid_rewrite elem_of_cons; naive_solver.
654
  - intros (x&Hx&?). by induction Hx; csimpl; repeat case_match;
655
      simplify_eq; try constructor; auto.
656
Qed.
657

658
(** ** Properties of the [NoDup] predicate *)
659 660
Lemma NoDup_nil : NoDup (@nil A)  True.
Proof. split; constructor. Qed.
661
Lemma NoDup_cons x l : NoDup (x :: l)  x  l  NoDup l.
662
Proof. split. by inversion 1. intros [??]. by constructor. Qed.
663
Lemma NoDup_cons_11 x l : NoDup (x :: l)  x  l.
664
Proof. rewrite NoDup_cons. by intros [??]. Qed.
665
Lemma NoDup_cons_12 x l : NoDup (x :: l)  NoDup l.
666
Proof. rewrite NoDup_cons. by intros [??]. Qed.
667
Lemma NoDup_singleton x : NoDup [x].
668
Proof. constructor. apply not_elem_of_nil. constructor. Qed.
669
Lemma NoDup_app l k : NoDup (l ++ k)  NoDup l  ( x, x  l  x  k)  NoDup k.
Robbert Krebbers's avatar
Robbert Krebbers committed
670
Proof.
671
  induction l; simpl.
672 673
  - rewrite NoDup_nil. setoid_rewrite elem_of_nil. naive_solver.
  - rewrite !NoDup_cons.
Robbert Krebbers's avatar
Robbert Krebbers committed
674
    setoid_rewrite elem_of_cons. setoid_rewrite elem_of_app. naive_solver.
Robbert Krebbers's avatar
Robbert Krebbers committed
675
Qed.
676
Global Instance NoDup_proper: Proper (() ==> iff) (@NoDup A).
677 678
Proof.
  induction 1 as [|x l k Hlk IH | |].
679 680 681 682
  - by rewrite !NoDup_nil.
  - by rewrite !NoDup_cons, IH, Hlk.
  - rewrite !NoDup_cons, !elem_of_cons. intuition.
  - intuition.
683
Qed.
684 685
Lemma NoDup_lookup l i j x :
  NoDup l  l !! i = Some x  l !! j = Some x  i = j.
686 687
Proof.
  intros Hl. revert i j. induction Hl as [|x' l Hx Hl IH].
688 689
  { intros; simplify_eq. }
  intros [|i] [|j] ??; simplify_eq/=; eauto with f_equal;
690 691
    exfalso; eauto using elem_of_list_lookup_2.
Qed.
692 693
Lemma NoDup_alt l :
  NoDup l   i j x, l !! i = Some x  l !! j = Some x  i = j.
694
Proof.
695 696
  split; eauto using NoDup_lookup.
  induction l as [|x l IH]; intros Hl; constructor.
697
  - rewrite elem_of_list_lookup. intros [i ?].
698
    by feed pose proof (Hl (S i) 0 x); auto.
699
  - apply IH. intros i j x' ??. by apply (inj S), (Hl (S i) (S j) x').
700
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
701

702 703 704 705 706 707
Section no_dup_dec.
  Context `{! x y, Decision (x = y)}.
  Global Instance NoDup_dec:  l, Decision (NoDup l) :=
    fix NoDup_dec l :=
    match l return Decision (NoDup l) with
    | [] => left NoDup_nil_2
708
    | x :: l =>
709 710 711 712 713 714 715 716
      match decide_rel () x l with
      | left Hin => right (λ H, NoDup_cons_11 _ _ H Hin)
      | right Hin =>
        match NoDup_dec l with
        | left H => left (NoDup_cons_2 _ _ Hin H)
        | right H => right (H  NoDup_cons_12 _ _)
        end
      end
717
    end.
718
  Lemma elem_of_remove_dups l x : x  remove_dups l  x  l.
719 720
  Proof.
    split; induction l; simpl; repeat case_decide;
721
      rewrite ?elem_of_cons; intuition (simplify_eq; auto).
722
  Qed.
723
  Lemma NoDup_remove_dups l : NoDup (remove_dups l).
724 725 726 727
  Proof.
    induction l; simpl; repeat case_decide; try constructor; auto.
    by rewrite elem_of_remove_dups.
  Qed.
728
End no_dup_dec.
729

730 731 732 733 734 735 736 737 738 739 740
(** ** Set operations on lists *)
Section list_set.
  Context {dec :  x y, Decision (x = y)}.
  Lemma elem_of_list_difference l k x : x  list_difference l k  x  l  x  k.
  Proof.
    split; induction l; simpl; try case_decide;
      rewrite ?elem_of_nil, ?elem_of_cons; intuition congruence.
  Qed.
  Lemma NoDup_list_difference l k : NoDup l  NoDup (list_difference l k).
  Proof.
    induction 1; simpl; try case_decide.
741 742 743
    - constructor.
    - done.
    - constructor. rewrite elem_of_list_difference; intuition. done.
744 745 746 747 748 749 750 751 752
  Qed.
  Lemma elem_of_list_union l k x : x  list_union l k  x  l  x  k.
  Proof.
    unfold list_union. rewrite elem_of_app, elem_of_list_difference.
    intuition. case (decide (x  k)); intuition.
  Qed.
  Lemma NoDup_list_union l k : NoDup l  NoDup k  NoDup (list_union l k).
  Proof.
    intros. apply NoDup_app. repeat split.
753 754 755
    - by apply NoDup_list_difference.
    - intro. rewrite elem_of_list_difference. intuition.
    - done.
756 757 758 759 760 761 762 763 764 765
  Qed.
  Lemma elem_of_list_intersection l k x :
    x  list_intersection l k  x  l