collections.v 31.5 KB
Newer Older
Robbert Krebbers's avatar
Robbert Krebbers committed
1
(* Copyright (c) 2012-2015, Robbert Krebbers. *)
2 3 4 5
(* This file is distributed under the terms of the BSD license. *)
(** This file collects definitions and theorems on collections. Most
importantly, it implements some tactics to automatically solve goals involving
collections. *)
6
From stdpp Require Export base tactics orders.
7

8 9
Instance collection_subseteq `{ElemOf A C} : SubsetEq C := λ X Y,
   x, x  X  x  Y.
10
Typeclasses Opaque collection_subseteq.
11

12
(** * Basic theorems *)
13 14
Section simple_collection.
  Context `{SimpleCollection A C}.
15 16
  Implicit Types x y : A.
  Implicit Types X Y : C.
Robbert Krebbers's avatar
Robbert Krebbers committed
17

18
  Lemma elem_of_empty x : x    False.
19
  Proof. split. apply not_elem_of_empty. done. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
20 21 22 23
  Lemma elem_of_union_l x X Y : x  X  x  X  Y.
  Proof. intros. apply elem_of_union. auto. Qed.
  Lemma elem_of_union_r x X Y : x  Y  x  X  Y.
  Proof. intros. apply elem_of_union. auto. Qed.
24 25 26
  Global Instance: EmptySpec C.
  Proof. firstorder auto. Qed.
  Global Instance: JoinSemiLattice C.
27
  Proof. firstorder auto. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
28 29
  Global Instance: AntiSymm () (@collection_subseteq A C _).
  Proof. done. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
30
  Lemma elem_of_subseteq X Y : X  Y   x, x  X  x  Y.
31
  Proof. done. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
32 33
  Lemma elem_of_equiv X Y : X  Y   x, x  X  x  Y.
  Proof. firstorder. Qed.
34 35
  Lemma elem_of_equiv_alt X Y :
    X  Y  ( x, x  X  x  Y)  ( x, x  Y  x  X).
Robbert Krebbers's avatar
Robbert Krebbers committed
36
  Proof. firstorder. Qed.
37 38
  Lemma elem_of_equiv_empty X : X     x, x  X.
  Proof. firstorder. Qed.
39 40 41 42 43 44
  Lemma collection_positive_l X Y : X  Y    X  .
  Proof.
    rewrite !elem_of_equiv_empty. setoid_rewrite elem_of_union. naive_solver.
  Qed.
  Lemma collection_positive_l_alt X Y : X    X  Y  .
  Proof. eauto using collection_positive_l. Qed.
45 46 47 48
  Lemma elem_of_singleton_1 x y : x  {[y]}  x = y.
  Proof. by rewrite elem_of_singleton. Qed.
  Lemma elem_of_singleton_2 x y : x = y  x  {[y]}.
  Proof. by rewrite elem_of_singleton. Qed.
49 50 51
  Lemma elem_of_subseteq_singleton x X : x  X  {[ x ]}  X.
  Proof.
    split.
52 53
    - intros ??. rewrite elem_of_singleton. by intros ->.
    - intros Ex. by apply (Ex x), elem_of_singleton.
54
  Qed.
55
  Global Instance singleton_proper : Proper ((=) ==> ()) (singleton (B:=C)).
56
  Proof. by repeat intro; subst. Qed.
57 58
  Global Instance elem_of_proper :
    Proper ((=) ==> () ==> iff) (() : A  C  Prop) | 5.
59
  Proof. intros ???; subst. firstorder. Qed.
60
  Lemma elem_of_union_list Xs x : x   Xs   X, X  Xs  x  X.
61 62
  Proof.
    split.
63
    - induction Xs; simpl; intros HXs; [by apply elem_of_empty in HXs|].
64
      setoid_rewrite elem_of_cons. apply elem_of_union in HXs. naive_solver.
65
    - intros [X []]. induction 1; simpl; [by apply elem_of_union_l |].
66
      intros. apply elem_of_union_r; auto.
67
  Qed.
68
  Lemma non_empty_singleton x : ({[ x ]} : C)  .
69 70 71 72 73 74
  Proof. intros [E _]. by apply (elem_of_empty x), E, elem_of_singleton. Qed.
  Lemma not_elem_of_singleton x y : x  {[ y ]}  x  y.
  Proof. by rewrite elem_of_singleton. Qed.
  Lemma not_elem_of_union x X Y : x  X  Y  x  X  x  Y.
  Proof. rewrite elem_of_union. tauto. Qed.

75 76 77 78 79 80 81 82 83
  Section leibniz.
    Context `{!LeibnizEquiv C}.
    Lemma elem_of_equiv_L X Y : X = Y   x, x  X  x  Y.
    Proof. unfold_leibniz. apply elem_of_equiv. Qed.
    Lemma elem_of_equiv_alt_L X Y :
      X = Y  ( x, x  X  x  Y)  ( x, x  Y  x  X).
    Proof. unfold_leibniz. apply elem_of_equiv_alt. Qed.
    Lemma elem_of_equiv_empty_L X : X =    x, x  X.
    Proof. unfold_leibniz. apply elem_of_equiv_empty. Qed.
84 85 86 87
    Lemma collection_positive_l_L X Y : X  Y =   X = .
    Proof. unfold_leibniz. apply collection_positive_l. Qed.
    Lemma collection_positive_l_alt_L X Y : X    X  Y  .
    Proof. unfold_leibniz. apply collection_positive_l_alt. Qed.
88 89 90 91 92 93 94 95 96 97 98 99
    Lemma non_empty_singleton_L x : {[ x ]}  .
    Proof. unfold_leibniz. apply non_empty_singleton. Qed.
  End leibniz.

  Section dec.
    Context `{ X Y : C, Decision (X  Y)}.
    Global Instance elem_of_dec_slow (x : A) (X : C) : Decision (x  X) | 100.
    Proof.
      refine (cast_if (decide_rel () {[ x ]} X));
        by rewrite elem_of_subseteq_singleton.
    Defined.
  End dec.
100 101
End simple_collection.

102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267
(** * Tactics *)
(** The tactic [set_unfold] transforms all occurrences of [(∪)], [(∩)], [(∖)],
[(<$>)], [∅], [{[_]}], [(≡)], and [(⊆)] into logically equivalent propositions
involving just [∈]. For example, [A → x ∈ X ∪ ∅] becomes [A → x ∈ X ∨ False].

This transformation is implemented using type classes instead of [rewrite]ing
to ensure that we traverse each term at most once. *)
Class SetUnfold (P Q : Prop) := { set_unfold : P  Q }.
Arguments set_unfold _ _ {_}.
Hint Mode SetUnfold + - : typeclass_instances.

Class SetUnfoldSimpl (P Q : Prop) := { set_unfold_simpl : SetUnfold P Q }.
Hint Extern 0 (SetUnfoldSimpl _ _) => csimpl; constructor : typeclass_instances.

Instance set_unfold_fallthrough P : SetUnfold P P | 1000. done. Qed.
Definition set_unfold_1 `{SetUnfold P Q} : P  Q := proj1 (set_unfold P Q).
Definition set_unfold_2 `{SetUnfold P Q} : Q  P := proj2 (set_unfold P Q).

Lemma set_unfold_impl P Q P' Q' :
  SetUnfold P P'  SetUnfold Q Q'  SetUnfold (P  Q) (P'  Q').
Proof. constructor. by rewrite (set_unfold P P'), (set_unfold Q Q'). Qed.
Lemma set_unfold_and P Q P' Q' :
  SetUnfold P P'  SetUnfold Q Q'  SetUnfold (P  Q) (P'  Q').
Proof. constructor. by rewrite (set_unfold P P'), (set_unfold Q Q'). Qed.
Lemma set_unfold_or P Q P' Q' :
  SetUnfold P P'  SetUnfold Q Q'  SetUnfold (P  Q) (P'  Q').
Proof. constructor. by rewrite (set_unfold P P'), (set_unfold Q Q'). Qed.
Lemma set_unfold_iff P Q P' Q' :
  SetUnfold P P'  SetUnfold Q Q'  SetUnfold (P  Q) (P'  Q').
Proof. constructor. by rewrite (set_unfold P P'), (set_unfold Q Q'). Qed.
Lemma set_unfold_not P P' : SetUnfold P P'  SetUnfold (¬P) (¬P').
Proof. constructor. by rewrite (set_unfold P P'). Qed.
Lemma set_unfold_forall {A} (P P' : A  Prop) :
  ( x, SetUnfold (P x) (P' x))  SetUnfold ( x, P x) ( x, P' x).
Proof. constructor. naive_solver. Qed.
Lemma set_unfold_exist {A} (P P' : A  Prop) :
  ( x, SetUnfold (P x) (P' x))  SetUnfold ( x, P x) ( x, P' x).
Proof. constructor. naive_solver. Qed.

(* Avoid too eager application of the above instances (and thus too eager
unfolding of type class transparent definitions). *)
Hint Extern 0 (SetUnfold (_  _) _) =>
  class_apply set_unfold_impl : typeclass_instances.
Hint Extern 0 (SetUnfold (_  _) _) =>
  class_apply set_unfold_and : typeclass_instances.
Hint Extern 0 (SetUnfold (_  _) _) =>
  class_apply set_unfold_or : typeclass_instances.
Hint Extern 0 (SetUnfold (_  _) _) =>
  class_apply set_unfold_iff : typeclass_instances.
Hint Extern 0 (SetUnfold (¬ _) _) =>
  class_apply set_unfold_not : typeclass_instances.
Hint Extern 1 (SetUnfold ( _, _) _) =>
  class_apply set_unfold_forall : typeclass_instances.
Hint Extern 0 (SetUnfold ( _, _) _) =>
  class_apply set_unfold_exist : typeclass_instances.

Section set_unfold_simple.
  Context `{SimpleCollection A C}.
  Implicit Types x y : A.
  Implicit Types X Y : C.

  Global Instance set_unfold_empty x : SetUnfold (x  ) False.
  Proof. constructor; apply elem_of_empty. Qed.
  Global Instance set_unfold_singleton x y : SetUnfold (x  {[ y ]}) (x = y).
  Proof. constructor; apply elem_of_singleton. Qed.
  Global Instance set_unfold_union x X Y P Q :
    SetUnfold (x  X) P  SetUnfold (x  Y) Q  SetUnfold (x  X  Y) (P  Q).
  Proof.
    intros ??; constructor.
    by rewrite elem_of_union, (set_unfold (x  X) P), (set_unfold (x  Y) Q).
  Qed.
  Global Instance set_unfold_equiv_same X : SetUnfold (X  X) True | 1.
  Proof. done. Qed.
  Global Instance set_unfold_equiv_empty_l X (P : A  Prop) :
    ( x, SetUnfold (x  X) (P x))  SetUnfold (  X) ( x, ¬P x) | 5.
  Proof.
    intros ?; constructor.
    rewrite (symmetry_iff equiv), elem_of_equiv_empty; naive_solver.
  Qed.
  Global Instance set_unfold_equiv_empty_r (P : A  Prop) :
    ( x, SetUnfold (x  X) (P x))  SetUnfold (X  ) ( x, ¬P x) | 5.
  Proof. constructor. rewrite elem_of_equiv_empty; naive_solver. Qed.
  Global Instance set_unfold_equiv (P Q : A  Prop) :
    ( x, SetUnfold (x  X) (P x))  ( x, SetUnfold (x  Y) (Q x)) 
    SetUnfold (X  Y) ( x, P x  Q x) | 10.
  Proof. constructor. rewrite elem_of_equiv; naive_solver. Qed.
  Global Instance set_unfold_subseteq (P Q : A  Prop) :
    ( x, SetUnfold (x  X) (P x))  ( x, SetUnfold (x  Y) (Q x)) 
    SetUnfold (X  Y) ( x, P x  Q x).
  Proof. constructor. rewrite elem_of_subseteq; naive_solver. Qed.
  Global Instance set_unfold_subset (P Q : A  Prop) :
    ( x, SetUnfold (x  X) (P x))  ( x, SetUnfold (x  Y) (Q x)) 
    SetUnfold (X  Y) (( x, P x  Q x)  ¬∀ x, P x  Q x).
  Proof.
    constructor. rewrite subset_spec, elem_of_subseteq, elem_of_equiv.
    repeat f_equiv; naive_solver.
  Qed.

  Context `{!LeibnizEquiv C}.
  Global Instance set_unfold_equiv_same_L X : SetUnfold (X = X) True | 1.
  Proof. done. Qed.
  Global Instance set_unfold_equiv_empty_l_L X (P : A  Prop) :
    ( x, SetUnfold (x  X) (P x))  SetUnfold ( = X) ( x, ¬P x) | 5.
  Proof.
    constructor. rewrite (symmetry_iff eq), elem_of_equiv_empty_L; naive_solver.
  Qed.
  Global Instance set_unfold_equiv_empty_r_L (P : A  Prop) :
    ( x, SetUnfold (x  X) (P x))  SetUnfold (X = ) ( x, ¬P x) | 5.
  Proof. constructor. rewrite elem_of_equiv_empty_L; naive_solver. Qed.
  Global Instance set_unfold_equiv_L (P Q : A  Prop) :
    ( x, SetUnfold (x  X) (P x))  ( x, SetUnfold (x  Y) (Q x)) 
    SetUnfold (X = Y) ( x, P x  Q x) | 10.
  Proof. constructor. rewrite elem_of_equiv_L; naive_solver. Qed.
End set_unfold_simple.

Section set_unfold.
  Context `{Collection A C}.
  Implicit Types x y : A.
  Implicit Types X Y : C.

  Global Instance set_unfold_intersection x X Y P Q :
    SetUnfold (x  X) P  SetUnfold (x  Y) Q  SetUnfold (x  X  Y) (P  Q).
  Proof.
    intros ??; constructor. by rewrite elem_of_intersection,
      (set_unfold (x  X) P), (set_unfold (x  Y) Q).
  Qed.
  Global Instance set_unfold_difference x X Y P Q :
    SetUnfold (x  X) P  SetUnfold (x  Y) Q  SetUnfold (x  X  Y) (P  ¬Q).
  Proof.
    intros ??; constructor. by rewrite elem_of_difference,
      (set_unfold (x  X) P), (set_unfold (x  Y) Q).
  Qed.
End set_unfold.

Section set_unfold_monad.
  Context `{CollectionMonad M} {A : Type}.
  Implicit Types x y : A.

  Global Instance set_unfold_ret x y : SetUnfold (x  mret y) (x = y).
  Proof. constructor; apply elem_of_ret. Qed.
  Global Instance set_unfold_bind {B} (f : A  M B) X (P Q : A  Prop) :
    ( y, SetUnfold (y  X) (P y))  ( y, SetUnfold (x  f y) (Q y)) 
    SetUnfold (x  X = f) ( y, Q y  P y).
  Proof. constructor. rewrite elem_of_bind; naive_solver. Qed.
  Global Instance set_unfold_fmap {B} (f : A  B) X (P : A  Prop) :
    ( y, SetUnfold (y  X) (P y)) 
    SetUnfold (x  f <$> X) ( y, x = f y  P y).
  Proof. constructor. rewrite elem_of_fmap; naive_solver. Qed.
  Global Instance set_unfold_join (X : M (M A)) (P : M A  Prop) :
    ( Y, SetUnfold (Y  X) (P Y))  SetUnfold (x  mjoin X) ( Y, x  Y  P Y).
  Proof. constructor. rewrite elem_of_join; naive_solver. Qed.
End set_unfold_monad.

Ltac set_unfold :=
  let rec unfold_hyps :=
    try match goal with
    | H : _ |- _ =>
       apply set_unfold_1 in H; revert H;
       first [unfold_hyps; intros H | intros H; fail 1]
    end in
  apply set_unfold_2; unfold_hyps; csimpl in *.

(** Since [firstorder] fails or loops on very small goals generated by
[set_solver] already. We use the [naive_solver] tactic as a substitute.
This tactic either fails or proves the goal. *)
Tactic Notation "set_solver" "by" tactic3(tac) :=
268
  try done;
269 270 271 272 273 274 275 276 277 278 279 280 281
  intros; setoid_subst;
  set_unfold;
  intros; setoid_subst;
  try match goal with |- _  _ => apply dec_stable end;
  naive_solver tac.
Tactic Notation "set_solver" "-" hyp_list(Hs) "by" tactic3(tac) :=
  clear Hs; set_solver by tac.
Tactic Notation "set_solver" "+" hyp_list(Hs) "by" tactic3(tac) :=
  clear -Hs; set_solver by tac.
Tactic Notation "set_solver" := set_solver by idtac.
Tactic Notation "set_solver" "-" hyp_list(Hs) := clear Hs; set_solver.
Tactic Notation "set_solver" "+" hyp_list(Hs) := clear -Hs; set_solver.

282 283 284 285
Hint Extern 1000 (_  _) => set_solver : set_solver.
Hint Extern 1000 (_  _) => set_solver : set_solver.
Hint Extern 1000 (_  _) => set_solver : set_solver.

286 287 288
(** * Conversion of option and list *)
Definition of_option `{Singleton A C, Empty C} (mx : option A) : C :=
  match mx with None =>  | Some x => {[ x ]} end.
289 290
Fixpoint of_list `{Singleton A C, Empty C, Union C} (l : list A) : C :=
  match l with [] =>  | x :: l => {[ x ]}  of_list l end.
291

292 293
Section of_option_list.
  Context `{SimpleCollection A C}.
294 295
  Lemma elem_of_of_option (x : A) mx: x  of_option mx  mx = Some x.
  Proof. destruct mx; set_solver. Qed.
296 297 298
  Lemma elem_of_of_list (x : A) l : x  of_list l  x  l.
  Proof.
    split.
299
    - induction l; simpl; [by rewrite elem_of_empty|].
Robbert Krebbers's avatar
Robbert Krebbers committed
300
      rewrite elem_of_union,elem_of_singleton; intros [->|?]; constructor; auto.
301
    - induction 1; simpl; rewrite elem_of_union, elem_of_singleton; auto.
302
  Qed.
303 304 305
  Global Instance set_unfold_of_option (mx : option A) x :
    SetUnfold (x  of_option mx) (mx = Some x).
  Proof. constructor; apply elem_of_of_option. Qed.
306 307 308
  Global Instance set_unfold_of_list (l : list A) x P :
    SetUnfold (x  l) P  SetUnfold (x  of_list l) P.
  Proof. constructor. by rewrite elem_of_of_list, (set_unfold (x  l) P). Qed.
309
End of_option_list.
310

311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328
Section list_unfold.
  Context {A : Type}.
  Implicit Types x : A.
  Implicit Types l : list A.

  Global Instance set_unfold_nil x : SetUnfold (x  []) False.
  Proof. constructor; apply elem_of_nil. Qed.
  Global Instance set_unfold_cons x y l P :
    SetUnfold (x  l) P  SetUnfold (x  y :: l) (x = y  P).
  Proof. constructor. by rewrite elem_of_cons, (set_unfold (x  l) P). Qed.
  Global Instance set_unfold_app x l k P Q :
    SetUnfold (x  l) P  SetUnfold (x  k) Q  SetUnfold (x  l ++ k) (P  Q).
  Proof.
    intros ??; constructor.
    by rewrite elem_of_app, (set_unfold (x  l) P), (set_unfold (x  k) Q).
  Qed.
End list_unfold.

329
(** * Guard *)
330 331
Global Instance collection_guard `{CollectionMonad M} : MGuard M :=
  λ P dec A x, match dec with left H => x H | _ =>  end.
332 333 334 335 336 337 338 339 340

Section collection_monad_base.
  Context `{CollectionMonad M}.
  Lemma elem_of_guard `{Decision P} {A} (x : A) (X : M A) :
    x  guard P; X  P  x  X.
  Proof.
    unfold mguard, collection_guard; simpl; case_match;
      rewrite ?elem_of_empty; naive_solver.
  Qed.
341 342 343
  Lemma elem_of_guard_2 `{Decision P} {A} (x : A) (X : M A) :
    P  x  X  x  guard P; X.
  Proof. by rewrite elem_of_guard. Qed.
344 345 346 347 348
  Lemma guard_empty `{Decision P} {A} (X : M A) : guard P; X    ¬P  X  .
  Proof.
    rewrite !elem_of_equiv_empty; setoid_rewrite elem_of_guard.
    destruct (decide P); naive_solver.
  Qed.
349 350 351
  Global Instance set_unfold_guard `{Decision P} {A} (x : A) X Q :
    SetUnfold (x  X) Q  SetUnfold (x  guard P; X) (P  Q).
  Proof. constructor. by rewrite elem_of_guard, (set_unfold (x  X) Q). Qed.
352 353
  Lemma bind_empty {A B} (f : A  M B) X :
    X = f    X     x, x  X  f x  .
354
  Proof. set_solver. Qed.
355
End collection_monad_base.
356

357
(** * More theorems *)
Robbert Krebbers's avatar
Robbert Krebbers committed
358 359
Section collection.
  Context `{Collection A C}.
360
  Implicit Types X Y : C.
Robbert Krebbers's avatar
Robbert Krebbers committed
361

362
  Global Instance: Lattice C.
363
  Proof. split. apply _. firstorder auto. set_solver. Qed.
364 365
  Global Instance difference_proper :
     Proper (() ==> () ==> ()) (@difference C _).
Robbert Krebbers's avatar
Robbert Krebbers committed
366 367 368 369
  Proof.
    intros X1 X2 HX Y1 Y2 HY; apply elem_of_equiv; intros x.
    by rewrite !elem_of_difference, HX, HY.
  Qed.
370
  Lemma non_empty_inhabited x X : x  X  X  .
371
  Proof. set_solver. Qed.
372
  Lemma intersection_singletons x : ({[x]} : C)  {[x]}  {[x]}.
373
  Proof. set_solver. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
374
  Lemma difference_twice X Y : (X  Y)  Y  X  Y.
375
  Proof. set_solver. Qed.
376
  Lemma subseteq_empty_difference X Y : X  Y  X  Y  .
377
  Proof. set_solver. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
378
  Lemma difference_diag X : X  X  .
379
  Proof. set_solver. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
380
  Lemma difference_union_distr_l X Y Z : (X  Y)  Z  X  Z  Y  Z.
381
  Proof. set_solver. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
382
  Lemma difference_union_distr_r X Y Z : Z  (X  Y)  (Z  X)  (Z  Y).
383
  Proof. set_solver. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
384
  Lemma difference_intersection_distr_l X Y Z : (X  Y)  Z  X  Z  Y  Z.
385
  Proof. set_solver. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
386
  Lemma disjoint_union_difference X Y : X  Y    (X  Y)  X  Y.
387
  Proof. set_solver. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
388

389 390 391 392 393 394
  Section leibniz.
    Context `{!LeibnizEquiv C}.
    Lemma intersection_singletons_L x : {[x]}  {[x]} = {[x]}.
    Proof. unfold_leibniz. apply intersection_singletons. Qed.
    Lemma difference_twice_L X Y : (X  Y)  Y = X  Y.
    Proof. unfold_leibniz. apply difference_twice. Qed.
395 396
    Lemma subseteq_empty_difference_L X Y : X  Y  X  Y = .
    Proof. unfold_leibniz. apply subseteq_empty_difference. Qed.
397 398 399 400
    Lemma difference_diag_L X : X  X = .
    Proof. unfold_leibniz. apply difference_diag. Qed.
    Lemma difference_union_distr_l_L X Y Z : (X  Y)  Z = X  Z  Y  Z.
    Proof. unfold_leibniz. apply difference_union_distr_l. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
401 402
    Lemma difference_union_distr_r_L X Y Z : Z  (X  Y) = (Z  X)  (Z  Y).
    Proof. unfold_leibniz. apply difference_union_distr_r. Qed.
403 404 405
    Lemma difference_intersection_distr_l_L X Y Z :
      (X  Y)  Z = X  Z  Y  Z.
    Proof. unfold_leibniz. apply difference_intersection_distr_l. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
406 407
    Lemma disjoint_union_difference_L X Y : X  Y =   (X  Y)  X = Y.
    Proof. unfold_leibniz. apply disjoint_union_difference. Qed.
408 409 410
  End leibniz.

  Section dec.
Robbert Krebbers's avatar
Robbert Krebbers committed
411
    Context `{ (x : A) (X : C), Decision (x  X)}.
412
    Lemma not_elem_of_intersection x X Y : x  X  Y  x  X  x  Y.
413
    Proof. rewrite elem_of_intersection. destruct (decide (x  X)); tauto. Qed.
414
    Lemma not_elem_of_difference x X Y : x  X  Y  x  X  x  Y.
415
    Proof. rewrite elem_of_difference. destruct (decide (x  Y)); tauto. Qed.
416 417
    Lemma union_difference X Y : X  Y  Y  X  Y  X.
    Proof.
418 419
      split; intros x; rewrite !elem_of_union, elem_of_difference; [|intuition].
      destruct (decide (x  X)); intuition.
420 421
    Qed.
    Lemma non_empty_difference X Y : X  Y  Y  X  .
422
    Proof. intros [HXY1 HXY2] Hdiff. destruct HXY2. set_solver. Qed.
423
    Lemma empty_difference_subseteq X Y : X  Y    X  Y.
424
    Proof. set_solver. Qed.
425 426 427 428 429
    Context `{!LeibnizEquiv C}.
    Lemma union_difference_L X Y : X  Y  Y = X  Y  X.
    Proof. unfold_leibniz. apply union_difference. Qed.
    Lemma non_empty_difference_L X Y : X  Y  Y  X  .
    Proof. unfold_leibniz. apply non_empty_difference. Qed.
430 431
    Lemma empty_difference_subseteq_L X Y : X  Y =   X  Y.
    Proof. unfold_leibniz. apply empty_difference_subseteq. Qed.
432 433 434 435 436 437
  End dec.
End collection.

Section collection_ops.
  Context `{CollectionOps A C}.

Robbert Krebbers's avatar
Robbert Krebbers committed
438 439 440 441 442
  Lemma elem_of_intersection_with_list (f : A  A  option A) Xs Y x :
    x  intersection_with_list f Y Xs   xs y,
      Forall2 () xs Xs  y  Y  foldr (λ x, (= f x)) (Some y) xs = Some x.
  Proof.
    split.
443
    - revert x. induction Xs; simpl; intros x HXs; [eexists [], x; intuition|].
444 445
      rewrite elem_of_intersection_with in HXs; destruct HXs as (x1&x2&?&?&?).
      destruct (IHXs x2) as (xs & y & hy & ? & ?); trivial.
446
      eexists (x1 :: xs), y. intuition (simplify_option_eq; auto).
447
    - intros (xs & y & Hxs & ? & Hx). revert x Hx.
448
      induction Hxs; intros; simplify_option_eq; [done |].
Robbert Krebbers's avatar
Robbert Krebbers committed
449 450 451 452 453 454 455 456 457
      rewrite elem_of_intersection_with. naive_solver.
  Qed.

  Lemma intersection_with_list_ind (P Q : A  Prop) f Xs Y :
    ( y, y  Y  P y) 
    Forall (λ X,  x, x  X  Q x) Xs 
    ( x y z, Q x  P y  f x y = Some z  P z) 
     x, x  intersection_with_list f Y Xs  P x.
  Proof.
458
    intros HY HXs Hf. induction Xs; simplify_option_eq; [done |].
Robbert Krebbers's avatar
Robbert Krebbers committed
459 460 461
    intros x Hx. rewrite elem_of_intersection_with in Hx.
    decompose_Forall. destruct Hx as (? & ? & ? & ? & ?). eauto.
  Qed.
462
End collection_ops.
Robbert Krebbers's avatar
Robbert Krebbers committed
463

464
(** * Sets without duplicates up to an equivalence *)
465
Section NoDup.
466
  Context `{SimpleCollection A B} (R : relation A) `{!Equivalence R}.
Robbert Krebbers's avatar
Robbert Krebbers committed
467 468

  Definition elem_of_upto (x : A) (X : B) :=  y, y  X  R x y.
469
  Definition set_NoDup (X : B) :=  x y, x  X  y  X  R x y  x = y.
Robbert Krebbers's avatar
Robbert Krebbers committed
470 471

  Global Instance: Proper (() ==> iff) (elem_of_upto x).
Robbert Krebbers's avatar
Robbert Krebbers committed
472
  Proof. intros ??? E. unfold elem_of_upto. by setoid_rewrite E. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
473 474 475
  Global Instance: Proper (R ==> () ==> iff) elem_of_upto.
  Proof.
    intros ?? E1 ?? E2. split; intros [z [??]]; exists z.
476 477
    - rewrite <-E1, <-E2; intuition.
    - rewrite E1, E2; intuition.
Robbert Krebbers's avatar
Robbert Krebbers committed
478
  Qed.
479
  Global Instance: Proper (() ==> iff) set_NoDup.
Robbert Krebbers's avatar
Robbert Krebbers committed
480 481 482
  Proof. firstorder. Qed.

  Lemma elem_of_upto_elem_of x X : x  X  elem_of_upto x X.
483
  Proof. unfold elem_of_upto. set_solver. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
484
  Lemma elem_of_upto_empty x : ¬elem_of_upto x .
485
  Proof. unfold elem_of_upto. set_solver. Qed.
486
  Lemma elem_of_upto_singleton x y : elem_of_upto x {[ y ]}  R x y.
487
  Proof. unfold elem_of_upto. set_solver. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
488

489 490
  Lemma elem_of_upto_union X Y x :
    elem_of_upto x (X  Y)  elem_of_upto x X  elem_of_upto x Y.
491
  Proof. unfold elem_of_upto. set_solver. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
492
  Lemma not_elem_of_upto x X : ¬elem_of_upto x X   y, y  X  ¬R x y.
493
  Proof. unfold elem_of_upto. set_solver. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
494

495
  Lemma set_NoDup_empty: set_NoDup .
496
  Proof. unfold set_NoDup. set_solver. Qed.
497 498
  Lemma set_NoDup_add x X :
    ¬elem_of_upto x X  set_NoDup X  set_NoDup ({[ x ]}  X).
499
  Proof. unfold set_NoDup, elem_of_upto. set_solver. Qed.
500 501
  Lemma set_NoDup_inv_add x X :
    x  X  set_NoDup ({[ x ]}  X)  ¬elem_of_upto x X.
502 503
  Proof.
    intros Hin Hnodup [y [??]].
504
    rewrite (Hnodup x y) in Hin; set_solver.
505
  Qed.
506
  Lemma set_NoDup_inv_union_l X Y : set_NoDup (X  Y)  set_NoDup X.
507
  Proof. unfold set_NoDup. set_solver. Qed.
508
  Lemma set_NoDup_inv_union_r X Y : set_NoDup (X  Y)  set_NoDup Y.
509
  Proof. unfold set_NoDup. set_solver. Qed.
510
End NoDup.
Robbert Krebbers's avatar
Robbert Krebbers committed
511

512
(** * Quantifiers *)
Robbert Krebbers's avatar
Robbert Krebbers committed
513
Section quantifiers.
514
  Context `{SimpleCollection A B} (P : A  Prop).
Robbert Krebbers's avatar
Robbert Krebbers committed
515

516 517 518 519
  Definition set_Forall X :=  x, x  X  P x.
  Definition set_Exists X :=  x, x  X  P x.

  Lemma set_Forall_empty : set_Forall .
520
  Proof. unfold set_Forall. set_solver. Qed.
521
  Lemma set_Forall_singleton x : set_Forall {[ x ]}  P x.
522
  Proof. unfold set_Forall. set_solver. Qed.
523
  Lemma set_Forall_union X Y : set_Forall X  set_Forall Y  set_Forall (X  Y).
524
  Proof. unfold set_Forall. set_solver. Qed.
525
  Lemma set_Forall_union_inv_1 X Y : set_Forall (X  Y)  set_Forall X.
526
  Proof. unfold set_Forall. set_solver. Qed.
527
  Lemma set_Forall_union_inv_2 X Y : set_Forall (X  Y)  set_Forall Y.
528
  Proof. unfold set_Forall. set_solver. Qed.
529 530

  Lemma set_Exists_empty : ¬set_Exists .
531
  Proof. unfold set_Exists. set_solver. Qed.
532
  Lemma set_Exists_singleton x : set_Exists {[ x ]}  P x.
533
  Proof. unfold set_Exists. set_solver. Qed.
534
  Lemma set_Exists_union_1 X Y : set_Exists X  set_Exists (X  Y).
535
  Proof. unfold set_Exists. set_solver. Qed.
536
  Lemma set_Exists_union_2 X Y : set_Exists Y  set_Exists (X  Y).
537
  Proof. unfold set_Exists. set_solver. Qed.
538 539
  Lemma set_Exists_union_inv X Y :
    set_Exists (X  Y)  set_Exists X  set_Exists Y.
540
  Proof. unfold set_Exists. set_solver. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
541 542
End quantifiers.

543
Section more_quantifiers.
544
  Context `{SimpleCollection A B}.
545

546 547 548 549 550 551
  Lemma set_Forall_weaken (P Q : A  Prop) (Hweaken :  x, P x  Q x) X :
    set_Forall P X  set_Forall Q X.
  Proof. unfold set_Forall. naive_solver. Qed.
  Lemma set_Exists_weaken (P Q : A  Prop) (Hweaken :  x, P x  Q x) X :
    set_Exists P X  set_Exists Q X.
  Proof. unfold set_Exists. naive_solver. Qed.
552 553
End more_quantifiers.

554 555 556
(** * Fresh elements *)
(** We collect some properties on the [fresh] operation. In particular we
generalize [fresh] to generate lists of fresh elements. *)
557 558 559 560 561 562 563 564 565 566
Fixpoint fresh_list `{Fresh A C, Union C, Singleton A C}
    (n : nat) (X : C) : list A :=
  match n with
  | 0 => []
  | S n => let x := fresh X in x :: fresh_list n ({[ x ]}  X)
  end.
Inductive Forall_fresh `{ElemOf A C} (X : C) : list A  Prop :=
  | Forall_fresh_nil : Forall_fresh X []
  | Forall_fresh_cons x xs :
     x  xs  x  X  Forall_fresh X xs  Forall_fresh X (x :: xs).
567

568 569
Section fresh.
  Context `{FreshSpec A C}.
570
  Implicit Types X Y : C.
571

572
  Global Instance fresh_proper: Proper (() ==> (=)) (fresh (C:=C)).
573
  Proof. intros ???. by apply fresh_proper_alt, elem_of_equiv. Qed.
574 575
  Global Instance fresh_list_proper:
    Proper ((=) ==> () ==> (=)) (fresh_list (C:=C)).
576
  Proof.
577
    intros ? n ->. induction n as [|n IH]; intros ?? E; f_equal/=; [by rewrite E|].
578
    apply IH. by rewrite E.
579
  Qed.
580 581 582 583 584 585 586 587 588 589 590 591 592 593 594

  Lemma Forall_fresh_NoDup X xs : Forall_fresh X xs  NoDup xs.
  Proof. induction 1; by constructor. Qed.
  Lemma Forall_fresh_elem_of X xs x : Forall_fresh X xs  x  xs  x  X.
  Proof.
    intros HX; revert x; rewrite <-Forall_forall.
    by induction HX; constructor.
  Qed.
  Lemma Forall_fresh_alt X xs :
    Forall_fresh X xs  NoDup xs   x, x  xs  x  X.
  Proof.
    split; eauto using Forall_fresh_NoDup, Forall_fresh_elem_of.
    rewrite <-Forall_forall.
    intros [Hxs Hxs']. induction Hxs; decompose_Forall_hyps; constructor; auto.
  Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
595 596
  Lemma Forall_fresh_subseteq X Y xs :
    Forall_fresh X xs  Y  X  Forall_fresh Y xs.
597
  Proof. rewrite !Forall_fresh_alt; set_solver. Qed.
598

599 600
  Lemma fresh_list_length n X : length (fresh_list n X) = n.
  Proof. revert X. induction n; simpl; auto. Qed.
601
  Lemma fresh_list_is_fresh n X x : x  fresh_list n X  x  X.
602
  Proof.
603
    revert X. induction n as [|n IH]; intros X; simpl;[by rewrite elem_of_nil|].
604
    rewrite elem_of_cons; intros [->| Hin]; [apply is_fresh|].
605
    apply IH in Hin; set_solver.
606
  Qed.
607
  Lemma NoDup_fresh_list n X : NoDup (fresh_list n X).
608
  Proof.
609
    revert X. induction n; simpl; constructor; auto.
610
    intros Hin; apply fresh_list_is_fresh in Hin; set_solver.
611 612 613 614
  Qed.
  Lemma Forall_fresh_list X n : Forall_fresh X (fresh_list n X).
  Proof.
    rewrite Forall_fresh_alt; eauto using NoDup_fresh_list, fresh_list_is_fresh.
615 616
  Qed.
End fresh.
617

618
(** * Properties of implementations of collections that form a monad *)
619 620 621
Section collection_monad.
  Context `{CollectionMonad M}.

622 623
  Global Instance collection_fmap_mono {A B} :
    Proper (pointwise_relation _ (=) ==> () ==> ()) (@fmap M _ A B).
624
  Proof. intros f g ? X Y ?; set_solver by eauto. Qed.
625 626
  Global Instance collection_fmap_proper {A B} :
    Proper (pointwise_relation _ (=) ==> () ==> ()) (@fmap M _ A B).
627
  Proof. intros f g ? X Y [??]; split; set_solver by eauto. Qed.
628 629
  Global Instance collection_bind_mono {A B} :
    Proper (((=) ==> ()) ==> () ==> ()) (@mbind M _ A B).
630
  Proof. unfold respectful; intros f g Hfg X Y ?; set_solver. Qed.
631 632
  Global Instance collection_bind_proper {A B} :
    Proper (((=) ==> ()) ==> () ==> ()) (@mbind M _ A B).
633
  Proof. unfold respectful; intros f g Hfg X Y [??]; split; set_solver. Qed.
634 635
  Global Instance collection_join_mono {A} :
    Proper (() ==> ()) (@mjoin M _ A).
636
  Proof. intros X Y ?; set_solver. Qed.
637 638
  Global Instance collection_join_proper {A} :
    Proper (() ==> ()) (@mjoin M _ A).
639
  Proof. intros X Y [??]; split; set_solver. Qed.
640

641
  Lemma collection_bind_singleton {A B} (f : A  M B) x : {[ x ]} = f  f x.
642
  Proof. set_solver. Qed.
643
  Lemma collection_guard_True {A} `{Decision P} (X : M A) : P  guard P; X  X.
644
  Proof. set_solver. Qed.
645
  Lemma collection_fmap_compose {A B C} (f : A  B) (g : B  C) (X : M A) :
646
    g  f <$> X  g <$> (f <$> X).
647
  Proof. set_solver. Qed.
648 649
  Lemma elem_of_fmap_1 {A B} (f : A  B) (X : M A) (y : B) :
    y  f <$> X   x, y = f x  x  X.
650
  Proof. set_solver. Qed.
651 652
  Lemma elem_of_fmap_2 {A B} (f : A  B) (X : M A) (x : A) :
    x  X  f x  f <$> X.
653
  Proof. set_solver. Qed.
654 655
  Lemma elem_of_fmap_2_alt {A B} (f : A  B) (X : M A) (x : A) (y : B) :
    x  X  y = f x  y  f <$> X.
656
  Proof. set_solver. Qed.
657 658 659 660 661

  Lemma elem_of_mapM {A B} (f : A  M B) l k :
    l  mapM f k  Forall2 (λ x y, x  f y) l k.
  Proof.
    split.
662
    - revert l. induction k; set_solver by eauto.
663
    - induction 1; set_solver.
664
  Qed.
665
  Lemma collection_mapM_length {A B} (f : A  M B) l k :
666
    l  mapM f k  length l = length k.
667
  Proof. revert l; induction k; set_solver by eauto. Qed.
668
  Lemma elem_of_mapM_fmap {A B} (f : A  B) (g : B  M A) l k :
669
    Forall (λ x,  y, y  g x  f y = x) l  k  mapM g l  fmap f k = l.
670
  Proof. intros Hl. revert k. induction Hl; set_solver. Qed.
671
  Lemma elem_of_mapM_Forall {A B} (f : A  M B) (P : B  Prop) l k :
672
    l  mapM f k  Forall (λ x,  y, y  f x  P y) k  Forall P l.
Robbert Krebbers's avatar
Robbert Krebbers committed
673
  Proof. rewrite elem_of_mapM. apply Forall2_Forall_l. Qed.
674 675
  Lemma elem_of_mapM_Forall2_l {A B C} (f : A  M B) (P: B  C  Prop) l1 l2 k :
    l1  mapM f k  Forall2 (λ x y,  z, z  f x  P z y) k l2 
Robbert Krebbers's avatar
Robbert Krebbers committed
676 677 678 679 680
    Forall2 P l1 l2.
  Proof.
    rewrite elem_of_mapM. intros Hl1. revert l2.
    induction Hl1; inversion_clear 1; constructor; auto.
  Qed.
681
End collection_monad.
682 683 684 685 686 687

(** Finite collections *)
Definition set_finite `{ElemOf A B} (X : B) :=  l : list A,  x, x  X  x  l.

Section finite.
  Context `{SimpleCollection A B}.
688 689
  Global Instance set_finite_subseteq :
     Proper (flip () ==> impl) (@set_finite A B _).
690
  Proof. intros X Y HX [l Hl]; exists l; set_solver. Qed.
691 692
  Global Instance set_finite_proper : Proper (() ==> iff) (@set_finite A B _).
  Proof. by intros X Y [??]; split; apply set_finite_subseteq. Qed.
693 694 695
  Lemma empty_finite : set_finite .
  Proof. by exists []; intros ?; rewrite elem_of_empty. Qed.
  Lemma singleton_finite (x : A) : set_finite {[ x ]}.
Ralf Jung's avatar
Ralf Jung committed
696
  Proof. exists [x]; intros y ->%elem_of_singleton; left. Qed.
697 698 699 700 701 702
  Lemma union_finite X Y : set_finite X  set_finite Y  set_finite (X  Y).
  Proof.
    intros [lX ?] [lY ?]; exists (lX ++ lY); intros x.
    rewrite elem_of_union, elem_of_app; naive_solver.
  Qed.
  Lemma union_finite_inv_l X Y : set_finite (X  Y)  set_finite X.
703
  Proof. intros [l ?]; exists l; set_solver. Qed.
704
  Lemma union_finite_inv_r X Y : set_finite (X  Y)  set_finite Y.
705
  Proof. intros [l ?]; exists l; set_solver. Qed.
706 707 708 709 710
End finite.

Section more_finite.
  Context `{Collection A B}.
  Lemma intersection_finite_l X Y : set_finite X  set_finite (X  Y).
Ralf Jung's avatar
Ralf Jung committed
711
  Proof. intros [l ?]; exists l; intros x [??]%elem_of_intersection; auto. Qed.
712
  Lemma intersection_finite_r X Y : set_finite Y  set_finite (X  Y).
Ralf Jung's avatar
Ralf Jung committed
713
  Proof. intros [l ?]; exists l; intros x [??]%elem_of_intersection; auto. Qed.
714
  Lemma difference_finite X Y : set_finite X  set_finite (X  Y).
Ralf Jung's avatar
Ralf Jung committed
715
  Proof. intros [l ?]; exists l; intros x [??]%elem_of_difference; auto. Qed.
716 717 718 719
  Lemma difference_finite_inv X Y `{ x, Decision (x  Y)} :
    set_finite Y  set_finite (X  Y)  set_finite X.
  Proof.
    intros [l ?] [k ?]; exists (l ++ k).
720
    intros x ?; destruct (decide (x  Y)); rewrite elem_of_app; set_solver.
721
  Qed.
722
End more_finite.