base.v 32.2 KB
Newer Older
1
(* Copyright (c) 2012-2013, Robbert Krebbers. *)
2
3
4
5
6
(* This file is distributed under the terms of the BSD license. *)
(** This file collects type class interfaces, notations, and general theorems
that are used throughout the whole development. Most importantly it contains
abstract interfaces for ordered structures, collections, and various other data
structures. *)
Robbert Krebbers's avatar
Robbert Krebbers committed
7
8
9
10
Global Generalizable All Variables.
Global Set Automatic Coercions Import.
Require Export Morphisms RelationClasses List Bool Utf8 Program Setoid NArith.

11
12
13
14
(** * General *)
(** The following coercion allows us to use Booleans as propositions. *)
Coercion Is_true : bool >-> Sortclass.

15
16
(** Ensure that [simpl] unfolds [id], [compose], and [flip] when fully
applied. *)
17
18
Arguments id _ _/.
Arguments compose _ _ _ _ _ _ /.
19
Arguments flip _ _ _ _ _ _/.
20

21
22
23
24
(** Change [True] and [False] into notations in order to enable overloading.
We will use this in the file [assertions] to give [True] and [False] a
different interpretation in [assert_scope] used for assertions of our axiomatic
semantics. *)
25
26
Notation "'True'" := True : type_scope.
Notation "'False'" := False : type_scope.
Robbert Krebbers's avatar
Robbert Krebbers committed
27

28
29
30
Notation curry := prod_curry.
Notation uncurry := prod_uncurry.

31
32
(** Throughout this development we use [C_scope] for all general purpose
notations that do not belong to a more specific scope. *)
Robbert Krebbers's avatar
Robbert Krebbers committed
33
34
35
Delimit Scope C_scope with C.
Global Open Scope C_scope.

36
(** Introduce some Haskell style like notations. *)
Robbert Krebbers's avatar
Robbert Krebbers committed
37
38
39
40
41
42
43
44
45
Notation "(=)" := eq (only parsing) : C_scope.
Notation "( x =)" := (eq x) (only parsing) : C_scope.
Notation "(= x )" := (λ y, eq y x) (only parsing) : C_scope.
Notation "(≠)" := (λ x y, x  y) (only parsing) : C_scope.
Notation "( x ≠)" := (λ y, x  y) (only parsing) : C_scope.
Notation "(≠ x )" := (λ y, y  x) (only parsing) : C_scope.

Hint Extern 0 (?x = ?x) => reflexivity.

46
47
48
49
Notation "(→)" := (λ A B, A  B) (only parsing) : C_scope.
Notation "( A →)" := (λ B, A  B) (only parsing) : C_scope.
Notation "(→ B )" := (λ A, A  B) (only parsing) : C_scope.

50
Notation "t $ r" := (t r)
51
  (at level 65, right associativity, only parsing) : C_scope.
52
53
54
Notation "($)" := (λ f x, f x) (only parsing) : C_scope.
Notation "($ x )" := (λ f, f x) (only parsing) : C_scope.

Robbert Krebbers's avatar
Robbert Krebbers committed
55
56
57
58
Infix "∘" := compose : C_scope.
Notation "(∘)" := compose (only parsing) : C_scope.
Notation "( f ∘)" := (compose f) (only parsing) : C_scope.
Notation "(∘ f )" := (λ g, compose g f) (only parsing) : C_scope.
59

60
61
62
63
64
65
66
67
68
69
70
71
Notation "(∧)" := and (only parsing) : C_scope.
Notation "( A ∧)" := (and A) (only parsing) : C_scope.
Notation "(∧ B )" := (λ A, A  B) (only parsing) : C_scope.

Notation "(∨)" := or (only parsing) : C_scope.
Notation "( A ∨)" := (or A) (only parsing) : C_scope.
Notation "(∨ B )" := (λ A, A  B) (only parsing) : C_scope.

Notation "(↔)" := iff (only parsing) : C_scope.
Notation "( A ↔)" := (iff A) (only parsing) : C_scope.
Notation "(↔ B )" := (λ A, A  B) (only parsing) : C_scope.

72
73
(** Set convenient implicit arguments for [existT] and introduce notations. *)
Arguments existT {_ _} _ _.
Robbert Krebbers's avatar
Robbert Krebbers committed
74
75
76
Notation "x ↾ p" := (exist _ x p) (at level 20) : C_scope.
Notation "` x" := (proj1_sig x) : C_scope.

77
78
79
80
(** * Type classes *)
(** ** Provable propositions *)
(** This type class collects provable propositions. It is useful to constraint
type classes by arbitrary propositions. *)
Robbert Krebbers's avatar
Robbert Krebbers committed
81
82
Class PropHolds (P : Prop) := prop_holds: P.

83
84
Hint Extern 0 (PropHolds _) => assumption : typeclass_instances.
Instance: Proper (iff ==> iff) PropHolds.
85
Proof. repeat intro; trivial. Qed.
86
87
88

Ltac solve_propholds :=
  match goal with
89
90
  | |- PropHolds (?P) => apply _
  | |- ?P => change (PropHolds P); apply _
91
92
93
94
95
96
97
  end.

(** ** Decidable propositions *)
(** This type class by (Spitters/van der Weegen, 2011) collects decidable
propositions. For example to declare a parameter expressing decidable equality
on a type [A] we write [`{∀ x y : A, Decision (x = y)}] and use it by writing
[decide (x = y)]. *)
Robbert Krebbers's avatar
Robbert Krebbers committed
98
99
100
Class Decision (P : Prop) := decide : {P} + {¬P}.
Arguments decide _ {_}.

101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
(** ** Inhabited types *)
(** This type class collects types that are inhabited. *)
Class Inhabited (A : Type) : Prop := populate { _ : A }.
Arguments populate {_} _.

Instance unit_inhabited: Inhabited unit := populate ().
Instance list_inhabited {A} : Inhabited (list A) := populate [].
Instance prod_inhabited {A B} (iA : Inhabited A)
    (iB : Inhabited B) : Inhabited (A * B) :=
  match iA, iB with
  | populate x, populate y => populate (x,y)
  end.
Instance sum_inhabited_l {A B} (iA : Inhabited A) : Inhabited (A + B) :=
  match iA with
  | populate x => populate (inl x)
  end.
Instance sum_inhabited_r {A B} (iB : Inhabited A) : Inhabited (A + B) :=
  match iB with
  | populate y => populate (inl y)
  end.
Instance option_inhabited {A} : Inhabited (option A) := populate None.

123
124
125
(** ** Setoid equality *)
(** We define an operational type class for setoid equality. This is based on
(Spitters/van der Weegen, 2011). *)
Robbert Krebbers's avatar
Robbert Krebbers committed
126
127
128
129
130
131
132
133
134
135
Class Equiv A := equiv: relation A.
Infix "≡" := equiv (at level 70, no associativity) : C_scope.
Notation "(≡)" := equiv (only parsing) : C_scope.
Notation "( x ≡)" := (equiv x) (only parsing) : C_scope.
Notation "(≡ x )" := (λ y, y  x) (only parsing) : C_scope.
Notation "(≢)" := (λ x y, ¬x  y) (only parsing) : C_scope.
Notation "x ≢ y":= (¬x  y) (at level 70, no associativity) : C_scope.
Notation "( x ≢)" := (λ y, x  y) (only parsing) : C_scope.
Notation "(≢ x )" := (λ y, y  x) (only parsing) : C_scope.

136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
(** The type class [LeibnizEquiv] collects setoid equalities that coincide
with Leibniz equality. We provide the tactic [fold_leibniz] to transform such
setoid equalities into Leibniz equalities, and [unfold_leibniz] for the
reverse. *)
Class LeibnizEquiv A `{Equiv A} := leibniz_equiv x y : x  y  x = y.

Ltac fold_leibniz := repeat
  match goal with
  | H : context [ @equiv ?A _ _ _ ] |- _ =>
    setoid_rewrite (leibniz_equiv (A:=A)) in H
  | |- context [ @equiv ?A _ _ _ ] =>
    setoid_rewrite (leibniz_equiv (A:=A))
  end.
Ltac unfold_leibniz := repeat
  match goal with
  | H : context [ @eq ?A _ _ ] |- _ =>
    setoid_rewrite <-(leibniz_equiv (A:=A)) in H
  | |- context [ @eq ?A _ _ ] =>
    setoid_rewrite <-(leibniz_equiv (A:=A))
  end.

157
158
159
160
161
162
163
164
(** A [Params f n] instance forces the setoid rewriting mechanism not to
rewrite in the first [n] arguments of the function [f]. We will declare such
instances for all operational type classes in this development. *)
Instance: Params (@equiv) 2.

(** The following instance forces [setoid_replace] to use setoid equality
(for types that have an [Equiv] instance) rather than the standard Leibniz
equality. *)
Robbert Krebbers's avatar
Robbert Krebbers committed
165
Instance equiv_default_relation `{Equiv A} : DefaultRelation () | 3.
166
167
Hint Extern 0 (_  _) => reflexivity.
Hint Extern 0 (_  _) => symmetry; assumption.
Robbert Krebbers's avatar
Robbert Krebbers committed
168

169
(** ** Operations on collections *)
170
(** We define operational type classes for the traditional operations and
171
relations on collections: the empty collection [∅], the union [(∪)],
172
173
intersection [(∩)], and difference [(∖)], the singleton [{[_]}], the subset
[(⊆)] and element of [(∈)] relation, and disjointess [(⊥)]. *)
Robbert Krebbers's avatar
Robbert Krebbers committed
174
175
176
177
Class Empty A := empty: A.
Notation "∅" := empty : C_scope.

Class Union A := union: A  A  A.
178
Instance: Params (@union) 2.
Robbert Krebbers's avatar
Robbert Krebbers committed
179
180
181
182
183
Infix "∪" := union (at level 50, left associativity) : C_scope.
Notation "(∪)" := union (only parsing) : C_scope.
Notation "( x ∪)" := (union x) (only parsing) : C_scope.
Notation "(∪ x )" := (λ y, union y x) (only parsing) : C_scope.

184
185
186
187
188
Definition union_list `{Empty A}
  `{Union A} : list A  A := fold_right () .
Arguments union_list _ _ _ !_ /.
Notation "⋃ l" := (union_list l) (at level 20, format "⋃  l") : C_scope.

Robbert Krebbers's avatar
Robbert Krebbers committed
189
Class Intersection A := intersection: A  A  A.
190
Instance: Params (@intersection) 2.
Robbert Krebbers's avatar
Robbert Krebbers committed
191
192
193
194
195
196
Infix "∩" := intersection (at level 40) : C_scope.
Notation "(∩)" := intersection (only parsing) : C_scope.
Notation "( x ∩)" := (intersection x) (only parsing) : C_scope.
Notation "(∩ x )" := (λ y, intersection y x) (only parsing) : C_scope.

Class Difference A := difference: A  A  A.
197
Instance: Params (@difference) 2.
Robbert Krebbers's avatar
Robbert Krebbers committed
198
199
200
201
202
Infix "∖" := difference (at level 40) : C_scope.
Notation "(∖)" := difference (only parsing) : C_scope.
Notation "( x ∖)" := (difference x) (only parsing) : C_scope.
Notation "(∖ x )" := (λ y, difference y x) (only parsing) : C_scope.

203
204
205
206
207
208
Class Singleton A B := singleton: A  B.
Instance: Params (@singleton) 3.
Notation "{[ x ]}" := (singleton x) : C_scope.
Notation "{[ x ; y ; .. ; z ]}" :=
  (union .. (union (singleton x) (singleton y)) .. (singleton z)) : C_scope.

Robbert Krebbers's avatar
Robbert Krebbers committed
209
Class SubsetEq A := subseteq: A  A  Prop.
210
Instance: Params (@subseteq) 2.
Robbert Krebbers's avatar
Robbert Krebbers committed
211
212
213
214
215
216
217
218
219
Infix "⊆" := subseteq (at level 70) : C_scope.
Notation "(⊆)" := subseteq (only parsing) : C_scope.
Notation "( X ⊆ )" := (subseteq X) (only parsing) : C_scope.
Notation "( ⊆ X )" := (λ Y, subseteq Y X) (only parsing) : C_scope.
Notation "X ⊈ Y" := (¬X  Y) (at level 70) : C_scope.
Notation "(⊈)" := (λ X Y, X  Y) (only parsing) : C_scope.
Notation "( X ⊈ )" := (λ Y, X  Y) (only parsing) : C_scope.
Notation "( ⊈ X )" := (λ Y, Y  X) (only parsing) : C_scope.

220
221
222
223
224
225
226
227
228
229
230
231
Hint Extern 0 (_  _) => reflexivity.

Class Subset A := subset: A  A  Prop.
Instance: Params (@subset) 2.
Infix "⊂" := subset (at level 70) : C_scope.
Notation "(⊂)" := subset (only parsing) : C_scope.
Notation "( X ⊂ )" := (subset X) (only parsing) : C_scope.
Notation "( ⊂ X )" := (λ Y, subset Y X) (only parsing) : C_scope.
Notation "X ⊄  Y" := (¬X  Y) (at level 70) : C_scope.
Notation "(⊄)" := (λ X Y, X  Y) (only parsing) : C_scope.
Notation "( X ⊄ )" := (λ Y, X  Y) (only parsing) : C_scope.
Notation "( ⊄ X )" := (λ Y, Y  X) (only parsing) : C_scope.
Robbert Krebbers's avatar
Robbert Krebbers committed
232
233

Class ElemOf A B := elem_of: A  B  Prop.
234
Instance: Params (@elem_of) 3.
Robbert Krebbers's avatar
Robbert Krebbers committed
235
236
237
238
239
240
241
242
243
Infix "∈" := elem_of (at level 70) : C_scope.
Notation "(∈)" := elem_of (only parsing) : C_scope.
Notation "( x ∈)" := (elem_of x) (only parsing) : C_scope.
Notation "(∈ X )" := (λ x, elem_of x X) (only parsing) : C_scope.
Notation "x ∉ X" := (¬x  X) (at level 80) : C_scope.
Notation "(∉)" := (λ x X, x  X) (only parsing) : C_scope.
Notation "( x ∉)" := (λ X, x  X) (only parsing) : C_scope.
Notation "(∉ X )" := (λ x, x  X) (only parsing) : C_scope.

Robbert Krebbers's avatar
Robbert Krebbers committed
244
245
246
247
248
249
250
Class Disjoint A := disjoint : A  A  Prop.
Instance: Params (@disjoint) 2.
Infix "⊥" := disjoint (at level 70) : C_scope.
Notation "(⊥)" := disjoint (only parsing) : C_scope.
Notation "( X ⊥)" := (disjoint X) (only parsing) : C_scope.
Notation "(⊥ X )" := (λ Y, disjoint Y X) (only parsing) : C_scope.

251
252
Inductive list_disjoint `{Empty A} `{Union A}
      `{Disjoint A} : list A  Prop :=
253
254
255
  | disjoint_nil :
     list_disjoint []
  | disjoint_cons X Xs :
256
     X   Xs 
257
258
     list_disjoint Xs 
     list_disjoint (X :: Xs).
259
Lemma list_disjoint_cons_inv `{Empty A} `{Union A} `{Disjoint A} X Xs :
260
  list_disjoint (X :: Xs) 
261
  X   Xs  list_disjoint Xs.
262
263
264
265
Proof. inversion_clear 1; auto. Qed.

Class Filter A B :=
  filter:  (P : A  Prop) `{ x, Decision (P x)}, B  B.
266

267
268
(* Arguments filter {_ _ _} _ {_} !_ / : simpl nomatch. *)

269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
(** We define variants of the relations [(≡)] and [(⊆)] that are indexed by
an environment. *)
Class EquivEnv A B := equiv_env : A  relation B.
Notation "X ≡@{ E } Y" := (equiv_env E X Y)
  (at level 70, format "X  ≡@{ E }  Y") : C_scope.
Notation "(≡@{ E } )" := (equiv_env E)
  (E at level 1, only parsing) : C_scope.
Instance: Params (@equiv_env) 4.

Class SubsetEqEnv A B := subseteq_env : A  relation B.
Notation "X ⊆@{ E } Y" := (subseteq_env E X Y)
  (at level 70, format "X  ⊆@{ E }  Y") : C_scope.
Notation "(⊆@{ E } )" := (subseteq_env E)
  (E at level 1, only parsing) : C_scope.
Instance: Params (@subseteq_env) 4.

285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
(** ** Monadic operations *)
(** We define operational type classes for the monadic operations bind, join 
and fmap. These type classes are defined in a non-standard way by taking the
function as a parameter of the class. For example, we define
<<
  Class FMapD := fmap: ∀ {A B}, (A → B) → M A → M B.
>>
instead of
<<
  Class FMap {A B} (f : A → B) := fmap: M A → M B.
>>
This approach allows us to define [fmap] on lists such that [simpl] unfolds it
in the appropriate way, and so that it can be used for mutual recursion
(the mapped function [f] is not part of the fixpoint) as well. This is a hack,
and should be replaced by something more appropriate in future versions. *)

301
(** We use these type classes merely for convenient overloading of notations and
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
do not formalize any theory on monads (we do not even define a class with the
monad laws). *)
Class MRet (M : Type  Type) := mret:  {A}, A  M A.
Instance: Params (@mret) 3.
Arguments mret {_ _ _} _.

Class MBindD (M : Type  Type) {A B} (f : A  M B) := mbind: M A  M B.
Notation MBind M := ( {A B} (f : A  M B), MBindD M f)%type.
Instance: Params (@mbind) 5.
Arguments mbind {_ _ _} _ {_} !_ / : simpl nomatch.

Class MJoin (M : Type  Type) := mjoin:  {A}, M (M A)  M A.
Instance: Params (@mjoin) 3.
Arguments mjoin {_ _ _} !_ / : simpl nomatch.

Class FMapD (M : Type  Type) {A B} (f : A  B) := fmap: M A  M B.
Notation FMap M := ( {A B} (f : A  B), FMapD M f)%type.
Instance: Params (@fmap) 6.
Arguments fmap {_ _ _} _ {_} !_ / : simpl nomatch.

Notation "m ≫= f" := (mbind f m) (at level 60, right associativity) : C_scope.
Notation "( m ≫=)" := (λ f, mbind f m) (only parsing) : C_scope.
Notation "(≫= f )" := (mbind f) (only parsing) : C_scope.
Notation "(≫=)" := (λ m f, mbind f m) (only parsing) : C_scope.

Notation "x ← y ; z" := (y = (λ x : _, z))
  (at level 65, only parsing, next at level 35, right associativity) : C_scope.
329
Infix "<$>" := fmap (at level 60, right associativity) : C_scope.
330
331
332
333
334

Class MGuard (M : Type  Type) :=
  mguard:  P {dec : Decision P} {A}, M A  M A.
Notation "'guard' P ; o" := (mguard P o)
  (at level 65, only parsing, next at level 35, right associativity) : C_scope.
335
Arguments mguard _ _ _ !_ _ !_ / : simpl nomatch.
336

337
(** ** Operations on maps *)
338
339
(** In this section we define operational type classes for the operations
on maps. In the file [fin_maps] we will axiomatize finite maps.
340
The function look up [m !! k] should yield the element at key [k] in [m]. *)
341
342
Class Lookup (K A M : Type) :=
  lookup: K  M  option A.
343
344
345
346
347
348
Instance: Params (@lookup) 4.

Notation "m !! i" := (lookup i m) (at level 20) : C_scope.
Notation "(!!)" := lookup (only parsing) : C_scope.
Notation "( m !!)" := (λ i, lookup i m) (only parsing) : C_scope.
Notation "(!! i )" := (lookup i) (only parsing) : C_scope.
349
Arguments lookup _ _ _ _ !_ !_ / : simpl nomatch.
350
351
352

(** The function insert [<[k:=a]>m] should update the element at key [k] with
value [a] in [m]. *)
353
354
Class Insert (K A M : Type) :=
  insert: K  A  M  M.
355
356
357
Instance: Params (@insert) 4.
Notation "<[ k := a ]>" := (insert k a)
  (at level 5, right associativity, format "<[ k := a ]>") : C_scope.
358
Arguments insert _ _ _ _ !_ _ !_ / : simpl nomatch.
359

360
361
362
(** The function delete [delete k m] should delete the value at key [k] in
[m]. If the key [k] is not a member of [m], the original map should be
returned. *)
363
364
365
366
Class Delete (K M : Type) :=
  delete: K  M  M.
Instance: Params (@delete) 3.
Arguments delete _ _ _ !_ !_ / : simpl nomatch.
367
368

(** The function [alter f k m] should update the value at key [k] using the
369
function [f], which is called with the original value. *)
370
371
372
373
374
Class AlterD (K A M : Type) (f : A  A) :=
  alter: K  M  M.
Notation Alter K A M := ( (f : A  A), AlterD K A M f)%type.
Instance: Params (@alter) 5.
Arguments alter {_ _ _} _ {_} !_ !_ / : simpl nomatch.
375
376

(** The function [alter f k m] should update the value at key [k] using the
377
378
379
function [f], which is called with the original value at key [k] or [None]
if [k] is not a member of [m]. The value at [k] should be deleted if [f] 
yields [None]. *)
380
381
Class PartialAlter (K A M : Type) :=
  partial_alter: (option A  option A)  K  M  M.
382
Instance: Params (@partial_alter) 4.
383
Arguments partial_alter _ _ _ _ _ !_ !_ / : simpl nomatch.
384
385
386

(** The function [dom C m] should yield the domain of [m]. That is a finite
collection of type [C] that contains the keys that are a member of [m]. *)
387
388
389
Class Dom (M C : Type) := dom: M  C.
Instance: Params (@dom) 3.
Arguments dom {_} _ {_} !_ / : simpl nomatch, clear implicits.
390
391

(** The function [merge f m1 m2] should merge the maps [m1] and [m2] by
392
393
394
395
396
constructing a new map whose value at key [k] is [f (m1 !! k) (m2 !! k)].*)
Class Merge (M : Type  Type) :=
  merge:  {A B C}, (option A  option B  option C)  M A  M B  M C.
Instance: Params (@merge) 4.
Arguments merge _ _ _ _ _ _ !_ !_ / : simpl nomatch.
397
398

(** We lift the insert and delete operation to lists of elements. *)
399
Definition insert_list `{Insert K A M} (l : list (K * A)) (m : M) : M :=
400
401
  fold_right (λ p, <[ fst p := snd p ]>) m l.
Instance: Params (@insert_list) 4.
402
Definition delete_list `{Delete K M} (l : list K) (m : M) : M :=
403
  fold_right delete m l.
404
405
406
407
408
409
410
411
412
413
414
415
Instance: Params (@delete_list) 3.

Definition insert_consecutive `{Insert nat A M}
    (i : nat) (l : list A) (m : M) : M :=
  fold_right (λ x f i, <[i:=x]>(f (S i))) (λ _, m) l i.
Instance: Params (@insert_consecutive) 3.

(** The function [union_with f m1 m2] is supposed to yield the union of [m1]
and [m2] using the function [f] to combine values of members that are in
both [m1] and [m2]. *)
Class UnionWith (A M : Type) :=
  union_with: (A  A  option A)  M  M  M.
416
Instance: Params (@union_with) 3.
417
Arguments union_with {_ _ _} _ !_ !_ / : simpl nomatch.
418

419
420
421
(** Similarly for intersection and difference. *)
Class IntersectionWith (A M : Type) :=
  intersection_with: (A  A  option A)  M  M  M.
422
Instance: Params (@intersection_with) 3.
423
424
Arguments intersection_with {_ _ _} _ !_ !_ / : simpl nomatch.

425
426
Class DifferenceWith (A M : Type) :=
  difference_with: (A  A  option A)  M  M  M.
427
Instance: Params (@difference_with) 3.
428
Arguments difference_with {_ _ _} _ !_ !_ / : simpl nomatch.
Robbert Krebbers's avatar
Robbert Krebbers committed
429

430
431
432
433
Definition intersection_with_list `{IntersectionWith A M}
  (f : A  A  option A) : M  list M  M := fold_right (intersection_with f).
Arguments intersection_with_list _ _ _ _ _ !_ /.

434
435
436
437
(** ** Common properties *)
(** These operational type classes allow us to refer to common mathematical
properties in a generic way. For example, for injectivity of [(k ++)] it
allows us to write [injective (k ++)] instead of [app_inv_head k]. *)
438
Class Injective {A B} (R : relation A) S (f : A  B) : Prop :=
439
  injective:  x y : A, S (f x) (f y)  R x y.
440
Class Idempotent {A} (R : relation A) (f : A  A  A) : Prop :=
441
  idempotent:  x, R (f x x) x.
442
Class Commutative {A B} (R : relation A) (f : B  B  A) : Prop :=
443
  commutative:  x y, R (f x y) (f y x).
444
Class LeftId {A} (R : relation A) (i : A) (f : A  A  A) : Prop :=
445
  left_id:  x, R (f i x) x.
446
Class RightId {A} (R : relation A) (i : A) (f : A  A  A) : Prop :=
447
  right_id:  x, R (f x i) x.
448
Class Associative {A} (R : relation A) (f : A  A  A) : Prop :=
449
  associative:  x y z, R (f x (f y z)) (f (f x y) z).
450
Class LeftAbsorb {A} (R : relation A) (i : A) (f : A  A  A) : Prop :=
451
  left_absorb:  x, R (f i x) i.
452
Class RightAbsorb {A} (R : relation A) (i : A) (f : A  A  A) : Prop :=
453
  right_absorb:  x, R (f x i) i.
454
455
456
457
458
Class LeftDistr {A} (R : relation A) (f g : A  A  A) : Prop :=
  left_distr:  x y z, R (f x (g y z)) (g (f x y) (f x z)).
Class RightDistr {A} (R : relation A) (f g : A  A  A) : Prop :=
  right_distr:  y z x, R (f (g y z) x) (g (f y x) (f z x)).
Class AntiSymmetric {A} (R : relation A) : Prop :=
459
  anti_symmetric:  x y, R x y  R y x  x = y.
Robbert Krebbers's avatar
Robbert Krebbers committed
460

461
Arguments irreflexivity {_} _ {_} _ _.
Robbert Krebbers's avatar
Robbert Krebbers committed
462
463
464
465
466
467
Arguments injective {_ _ _ _} _ {_} _ _ _.
Arguments idempotent {_ _} _ {_} _.
Arguments commutative {_ _ _} _ {_} _ _.
Arguments left_id {_ _} _ _ {_} _.
Arguments right_id {_ _} _ _ {_} _.
Arguments associative {_ _} _ {_} _ _ _.
468
469
Arguments left_absorb {_ _} _ _ {_} _.
Arguments right_absorb {_ _} _ _ {_} _.
470
471
Arguments left_distr {_ _} _ _ {_} _ _ _.
Arguments right_distr {_ _} _ _ {_} _ _ _.
472
473
Arguments anti_symmetric {_} _ {_} _ _ _ _.

474
475
476
477
Instance: Commutative () (@eq A).
Proof. red. intuition. Qed.
Instance: Commutative () (λ x y, @eq A y x).
Proof. red. intuition. Qed.
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
Instance: Commutative () ().
Proof. red. intuition. Qed.
Instance: Commutative () ().
Proof. red. intuition. Qed.
Instance: Associative () ().
Proof. red. intuition. Qed.
Instance: Idempotent () ().
Proof. red. intuition. Qed.
Instance: Commutative () ().
Proof. red. intuition. Qed.
Instance: Associative () ().
Proof. red. intuition. Qed.
Instance: Idempotent () ().
Proof. red. intuition. Qed.
Instance: LeftId () True ().
Proof. red. intuition. Qed.
Instance: RightId () True ().
Proof. red. intuition. Qed.
Instance: LeftAbsorb () False ().
Proof. red. intuition. Qed.
Instance: RightAbsorb () False ().
Proof. red. intuition. Qed.
Instance: LeftId () False ().
Proof. red. intuition. Qed.
Instance: RightId () False ().
Proof. red. intuition. Qed.
Instance: LeftAbsorb () True ().
Proof. red. intuition. Qed.
Instance: RightAbsorb () True ().
Proof. red. intuition. Qed.
Instance: LeftId () True impl.
Proof. unfold impl. red. intuition. Qed.
Instance: RightAbsorb () True impl.
Proof. unfold impl. red. intuition. Qed.
512
513
514
515
516
517
518
519
Instance: LeftDistr () () ().
Proof. red. intuition. Qed.
Instance: RightDistr () () ().
Proof. red. intuition. Qed.
Instance: LeftDistr () () ().
Proof. red. intuition. Qed.
Instance: RightDistr () () ().
Proof. red. intuition. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
520

521
522
523
(** The following lemmas are more specific versions of the projections of the
above type classes. These lemmas allow us to enforce Coq not to use the setoid
rewriting mechanism. *)
524
525
Lemma idempotent_eq {A} (f : A  A  A) `{!Idempotent (=) f} x :
  f x x = x.
526
Proof. auto. Qed.
527
528
Lemma commutative_eq {A B} (f : B  B  A) `{!Commutative (=) f} x y :
  f x y = f y x.
529
Proof. auto. Qed.
530
531
Lemma left_id_eq {A} (i : A) (f : A  A  A) `{!LeftId (=) i f} x :
  f i x = x.
532
Proof. auto. Qed.
533
534
Lemma right_id_eq {A} (i : A) (f : A  A  A) `{!RightId (=) i f} x :
  f x i = x.
535
Proof. auto. Qed.
536
537
Lemma associative_eq {A} (f : A  A  A) `{!Associative (=) f} x y z :
  f x (f y z) = f (f x y) z.
538
Proof. auto. Qed.
539
540
541
542
543
544
Lemma left_absorb_eq {A} (i : A) (f : A  A  A) `{!LeftAbsorb (=) i f} x :
  f i x = i.
Proof. auto. Qed.
Lemma right_absorb_eq {A} (i : A) (f : A  A  A) `{!RightAbsorb (=) i f} x :
  f x i = i.
Proof. auto. Qed.
545
546
547
548
549
550
Lemma left_distr_eq {A} (f g : A  A  A) `{!LeftDistr (=) f g} x y z :
  f x (g y z) = g (f x y) (f x z).
Proof. auto. Qed.
Lemma right_distr_eq {A} (f g : A  A  A) `{!RightDistr (=) f g} y z x :
  f (g y z) x = g (f y x) (f z x).
Proof. auto. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
551

552
(** ** Axiomatization of ordered structures *)
553
554
(** A pre-order equipped with a smallest element. *)
Class BoundedPreOrder A `{Empty A} `{SubsetEq A} : Prop := {
Robbert Krebbers's avatar
Robbert Krebbers committed
555
556
557
  bounded_preorder :>> PreOrder ();
  subseteq_empty x :   x
}.
558
Class PartialOrder A `{SubsetEq A} : Prop := {
559
560
561
  po_preorder :>> PreOrder ();
  po_antisym :> AntiSymmetric ()
}.
Robbert Krebbers's avatar
Robbert Krebbers committed
562

563
(** We do not include equality in the following interfaces so as to avoid the
564
need for proofs that the relations and operations respect setoid equality.
565
566
Instead, we will define setoid equality in a generic way as
[λ X Y, X ⊆ Y ∧ Y ⊆ X]. *)
567
Class BoundedJoinSemiLattice A `{Empty A} `{SubsetEq A} `{Union A} : Prop := {
568
  bjsl_preorder :>> BoundedPreOrder A;
569
570
  union_subseteq_l x y : x  x  y;
  union_subseteq_r x y : y  x  y;
Robbert Krebbers's avatar
Robbert Krebbers committed
571
572
  union_least x y z : x  z  y  z  x  y  z
}.
573
Class MeetSemiLattice A `{Empty A} `{SubsetEq A} `{Intersection A} : Prop := {
Robbert Krebbers's avatar
Robbert Krebbers committed
574
  msl_preorder :>> BoundedPreOrder A;
575
576
  intersection_subseteq_l x y : x  y  x;
  intersection_subseteq_r x y : x  y  y;
Robbert Krebbers's avatar
Robbert Krebbers committed
577
578
  intersection_greatest x y z : z  x  z  y  z  x  y
}.
579
580
581
582

(** A join distributive lattice with distributivity stated in the order
theoretic way. We will prove that distributivity of join, and distributivity
as an equality can be derived. *)
583
Class LowerBoundedLattice A `{Empty A} `{SubsetEq A}
584
    `{Union A} `{Intersection A} : Prop := {
585
  lbl_bjsl :>> BoundedJoinSemiLattice A;
586
587
  lbl_msl :>> MeetSemiLattice A;
  lbl_distr x y z : (x  y)  (x  z)  x  (y  z)
588
}.
589

590
(** ** Axiomatization of collections *)
591
592
(** The class [SimpleCollection A C] axiomatizes a collection of type [C] with
elements of type [A]. *)
593
Instance: Params (@map) 3.
594
Class SimpleCollection A C `{ElemOf A C}
595
    `{Empty C} `{Singleton A C} `{Union C} : Prop := {
596
  not_elem_of_empty (x : A) : x  ;
597
  elem_of_singleton (x y : A) : x  {[ y ]}  x = y;
598
599
600
  elem_of_union X Y (x : A) : x  X  Y  x  X  x  Y
}.
Class Collection A C `{ElemOf A C} `{Empty C} `{Singleton A C}
601
    `{Union C} `{Intersection C} `{Difference C} : Prop := {
602
  collection_simple :>> SimpleCollection A C;
Robbert Krebbers's avatar
Robbert Krebbers committed
603
  elem_of_intersection X Y (x : A) : x  X  Y  x  X  x  Y;
604
605
606
607
608
609
610
  elem_of_difference X Y (x : A) : x  X  Y  x  X  x  Y
}.
Class CollectionOps A C
    `{ElemOf A C} `{Empty C} `{Singleton A C}
    `{Union C} `{Intersection C} `{Difference C}
    `{IntersectionWith A C} `{Filter A C} : Prop := {
  collection_ops :>> Collection A C;
611
  elem_of_intersection_with (f : A  A  option A) X Y (x : A) :
612
613
614
    x  intersection_with f X Y   x1 x2, x1  X  x2  Y  f x1 x2 = Some x;
  elem_of_filter X P `{ x, Decision (P x)} x :
    x  filter P X  P x  x  X
Robbert Krebbers's avatar
Robbert Krebbers committed
615
616
}.

617
618
619
(** We axiomative a finite collection as a collection whose elements can be
enumerated as a list. These elements, given by the [elements] function, may be
in any order and should not contain duplicates. *)
Robbert Krebbers's avatar
Robbert Krebbers committed
620
Class Elements A C := elements: C  list A.
621
Instance: Params (@elements) 3.
622
623
624
625
626
627
628
629
630
631
632
633
634
635

(** We redefine the standard library's [In] and [NoDup] using type classes. *)
Inductive elem_of_list {A} : ElemOf A (list A) :=
  | elem_of_list_here (x : A) l : x  x :: l
  | elem_of_list_further (x y : A) l : x  l  x  y :: l.
Existing Instance elem_of_list.

Inductive NoDup {A} : list A  Prop :=
  | NoDup_nil_2 : NoDup []
  | NoDup_cons_2 x l : x  l  NoDup l  NoDup (x :: l).

(** Decidability of equality of the carrier set is admissible, but we add it
anyway so as to avoid cycles in type class search. *)
Class FinCollection A C `{ElemOf A C} `{Empty C} `{Singleton A C}
636
637
    `{Union C} `{Intersection C} `{Difference C}
    `{Elements A C} `{ x y : A, Decision (x = y)} : Prop := {
Robbert Krebbers's avatar
Robbert Krebbers committed
638
  fin_collection :>> Collection A C;
639
  elements_spec X x : x  X  x  elements X;
Robbert Krebbers's avatar
Robbert Krebbers committed
640
  elements_nodup X : NoDup (elements X)
641
642
}.
Class Size C := size: C  nat.
643
Arguments size {_ _} !_ / : simpl nomatch.
644
Instance: Params (@size) 2.
Robbert Krebbers's avatar
Robbert Krebbers committed
645

646
647
648
649
650
651
652
653
654
655
(** The class [Collection M] axiomatizes a type constructor [M] that can be
used to construct a collection [M A] with elements of type [A]. The advantage
of this class, compared to [Collection], is that it also axiomatizes the
the monadic operations. The disadvantage, is that not many inhabits are
possible (we will only provide an inhabitant using unordered lists without
duplicates removed). More interesting implementations typically need
decidability of equality, or a total order on the elements, which do not fit
in a type constructor of type [Type → Type]. *)
Class CollectionMonad M `{ A, ElemOf A (M A)}
    `{ A, Empty (M A)} `{ A, Singleton A (M A)} `{ A, Union (M A)}
656
    `{!MBind M} `{!MRet M} `{!FMap M} `{!MJoin M} : Prop := {
657
658
659
660
661
662
663
664
665
666
667
  collection_monad_simple A :> SimpleCollection A (M A);
  elem_of_bind {A B} (f : A  M B) (X : M A) (x : B) :
    x  X = f   y, x  f y  y  X;
  elem_of_ret {A} (x y : A) :
    x  mret y  x = y;
  elem_of_fmap {A B} (f : A  B) (X : M A) (x : B) :
    x  f <$> X   y, x = f y  y  X;
  elem_of_join {A} (X : M (M A)) (x : A) :
    x  mjoin X   Y, x  Y  Y  X
}.

668
669
670
(** The function [fresh X] yields an element that is not contained in [X]. We
will later prove that [fresh] is [Proper] with respect to the induced setoid
equality on collections. *)
Robbert Krebbers's avatar
Robbert Krebbers committed
671
Class Fresh A C := fresh: C  A.
672
Instance: Params (@fresh) 3.
673
Class FreshSpec A C `{ElemOf A C}
674
    `{Empty C} `{Singleton A C} `{Union C} `{Fresh A C} : Prop := {
675
  fresh_collection_simple :>> SimpleCollection A C;
676
  fresh_proper_alt X Y : ( x, x  X  x  Y)  fresh X = fresh Y;
Robbert Krebbers's avatar
Robbert Krebbers committed
677
678
679
  is_fresh (X : C) : fresh X  X
}.

680
681
682
(** * Miscellaneous *)
Lemma proj1_sig_inj {A} (P : A  Prop) x (Px : P x) y (Py : P y) :
  xPx = yPy  x = y.
683
Proof. injection 1; trivial. Qed.
684
685
686
Lemma not_symmetry `{R : relation A} `{!Symmetric R} (x y : A) :
  ¬R x y  ¬R y x.
Proof. intuition. Qed.
687
688
689
690
Lemma symmetry_iff `(R : relation A) `{!Symmetric R} (x y : A) :
  R x y  R y x.
Proof. intuition. Qed.

691
692
693
(** ** Pointwise relations *)
(** These instances are in Coq trunk since revision 15455, but are not in Coq
8.4 yet. *)
Robbert Krebbers's avatar
Robbert Krebbers committed
694
695
696
697
698
699
700
701
702
703
Instance pointwise_reflexive {A} `{R : relation B} :
  Reflexive R  Reflexive (pointwise_relation A R) | 9.
Proof. firstorder. Qed.
Instance pointwise_symmetric {A} `{R : relation B} :
  Symmetric R  Symmetric (pointwise_relation A R) | 9.
Proof. firstorder. Qed.
Instance pointwise_transitive {A} `{R : relation B} :
  Transitive R  Transitive (pointwise_relation A R) | 9.
Proof. firstorder. Qed.

704
(** ** Products *)
705
706
707
708
Definition fst_map {A A' B} (f : A  A') (p : A * B) : A' * B :=
  (f (fst p), snd p).
Definition snd_map {A B B'} (f : B  B') (p : A * B) : A * B' :=
  (fst p, f (snd p)).
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
Arguments fst_map {_ _ _} _ !_ /.
Arguments snd_map {_ _ _} _ !_ /.

Instance:  {A A' B} (f : A  A'),
  Injective (=) (=) f  Injective (=) (=) (@fst_map A A' B f).
Proof.
  intros ????? [??] [??]; simpl; intro; f_equal.
  * apply (injective f). congruence.
  * congruence.
Qed.
Instance:  {A B B'} (f : B  B'),
  Injective (=) (=) f  Injective (=) (=) (@snd_map A B B' f).
Proof.
  intros ????? [??] [??]; simpl; intro; f_equal.
  * congruence.
  * apply (injective f). congruence.
Qed.

727
728
Definition prod_relation {A B} (R1 : relation A) (R2 : relation B) :
  relation (A * B) := λ x y, R1 (fst x) (fst y)  R2 (snd x) (snd y).
Robbert Krebbers's avatar
Robbert Krebbers committed
729
730
731

Section prod_relation.
  Context `{R1 : relation A} `{R2 : relation B}.
732
733
  Global Instance:
    Reflexive R1  Reflexive R2  Reflexive (prod_relation R1 R2).
Robbert Krebbers's avatar
Robbert Krebbers committed
734
  Proof. firstorder eauto. Qed.
735
736
  Global Instance:
    Symmetric R1  Symmetric R2  Symmetric (prod_relation R1 R2).
Robbert Krebbers's avatar
Robbert Krebbers committed
737
  Proof. firstorder eauto. Qed.
738
739
  Global Instance:
    Transitive R1  Transitive R2  Transitive (prod_relation R1 R2).
Robbert Krebbers's avatar
Robbert Krebbers committed
740
  Proof. firstorder eauto. Qed.
741
742
  Global Instance:
    Equivalence R1  Equivalence R2  Equivalence (prod_relation R1 R2).
Robbert Krebbers's avatar
Robbert Krebbers committed
743
744
745
746
747
748
749
750
751
  Proof. split; apply _. Qed.
  Global Instance: Proper (R1 ==> R2 ==> prod_relation R1 R2) pair.
  Proof. firstorder eauto. Qed.
  Global Instance: Proper (prod_relation R1 R2 ==> R1) fst.
  Proof. firstorder eauto. Qed.
  Global Instance: Proper (prod_relation R1 R2 ==> R2) snd.
  Proof. firstorder eauto. Qed.
End prod_relation.

752
(** ** Other *)
753
Definition proj_relation {A B} (R : relation A)
754
  (f : B  A) : relation B := λ x y, R (f x) (f y).
755
756
757
Definition proj_relation_equivalence {A B} (R : relation A) (f : B  A) :
  Equivalence R  Equivalence (proj_relation R f).
Proof. unfold proj_relation. firstorder auto. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
758
759

Instance:  A B (x : B), Commutative (=) (λ _ _ : A, x).
760
Proof. red. trivial. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
761
Instance:  A (x : A), Associative (=) (λ _ _ : A, x).
762
Proof. red. trivial. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
763
Instance:  A, Associative (=) (λ x _ : A, x).
764
Proof. red. trivial. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
765
Instance:  A, Associative (=) (λ _ x : A, x).
766
Proof. red. trivial. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
767
Instance:  A, Idempotent (=) (λ x _ : A, x).
768
Proof. red. trivial. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
769
Instance:  A, Idempotent (=) (λ _ x : A, x).
770
Proof. red. trivial. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
771

772
773
Instance left_id_propholds {A} (R : relation A) i f :
  LeftId R i f   x, PropHolds (R (f i x) x).
774
Proof. red. trivial. Qed.
775
776
Instance right_id_propholds {A} (R : relation A) i f :
  RightId R i f   x, PropHolds (R (f x i) x).
777
Proof. red. trivial. Qed.
778
779
780
781
782
783
Instance left_absorb_propholds {A} (R : relation A) i f :
  LeftAbsorb R i f   x, PropHolds (R (f i x) i).
Proof. red. trivial. Qed.
Instance right_absorb_propholds {A} (R : relation A) i f :
  RightAbsorb R i f   x, PropHolds (R (f x i) i).
Proof. red. trivial. Qed.
784
785
Instance idem_propholds {A} (R : relation A) f :
  Idempotent R f   x, PropHolds (R (f x x) x).
786
Proof. red. trivial. Qed.