fin_maps.v 61.6 KB
Newer Older
Robbert Krebbers's avatar
Robbert Krebbers committed
1
(* Copyright (c) 2012-2014, Robbert Krebbers. *)
2
3
4
(* This file is distributed under the terms of the BSD license. *)
(** Finite maps associate data to keys. This file defines an interface for
finite maps and collects some theory on it. Most importantly, it proves useful
5
6
induction principles for finite maps and implements the tactic
[simplify_map_equality] to simplify goals involving finite maps. *)
Robbert Krebbers's avatar
Robbert Krebbers committed
7
Require Import Permutation.
8
9
Require Export ars vector orders.

10
11
(** * Axiomatization of finite maps *)
(** We require Leibniz equality to be extensional on finite maps. This of
12
13
14
15
16
course limits the space of finite map implementations, but since we are mainly
interested in finite maps with numbers as indexes, we do not consider this to
be a serious limitation. The main application of finite maps is to implement
the memory, where extensionality of Leibniz equality is very important for a
convenient use in the assertions of our axiomatic semantics. *)
17

Robbert Krebbers's avatar
Robbert Krebbers committed
18
19
(** Finiteness is axiomatized by requiring that each map can be translated
to an association list. The translation to association lists is used to
20
prove well founded recursion on finite maps. *)
21

22
23
24
(** Finite map implementations are required to implement the [merge] function
which enables us to give a generic implementation of [union_with],
[intersection_with], and [difference_with]. *)
25

26
Class FinMapToList K A M := map_to_list: M  list (K * A).
Robbert Krebbers's avatar
Robbert Krebbers committed
27

28
29
30
Class FinMap K M `{FMap M,  A, Lookup K A (M A),  A, Empty (M A),  A,
    PartialAlter K A (M A), OMap M, Merge M,  A, FinMapToList K A (M A),
     i j : K, Decision (i = j)} := {
31
32
  map_eq {A} (m1 m2 : M A) : ( i, m1 !! i = m2 !! i)  m1 = m2;
  lookup_empty {A} i : ( : M A) !! i = None;
33
34
35
36
  lookup_partial_alter {A} f (m : M A) i :
    partial_alter f i m !! i = f (m !! i);
  lookup_partial_alter_ne {A} f (m : M A) i j :
    i  j  partial_alter f i m !! j = m !! j;
37
  lookup_fmap {A B} (f : A  B) (m : M A) i : (f <$> m) !! i = f <$> m !! i;
38
  NoDup_map_to_list {A} (m : M A) : NoDup (map_to_list m);
39
40
  elem_of_map_to_list {A} (m : M A) i x :
    (i,x)  map_to_list m  m !! i = Some x;
41
  lookup_omap {A B} (f : A  option B) m i : omap f m !! i = m !! i = f;
42
43
44
  lookup_merge {A B C} (f : option A  option B  option C)
      `{!PropHolds (f None None = None)} m1 m2 i :
    merge f m1 m2 !! i = f (m1 !! i) (m2 !! i)
Robbert Krebbers's avatar
Robbert Krebbers committed
45
46
}.

47
48
49
(** * Derived operations *)
(** All of the following functions are defined in a generic way for arbitrary
finite map implementations. These generic implementations do not cause a
50
51
significant performance loss to make including them in the finite map interface
worthwhile. *)
52
53
54
55
56
Instance map_insert `{PartialAlter K A M} : Insert K A M :=
  λ i x, partial_alter (λ _, Some x) i.
Instance map_alter `{PartialAlter K A M} : Alter K A M :=
  λ f, partial_alter (fmap f).
Instance map_delete `{PartialAlter K A M} : Delete K M :=
57
  partial_alter (λ _, None).
58
59
Instance map_singleton `{PartialAlter K A M, Empty M} :
  Singleton (K * A) M := λ p, <[p.1:=p.2]> .
Robbert Krebbers's avatar
Robbert Krebbers committed
60

61
Definition map_of_list `{Insert K A M, Empty M} : list (K * A)  M :=
62
  fold_right (λ p, <[p.1:=p.2]>) .
63
64
65
Definition map_of_collection `{Elements K C, Insert K A M, Empty M}
    (f : K  option A) (X : C) : M :=
  map_of_list (omap (λ i, (i,) <$> f i) (elements X)).
Robbert Krebbers's avatar
Robbert Krebbers committed
66

67
68
69
70
71
72
Instance map_union_with `{Merge M} {A} : UnionWith A (M A) :=
  λ f, merge (union_with f).
Instance map_intersection_with `{Merge M} {A} : IntersectionWith A (M A) :=
  λ f, merge (intersection_with f).
Instance map_difference_with `{Merge M} {A} : DifferenceWith A (M A) :=
  λ f, merge (difference_with f).
Robbert Krebbers's avatar
Robbert Krebbers committed
73

74
75
(** The relation [intersection_forall R] on finite maps describes that the
relation [R] holds for each pair in the intersection. *)
76
Definition map_Forall `{Lookup K A M} (P : K  A  Prop) : M  Prop :=
Robbert Krebbers's avatar
Robbert Krebbers committed
77
  λ m,  i x, m !! i = Some x  P i x.
78
79
80
81
82
83
84
85
86
Definition map_Forall2 `{ A, Lookup K A (M A)} {A B}
    (R : A  B  Prop) (P : A  Prop) (Q : B  Prop)
    (m1 : M A) (m2 : M B) : Prop :=  i,
  match m1 !! i, m2 !! i with
  | Some x, Some y => R x y
  | Some x, None => P x
  | None, Some y => Q y
  | None, None => True
  end.
Robbert Krebbers's avatar
Robbert Krebbers committed
87
88
89
90
91
92
93
Definition map_Forall3 `{ A, Lookup K A (M A)} {A B C}
    (R : A  B  C  Prop) (m1 : M A) (m2 : M B) (m3 : M C): Prop :=  i,
  match m1 !! i, m2 !! i, m3 !! i with
  | Some x, Some y, Some z => R x y z
  | None, None, None => True
  | _, _, _ => False
  end.
94

95
96
97
98
Instance map_disjoint `{ A, Lookup K A (M A)} {A} : Disjoint (M A) :=
  map_Forall2 (λ _ _, False) (λ _, True) (λ _, True).
Instance map_subseteq `{ A, Lookup K A (M A)} {A} : SubsetEq (M A) :=
  map_Forall2 (=) (λ _, False) (λ _, True).
Robbert Krebbers's avatar
Robbert Krebbers committed
99
100
101
102
103

(** The union of two finite maps only has a meaningful definition for maps
that are disjoint. However, as working with partial functions is inconvenient
in Coq, we define the union as a total function. In case both finite maps
have a value at the same index, we take the value of the first map. *)
104
Instance map_union `{Merge M} {A} : Union (M A) := union_with (λ x _, Some x).
105
106
107
Instance map_intersection `{Merge M} {A} : Intersection (M A) :=
  intersection_with (λ x _, Some x).

108
109
(** The difference operation removes all values from the first map whose
index contains a value in the second map as well. *)
110
Instance map_difference `{Merge M} {A} : Difference (M A) :=
111
  difference_with (λ _ _, None).
Robbert Krebbers's avatar
Robbert Krebbers committed
112

113
114
115
116
(** * Theorems *)
Section theorems.
Context `{FinMap K M}.

117
118
119
120
121
122
123
124
Lemma map_eq_iff {A} (m1 m2 : M A) : m1 = m2   i, m1 !! i = m2 !! i.
Proof. split. by intros ->. apply map_eq. Qed.
Lemma map_subseteq_spec {A} (m1 m2 : M A) :
  m1  m2   i x, m1 !! i = Some x  m2 !! i = Some x.
Proof.
  unfold subseteq, map_subseteq, map_Forall2. split; intros Hm i;
    specialize (Hm i); destruct (m1 !! i), (m2 !! i); naive_solver.
Qed.
125
Global Instance: BoundedPreOrder (M A).
126
127
128
129
130
131
Proof.
  repeat split.
  * intros m. by rewrite map_subseteq_spec.
  * intros m1 m2 m3. rewrite !map_subseteq_spec. naive_solver.
  * intros m. rewrite !map_subseteq_spec. intros i x. by rewrite lookup_empty.
Qed.
132
Global Instance : PartialOrder (@subseteq (M A) _).
133
Proof.
134
135
  split; [apply _ |]. intros ??. rewrite !map_subseteq_spec.
  intros ??. apply map_eq; intros i. apply option_eq. naive_solver.
136
137
138
Qed.
Lemma lookup_weaken {A} (m1 m2 : M A) i x :
  m1 !! i = Some x  m1  m2  m2 !! i = Some x.
139
Proof. rewrite !map_subseteq_spec. auto. Qed.
140
141
142
143
144
145
Lemma lookup_weaken_is_Some {A} (m1 m2 : M A) i :
  is_Some (m1 !! i)  m1  m2  is_Some (m2 !! i).
Proof. inversion 1. eauto using lookup_weaken. Qed.
Lemma lookup_weaken_None {A} (m1 m2 : M A) i :
  m2 !! i = None  m1  m2  m1 !! i = None.
Proof.
146
147
  rewrite map_subseteq_spec, !eq_None_not_Some.
  intros Hm2 Hm [??]; destruct Hm2; eauto.
148
149
Qed.
Lemma lookup_weaken_inv {A} (m1 m2 : M A) i x y :
150
151
  m1 !! i = Some x  m1  m2  m2 !! i = Some y  x = y.
Proof. intros Hm1 ? Hm2. eapply lookup_weaken in Hm1; eauto. congruence. Qed.
152
153
154
155
156
157
158
159
160
Lemma lookup_ne {A} (m : M A) i j : m !! i  m !! j  i  j.
Proof. congruence. Qed.
Lemma map_empty {A} (m : M A) : ( i, m !! i = None)  m = .
Proof. intros Hm. apply map_eq. intros. by rewrite Hm, lookup_empty. Qed.
Lemma lookup_empty_is_Some {A} i : ¬is_Some (( : M A) !! i).
Proof. rewrite lookup_empty. by inversion 1. Qed.
Lemma lookup_empty_Some {A} i (x : A) : ¬ !! i = Some x.
Proof. by rewrite lookup_empty. Qed.
Lemma map_subset_empty {A} (m : M A) : m  .
161
162
163
Proof.
  intros [_ []]. rewrite map_subseteq_spec. intros ??. by rewrite lookup_empty.
Qed.
164
165

(** ** Properties of the [partial_alter] operation *)
166
167
168
Lemma partial_alter_ext {A} (f g : option A  option A) (m : M A) i :
  ( x, m !! i = x  f x = g x)  partial_alter f i m = partial_alter g i m.
Proof.
169
170
  intros. apply map_eq; intros j. by destruct (decide (i = j)) as [->|?];
    rewrite ?lookup_partial_alter, ?lookup_partial_alter_ne; auto.
171
172
Qed.
Lemma partial_alter_compose {A} f g (m : M A) i:
173
174
  partial_alter (f  g) i m = partial_alter f i (partial_alter g i m).
Proof.
175
176
  intros. apply map_eq. intros ii. by destruct (decide (i = ii)) as [->|?];
    rewrite ?lookup_partial_alter, ?lookup_partial_alter_ne.
177
Qed.
178
Lemma partial_alter_commute {A} f g (m : M A) i j :
179
  i  j  partial_alter f i (partial_alter g j m) =
180
181
    partial_alter g j (partial_alter f i m).
Proof.
182
183
184
185
186
187
188
  intros. apply map_eq; intros jj. destruct (decide (jj = j)) as [->|?].
  { by rewrite lookup_partial_alter_ne,
      !lookup_partial_alter, lookup_partial_alter_ne. }
  destruct (decide (jj = i)) as [->|?].
  * by rewrite lookup_partial_alter,
     !lookup_partial_alter_ne, lookup_partial_alter by congruence.
  * by rewrite !lookup_partial_alter_ne by congruence.
189
190
191
192
Qed.
Lemma partial_alter_self_alt {A} (m : M A) i x :
  x = m !! i  partial_alter (λ _, x) i m = m.
Proof.
193
194
  intros. apply map_eq. intros ii. by destruct (decide (i = ii)) as [->|];
    rewrite ?lookup_partial_alter, ?lookup_partial_alter_ne.
195
Qed.
196
Lemma partial_alter_self {A} (m : M A) i : partial_alter (λ _, m !! i) i m = m.
197
Proof. by apply partial_alter_self_alt. Qed.
198
Lemma partial_alter_subseteq {A} f (m : M A) i :
199
  m !! i = None  m  partial_alter f i m.
200
201
202
203
Proof.
  rewrite map_subseteq_spec. intros Hi j x Hj.
  rewrite lookup_partial_alter_ne; congruence.
Qed.
204
Lemma partial_alter_subset {A} f (m : M A) i :
205
  m !! i = None  is_Some (f (m !! i))  m  partial_alter f i m.
206
Proof.
207
208
209
210
  intros Hi Hfi. split; [by apply partial_alter_subseteq|].
  rewrite !map_subseteq_spec. inversion Hfi as [x Hx]. intros Hm.
  apply (Some_ne_None x). rewrite <-(Hm i x); [done|].
  by rewrite lookup_partial_alter.
211
212
213
Qed.

(** ** Properties of the [alter] operation *)
214
215
Lemma alter_ext {A} (f g : A  A) (m : M A) i :
  ( x, m !! i = Some x  f x = g x)  alter f i m = alter g i m.
216
Proof. intro. apply partial_alter_ext. intros [x|] ?; f_equal'; auto. Qed.
217
Lemma lookup_alter {A} (f : A  A) m i : alter f i m !! i = f <$> m !! i.
218
Proof. unfold alter. apply lookup_partial_alter. Qed.
219
Lemma lookup_alter_ne {A} (f : A  A) m i j : i  j  alter f i m !! j = m !! j.
220
Proof. unfold alter. apply lookup_partial_alter_ne. Qed.
221
222
223
224
225
226
227
228
229
Lemma alter_compose {A} (f g : A  A) (m : M A) i:
  alter (f  g) i m = alter f i (alter g i m).
Proof.
  unfold alter, map_alter. rewrite <-partial_alter_compose.
  apply partial_alter_ext. by intros [?|].
Qed.
Lemma alter_commute {A} (f g : A  A) (m : M A) i j :
  i  j  alter f i (alter g j m) = alter g j (alter f i m).
Proof. apply partial_alter_commute. Qed.
230
231
232
233
Lemma lookup_alter_Some {A} (f : A  A) m i j y :
  alter f i m !! j = Some y 
    (i = j   x, m !! j = Some x  y = f x)  (i  j  m !! j = Some y).
Proof.
234
  destruct (decide (i = j)) as [->|?].
235
236
237
238
239
240
  * rewrite lookup_alter. naive_solver (simplify_option_equality; eauto).
  * rewrite lookup_alter_ne by done. naive_solver.
Qed.
Lemma lookup_alter_None {A} (f : A  A) m i j :
  alter f i m !! j = None  m !! j = None.
Proof.
241
242
  by destruct (decide (i = j)) as [->|?];
    rewrite ?lookup_alter, ?fmap_None, ?lookup_alter_ne.
243
Qed.
244
Lemma alter_None {A} (f : A  A) m i : m !! i = None  alter f i m = m.
245
Proof.
246
247
  intros Hi. apply map_eq. intros j. by destruct (decide (i = j)) as [->|?];
    rewrite ?lookup_alter, ?Hi, ?lookup_alter_ne.
248
249
250
251
252
253
254
255
256
257
258
Qed.

(** ** Properties of the [delete] operation *)
Lemma lookup_delete {A} (m : M A) i : delete i m !! i = None.
Proof. apply lookup_partial_alter. Qed.
Lemma lookup_delete_ne {A} (m : M A) i j : i  j  delete i m !! j = m !! j.
Proof. apply lookup_partial_alter_ne. Qed.
Lemma lookup_delete_Some {A} (m : M A) i j y :
  delete i m !! j = Some y  i  j  m !! j = Some y.
Proof.
  split.
259
  * destruct (decide (i = j)) as [->|?];
260
261
262
263
264
265
      rewrite ?lookup_delete, ?lookup_delete_ne; intuition congruence.
  * intros [??]. by rewrite lookup_delete_ne.
Qed.
Lemma lookup_delete_None {A} (m : M A) i j :
  delete i m !! j = None  i = j  m !! j = None.
Proof.
266
267
  destruct (decide (i = j)) as [->|?];
    rewrite ?lookup_delete, ?lookup_delete_ne; tauto.
268
269
270
Qed.
Lemma delete_empty {A} i : delete i ( : M A) = .
Proof. rewrite <-(partial_alter_self ) at 2. by rewrite lookup_empty. Qed.
271
Lemma delete_singleton {A} i (x : A) : delete i {[i, x]} = .
272
273
274
275
276
277
278
Proof. setoid_rewrite <-partial_alter_compose. apply delete_empty. Qed.
Lemma delete_commute {A} (m : M A) i j :
  delete i (delete j m) = delete j (delete i m).
Proof. destruct (decide (i = j)). by subst. by apply partial_alter_commute. Qed.
Lemma delete_insert_ne {A} (m : M A) i j x :
  i  j  delete i (<[j:=x]>m) = <[j:=x]>(delete i m).
Proof. intro. by apply partial_alter_commute. Qed.
279
Lemma delete_notin {A} (m : M A) i : m !! i = None  delete i m = m.
280
Proof.
281
282
  intros. apply map_eq. intros j. by destruct (decide (i = j)) as [->|?];
    rewrite ?lookup_delete, ?lookup_delete_ne.
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
Qed.
Lemma delete_partial_alter {A} (m : M A) i f :
  m !! i = None  delete i (partial_alter f i m) = m.
Proof.
  intros. unfold delete, map_delete. rewrite <-partial_alter_compose.
  unfold compose. by apply partial_alter_self_alt.
Qed.
Lemma delete_insert {A} (m : M A) i x :
  m !! i = None  delete i (<[i:=x]>m) = m.
Proof. apply delete_partial_alter. Qed.
Lemma insert_delete {A} (m : M A) i x :
  m !! i = Some x  <[i:=x]>(delete i m) = m.
Proof.
  intros Hmi. unfold delete, map_delete, insert, map_insert.
  rewrite <-partial_alter_compose. unfold compose. rewrite <-Hmi.
  by apply partial_alter_self_alt.
Qed.
300
Lemma delete_subseteq {A} (m : M A) i : delete i m  m.
301
302
303
Proof.
  rewrite !map_subseteq_spec. intros j x. rewrite lookup_delete_Some. tauto.
Qed.
304
Lemma delete_subseteq_compat {A} (m1 m2 : M A) i :
305
  m1  m2  delete i m1  delete i m2.
306
307
308
309
Proof.
  rewrite !map_subseteq_spec. intros ? j x.
  rewrite !lookup_delete_Some. intuition eauto.
Qed.
310
Lemma delete_subset_alt {A} (m : M A) i x : m !! i = Some x  delete i m  m.
311
Proof.
312
313
314
  split; [apply delete_subseteq|].
  rewrite !map_subseteq_spec. intros Hi. apply (None_ne_Some x).
  by rewrite <-(lookup_delete m i), (Hi i x).
315
Qed.
316
Lemma delete_subset {A} (m : M A) i : is_Some (m !! i)  delete i m  m.
317
318
319
320
321
Proof. inversion 1. eauto using delete_subset_alt. Qed.

(** ** Properties of the [insert] operation *)
Lemma lookup_insert {A} (m : M A) i x : <[i:=x]>m !! i = Some x.
Proof. unfold insert. apply lookup_partial_alter. Qed.
322
Lemma lookup_insert_rev {A}  (m : M A) i x y : <[i:=x]>m !! i = Some y  x = y.
323
Proof. rewrite lookup_insert. congruence. Qed.
324
Lemma lookup_insert_ne {A} (m : M A) i j x : i  j  <[i:=x]>m !! j = m !! j.
325
326
327
328
329
330
331
332
Proof. unfold insert. apply lookup_partial_alter_ne. Qed.
Lemma insert_commute {A} (m : M A) i j x y :
  i  j  <[i:=x]>(<[j:=y]>m) = <[j:=y]>(<[i:=x]>m).
Proof. apply partial_alter_commute. Qed.
Lemma lookup_insert_Some {A} (m : M A) i j x y :
  <[i:=x]>m !! j = Some y  (i = j  x = y)  (i  j  m !! j = Some y).
Proof.
  split.
333
  * destruct (decide (i = j)) as [->|?];
334
      rewrite ?lookup_insert, ?lookup_insert_ne; intuition congruence.
335
  * intros [[-> ->]|[??]]; [apply lookup_insert|]. by rewrite lookup_insert_ne.
336
337
338
339
Qed.
Lemma lookup_insert_None {A} (m : M A) i j x :
  <[i:=x]>m !! j = None  m !! j = None  i  j.
Proof.
340
341
342
  split; [|by intros [??]; rewrite lookup_insert_ne].
  destruct (decide (i = j)) as [->|];
    rewrite ?lookup_insert, ?lookup_insert_ne; intuition congruence.
343
Qed.
344
Lemma insert_subseteq {A} (m : M A) i x : m !! i = None  m  <[i:=x]>m.
345
Proof. apply partial_alter_subseteq. Qed.
346
Lemma insert_subset {A} (m : M A) i x : m !! i = None  m  <[i:=x]>m.
347
348
Proof. intro. apply partial_alter_subset; eauto. Qed.
Lemma insert_subseteq_r {A} (m1 m2 : M A) i x :
349
  m1 !! i = None  m1  m2  m1  <[i:=x]>m2.
350
Proof.
351
352
353
  rewrite !map_subseteq_spec. intros ?? j ?.
  destruct (decide (j = i)) as [->|?]; [congruence|].
  rewrite lookup_insert_ne; auto.
354
355
Qed.
Lemma insert_delete_subseteq {A} (m1 m2 : M A) i x :
356
  m1 !! i = None  <[i:=x]> m1  m2  m1  delete i m2.
357
Proof.
358
359
360
361
  rewrite !map_subseteq_spec. intros Hi Hix j y Hj.
  destruct (decide (i = j)) as [->|]; [congruence|].
  rewrite lookup_delete_ne by done.
  apply Hix; by rewrite lookup_insert_ne by done.
362
363
Qed.
Lemma delete_insert_subseteq {A} (m1 m2 : M A) i x :
364
  m1 !! i = Some x  delete i m1  m2  m1  <[i:=x]> m2.
365
Proof.
366
367
  rewrite !map_subseteq_spec.
  intros Hix Hi j y Hj. destruct (decide (i = j)) as [->|?].
368
  * rewrite lookup_insert. congruence.
369
  * rewrite lookup_insert_ne by done. apply Hi. by rewrite lookup_delete_ne.
370
371
Qed.
Lemma insert_delete_subset {A} (m1 m2 : M A) i x :
372
  m1 !! i = None  <[i:=x]> m1  m2  m1  delete i m2.
373
Proof.
374
375
376
  intros ? [Hm12 Hm21]; split; [eauto using insert_delete_subseteq|].
  contradict Hm21. apply delete_insert_subseteq; auto.
  eapply lookup_weaken, Hm12. by rewrite lookup_insert.
377
378
Qed.
Lemma insert_subset_inv {A} (m1 m2 : M A) i x :
379
  m1 !! i = None  <[i:=x]> m1  m2 
380
381
382
   m2', m2 = <[i:=x]>m2'  m1  m2'  m2' !! i = None.
Proof.
  intros Hi Hm1m2. exists (delete i m2). split_ands.
383
  * rewrite insert_delete. done. eapply lookup_weaken, strict_include; eauto.
384
385
386
387
    by rewrite lookup_insert.
  * eauto using insert_delete_subset.
  * by rewrite lookup_delete.
Qed.
388
389
390
391
392
393
394
Lemma fmap_insert {A B} (f : A  B) (m : M A) i x :
  f <$> <[i:=x]>m = <[i:=f x]>(f <$> m).
Proof.
  apply map_eq; intros i'; destruct (decide (i' = i)) as [->|].
  * by rewrite lookup_fmap, !lookup_insert.
  * by rewrite lookup_fmap, !lookup_insert_ne, lookup_fmap by done.
Qed.
395
396
397

(** ** Properties of the singleton maps *)
Lemma lookup_singleton_Some {A} i j (x y : A) :
398
  {[i, x]} !! j = Some y  i = j  x = y.
399
400
Proof.
  unfold singleton, map_singleton.
401
  rewrite lookup_insert_Some, lookup_empty. simpl. intuition congruence.
402
Qed.
403
Lemma lookup_singleton_None {A} i j (x : A) : {[i, x]} !! j = None  i  j.
404
405
406
407
Proof.
  unfold singleton, map_singleton.
  rewrite lookup_insert_None, lookup_empty. simpl. tauto.
Qed.
408
Lemma lookup_singleton {A} i (x : A) : {[i, x]} !! i = Some x.
409
Proof. by rewrite lookup_singleton_Some. Qed.
410
Lemma lookup_singleton_ne {A} i j (x : A) : i  j  {[i, x]} !! j = None.
411
Proof. by rewrite lookup_singleton_None. Qed.
412
Lemma map_non_empty_singleton {A} i (x : A) : {[i,x]}  .
413
414
415
416
Proof.
  intros Hix. apply (f_equal (!! i)) in Hix.
  by rewrite lookup_empty, lookup_singleton in Hix.
Qed.
417
Lemma insert_singleton {A} i (x y : A) : <[i:=y]>{[i, x]} = {[i, y]}.
418
419
420
421
Proof.
  unfold singleton, map_singleton, insert, map_insert.
  by rewrite <-partial_alter_compose.
Qed.
422
Lemma alter_singleton {A} (f : A  A) i x : alter f i {[i,x]} = {[i, f x]}.
423
Proof.
424
  intros. apply map_eq. intros i'. destruct (decide (i = i')) as [->|?].
425
426
427
428
  * by rewrite lookup_alter, !lookup_singleton.
  * by rewrite lookup_alter_ne, !lookup_singleton_ne.
Qed.
Lemma alter_singleton_ne {A} (f : A  A) i j x :
429
  i  j  alter f i {[j,x]} = {[j,x]}.
430
Proof.
431
432
  intros. apply map_eq; intros i'. by destruct (decide (i = i')) as [->|?];
    rewrite ?lookup_alter, ?lookup_singleton_ne, ?lookup_alter_ne by done.
433
434
Qed.

435
436
437
438
439
440
(** ** Properties of the map operations *)
Lemma fmap_empty {A B} (f : A  B) : f <$>  = .
Proof. apply map_empty; intros i. by rewrite lookup_fmap, lookup_empty. Qed.
Lemma omap_empty {A B} (f : A  option B) : omap f  = .
Proof. apply map_empty; intros i. by rewrite lookup_omap, lookup_empty. Qed.

441
442
(** ** Properties of conversion to lists *)
Lemma map_to_list_unique {A} (m : M A) i x y :
443
  (i,x)  map_to_list m  (i,y)  map_to_list m  x = y.
444
Proof. rewrite !elem_of_map_to_list. congruence. Qed.
445
446
Lemma NoDup_fst_map_to_list {A} (m : M A) : NoDup (fst <$> map_to_list m).
Proof. eauto using NoDup_fmap_fst, map_to_list_unique, NoDup_map_to_list. Qed.
447
Lemma elem_of_map_of_list_1 {A} (l : list (K * A)) i x :
448
  NoDup (fst <$> l)  (i,x)  l  map_of_list l !! i = Some x.
449
Proof.
450
  induction l as [|[j y] l IH]; csimpl; [by rewrite elem_of_nil|].
451
  rewrite NoDup_cons, elem_of_cons, elem_of_list_fmap.
452
453
454
  intros [Hl ?] [?|?]; simplify_equality; [by rewrite lookup_insert|].
  destruct (decide (i = j)) as [->|]; [|rewrite lookup_insert_ne; auto].
  destruct Hl. by exists (j,x).
455
456
Qed.
Lemma elem_of_map_of_list_2 {A} (l : list (K * A)) i x :
457
  map_of_list l !! i = Some x  (i,x)  l.
458
Proof.
459
460
461
  induction l as [|[j y] l IH]; simpl; [by rewrite lookup_empty|].
  rewrite elem_of_cons. destruct (decide (i = j)) as [->|];
    rewrite ?lookup_insert, ?lookup_insert_ne; intuition congruence.
462
463
Qed.
Lemma elem_of_map_of_list {A} (l : list (K * A)) i x :
464
465
  NoDup (fst <$> l)  (i,x)  l  map_of_list l !! i = Some x.
Proof. split; auto using elem_of_map_of_list_1, elem_of_map_of_list_2. Qed.
466
Lemma not_elem_of_map_of_list_1 {A} (l : list (K * A)) i :
467
  i  fst <$> l  map_of_list l !! i = None.
468
Proof.
469
470
  rewrite elem_of_list_fmap, eq_None_not_Some. intros Hi [x ?]; destruct Hi.
  exists (i,x); simpl; auto using elem_of_map_of_list_2.
471
472
Qed.
Lemma not_elem_of_map_of_list_2 {A} (l : list (K * A)) i :
473
  map_of_list l !! i = None  i  fst <$> l.
474
Proof.
475
  induction l as [|[j y] l IH]; csimpl; [rewrite elem_of_nil; tauto|].
476
477
478
479
480
481
  rewrite elem_of_cons. destruct (decide (i = j)); simplify_equality.
  * by rewrite lookup_insert.
  * by rewrite lookup_insert_ne; intuition.
Qed.
Lemma not_elem_of_map_of_list {A} (l : list (K * A)) i :
  i  fst <$> l  map_of_list l !! i = None.
482
Proof. red; auto using not_elem_of_map_of_list_1,not_elem_of_map_of_list_2. Qed.
483
Lemma map_of_list_proper {A} (l1 l2 : list (K * A)) :
484
  NoDup (fst <$> l1)  l1  l2  map_of_list l1 = map_of_list l2.
485
486
487
488
489
Proof.
  intros ? Hperm. apply map_eq. intros i. apply option_eq. intros x.
  by rewrite <-!elem_of_map_of_list; rewrite <-?Hperm.
Qed.
Lemma map_of_list_inj {A} (l1 l2 : list (K * A)) :
490
491
  NoDup (fst <$> l1)  NoDup (fst <$> l2) 
  map_of_list l1 = map_of_list l2  l1  l2.
492
Proof.
493
  intros ?? Hl1l2. apply NoDup_Permutation; auto using (NoDup_fmap_1 fst).
494
495
  intros [i x]. by rewrite !elem_of_map_of_list, Hl1l2.
Qed.
496
Lemma map_of_to_list {A} (m : M A) : map_of_list (map_to_list m) = m.
497
498
499
Proof.
  apply map_eq. intros i. apply option_eq. intros x.
  by rewrite <-elem_of_map_of_list, elem_of_map_to_list
500
    by auto using NoDup_fst_map_to_list.
501
502
Qed.
Lemma map_to_of_list {A} (l : list (K * A)) :
503
  NoDup (fst <$> l)  map_to_list (map_of_list l)  l.
504
Proof. auto using map_of_list_inj, NoDup_fst_map_to_list, map_of_to_list. Qed.
505
Lemma map_to_list_inj {A} (m1 m2 : M A) :
506
  map_to_list m1  map_to_list m2  m1 = m2.
507
Proof.
508
  intros. rewrite <-(map_of_to_list m1), <-(map_of_to_list m2).
509
  auto using map_of_list_proper, NoDup_fst_map_to_list.
510
Qed.
511
Lemma map_to_list_empty {A} : map_to_list  = @nil (K * A).
512
513
514
515
516
Proof.
  apply elem_of_nil_inv. intros [i x].
  rewrite elem_of_map_to_list. apply lookup_empty_Some.
Qed.
Lemma map_to_list_insert {A} (m : M A) i x :
517
  m !! i = None  map_to_list (<[i:=x]>m)  (i,x) :: map_to_list m.
518
Proof.
519
  intros. apply map_of_list_inj; csimpl.
520
521
  * apply NoDup_fst_map_to_list.
  * constructor; auto using NoDup_fst_map_to_list.
522
    rewrite elem_of_list_fmap. intros [[??] [? Hlookup]]; subst; simpl in *.
523
524
525
    rewrite elem_of_map_to_list in Hlookup. congruence.
  * by rewrite !map_of_to_list.
Qed.
526
Lemma map_of_list_nil {A} : map_of_list (@nil (K * A)) = .
527
528
529
530
Proof. done. Qed.
Lemma map_of_list_cons {A} (l : list (K * A)) i x :
  map_of_list ((i, x) :: l) = <[i:=x]>(map_of_list l).
Proof. done. Qed.
531
Lemma map_to_list_empty_inv_alt {A}  (m : M A) : map_to_list m  []  m = .
532
Proof. rewrite <-map_to_list_empty. apply map_to_list_inj. Qed.
533
Lemma map_to_list_empty_inv {A} (m : M A) : map_to_list m = []  m = .
534
535
Proof. intros Hm. apply map_to_list_empty_inv_alt. by rewrite Hm. Qed.
Lemma map_to_list_insert_inv {A} (m : M A) l i x :
536
  map_to_list m  (i,x) :: l  m = <[i:=x]>(map_of_list l).
537
538
539
Proof.
  intros Hperm. apply map_to_list_inj.
  assert (NoDup (fst <$> (i, x) :: l)) as Hnodup.
540
  { rewrite <-Hperm. auto using NoDup_fst_map_to_list. }
541
  csimpl in *. rewrite NoDup_cons in Hnodup. destruct Hnodup.
542
543
544
  rewrite Hperm, map_to_list_insert, map_to_of_list;
    auto using not_elem_of_map_of_list_1.
Qed.
545
546
547
548
549
550
Lemma map_choose {A} (m : M A) : m     i x, m !! i = Some x.
Proof.
  intros Hemp. destruct (map_to_list m) as [|[i x] l] eqn:Hm.
  { destruct Hemp; eauto using map_to_list_empty_inv. }
  exists i x. rewrite <-elem_of_map_to_list, Hm. by left.
Qed.
551

552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
(** ** Properties of conversion from collections *)
Lemma lookup_map_of_collection {A} `{FinCollection K C}
    (f : K  option A) X i x :
  map_of_collection f X !! i = Some x  i  X  f i = Some x.
Proof.
  assert (NoDup (fst <$> omap (λ i, (i,) <$> f i) (elements X))).
  { induction (NoDup_elements X) as [|i' l]; csimpl; [constructor|].
    destruct (f i') as [x'|]; csimpl; auto; constructor; auto.
    rewrite elem_of_list_fmap. setoid_rewrite elem_of_list_omap.
    by intros (?&?&?&?&?); simplify_option_equality. }
  unfold map_of_collection; rewrite <-elem_of_map_of_list by done.
  rewrite elem_of_list_omap. setoid_rewrite elem_of_elements; split.
  * intros (?&?&?); simplify_option_equality; eauto.
  * intros [??]; exists i; simplify_option_equality; eauto.
Qed.

(** ** Induction principles *)
569
Lemma map_ind {A} (P : M A  Prop) :
570
  P   ( i x m, m !! i = None  P m  P (<[i:=x]>m))   m, P m.
571
Proof.
572
  intros ? Hins. cut ( l, NoDup (fst <$> l)   m, map_to_list m  l  P m).
573
  { intros help m.
574
    apply (help (map_to_list m)); auto using NoDup_fst_map_to_list. }
575
576
577
  induction l as [|[i x] l IH]; intros Hnodup m Hml.
  { apply map_to_list_empty_inv_alt in Hml. by subst. }
  inversion_clear Hnodup.
578
  apply map_to_list_insert_inv in Hml; subst m. apply Hins.
579
580
581
582
  * by apply not_elem_of_map_of_list_1.
  * apply IH; auto using map_to_of_list.
Qed.
Lemma map_to_list_length {A} (m1 m2 : M A) :
583
  m1  m2  length (map_to_list m1) < length (map_to_list m2).
584
585
586
587
Proof.
  revert m2. induction m1 as [|i x m ? IH] using map_ind.
  { intros m2 Hm2. rewrite map_to_list_empty. simpl.
    apply neq_0_lt. intros Hlen. symmetry in Hlen.
588
    apply nil_length_inv, map_to_list_empty_inv in Hlen.
589
590
591
592
593
    rewrite Hlen in Hm2. destruct (irreflexivity ()  Hm2). }
  intros m2 Hm2.
  destruct (insert_subset_inv m m2 i x) as (m2'&?&?&?); auto; subst.
  rewrite !map_to_list_insert; simpl; auto with arith.
Qed.
594
Lemma map_wf {A} : wf (strict (@subseteq (M A) _)).
595
596
597
598
599
600
Proof.
  apply (wf_projected (<) (length  map_to_list)).
  * by apply map_to_list_length.
  * by apply lt_wf.
Qed.

601
(** ** Properties of the [map_Forall] predicate *)
602
Section map_Forall.
603
604
Context {A} (P : K  A  Prop).

605
Lemma map_Forall_to_list m : map_Forall P m  Forall (curry P) (map_to_list m).
606
607
Proof.
  rewrite Forall_forall. split.
608
609
  * intros Hforall [i x]. rewrite elem_of_map_to_list. by apply (Hforall i x).
  * intros Hforall i x. rewrite <-elem_of_map_to_list. by apply (Hforall (i,x)).
610
611
612
Qed.

Context `{ i x, Decision (P i x)}.
613
Global Instance map_Forall_dec m : Decision (map_Forall P m).
614
615
Proof.
  refine (cast_if (decide (Forall (curry P) (map_to_list m))));
616
    by rewrite map_Forall_to_list.
617
Defined.
618
619
Lemma map_not_Forall (m : M A) :
  ¬map_Forall P m   i x, m !! i = Some x  ¬P i x.
620
621
Proof.
  split.
622
  * rewrite map_Forall_to_list. intros Hm.
623
624
625
626
    apply (not_Forall_Exists _), Exists_exists in Hm.
    destruct Hm as ([i x]&?&?). exists i x. by rewrite <-elem_of_map_to_list.
  * intros (i&x&?&?) Hm. specialize (Hm i x). tauto.
Qed.
627
End map_Forall.
628
629
630
631
632
633

(** ** Properties of the [merge] operation *)
Lemma merge_Some {A B C} (f : option A  option B  option C)
    `{!PropHolds (f None None = None)} m1 m2 m :
  ( i, m !! i = f (m1 !! i) (m2 !! i))  merge f m1 m2 = m.
Proof.
634
635
  split; [|intros <-; apply (lookup_merge _) ].
  intros Hlookup. apply map_eq; intros. rewrite Hlookup. apply (lookup_merge _).
636
637
638
639
640
641
642
643
Qed.

Section merge.
Context {A} (f : option A  option A  option A).

Global Instance: LeftId (=) None f  LeftId (=)  (merge f).
Proof.
  intros ??. apply map_eq. intros.
644
  by rewrite !(lookup_merge f), lookup_empty, (left_id_L None f).
645
646
647
648
Qed.
Global Instance: RightId (=) None f  RightId (=)  (merge f).
Proof.
  intros ??. apply map_eq. intros.
649
  by rewrite !(lookup_merge f), lookup_empty, (right_id_L None f).
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
Qed.

Context `{!PropHolds (f None None = None)}.

Lemma merge_commutative m1 m2 :
  ( i, f (m1 !! i) (m2 !! i) = f (m2 !! i) (m1 !! i)) 
  merge f m1 m2 = merge f m2 m1.
Proof. intros. apply map_eq. intros. by rewrite !(lookup_merge f). Qed.
Global Instance: Commutative (=) f  Commutative (=) (merge f).
Proof.
  intros ???. apply merge_commutative. intros. by apply (commutative f).
Qed.
Lemma merge_associative m1 m2 m3 :
  ( i, f (m1 !! i) (f (m2 !! i) (m3 !! i)) =
        f (f (m1 !! i) (m2 !! i)) (m3 !! i)) 
  merge f m1 (merge f m2 m3) = merge f (merge f m1 m2) m3.
Proof. intros. apply map_eq. intros. by rewrite !(lookup_merge f). Qed.
Global Instance: Associative (=) f  Associative (=) (merge f).
Proof.
669
  intros ????. apply merge_associative. intros. by apply (associative_L f).
670
671
Qed.
Lemma merge_idempotent m1 :
672
  ( i, f (m1 !! i) (m1 !! i) = m1 !! i)  merge f m1 m1 = m1.
673
674
Proof. intros. apply map_eq. intros. by rewrite !(lookup_merge f). Qed.
Global Instance: Idempotent (=) f  Idempotent (=) (merge f).
675
Proof. intros ??. apply merge_idempotent. intros. by apply (idempotent f). Qed.
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718

Lemma partial_alter_merge (g g1 g2 : option A  option A) m1 m2 i :
  g (f (m1 !! i) (m2 !! i)) = f (g1 (m1 !! i)) (g2 (m2 !! i)) 
  partial_alter g i (merge f m1 m2) =
    merge f (partial_alter g1 i m1) (partial_alter g2 i m2).
Proof.
  intro. apply map_eq. intros j. destruct (decide (i = j)); subst.
  * by rewrite (lookup_merge _), !lookup_partial_alter, !(lookup_merge _).
  * by rewrite (lookup_merge _), !lookup_partial_alter_ne, (lookup_merge _).
Qed.
Lemma partial_alter_merge_l (g g1 : option A  option A) m1 m2 i :
  g (f (m1 !! i) (m2 !! i)) = f (g1 (m1 !! i)) (m2 !! i) 
  partial_alter g i (merge f m1 m2) = merge f (partial_alter g1 i m1) m2.
Proof.
  intro. apply map_eq. intros j. destruct (decide (i = j)); subst.
  * by rewrite (lookup_merge _), !lookup_partial_alter, !(lookup_merge _).
  * by rewrite (lookup_merge _), !lookup_partial_alter_ne, (lookup_merge _).
Qed.
Lemma partial_alter_merge_r (g g2 : option A  option A) m1 m2 i :
  g (f (m1 !! i) (m2 !! i)) = f (m1 !! i) (g2 (m2 !! i)) 
  partial_alter g i (merge f m1 m2) = merge f m1 (partial_alter g2 i m2).
Proof.
  intro. apply map_eq. intros j. destruct (decide (i = j)); subst.
  * by rewrite (lookup_merge _), !lookup_partial_alter, !(lookup_merge _).
  * by rewrite (lookup_merge _), !lookup_partial_alter_ne, (lookup_merge _).
Qed.

Lemma insert_merge_l m1 m2 i x :
  f (Some x) (m2 !! i) = Some x 
  <[i:=x]>(merge f m1 m2) = merge f (<[i:=x]>m1) m2.
Proof.
  intros. unfold insert, map_insert, alter, map_alter.
  by apply partial_alter_merge_l.
Qed.
Lemma insert_merge_r m1 m2 i x :
  f (m1 !! i) (Some x) = Some x 
  <[i:=x]>(merge f m1 m2) = merge f m1 (<[i:=x]>m2).
Proof.
  intros. unfold insert, map_insert, alter, map_alter.
  by apply partial_alter_merge_r.
Qed.
End merge.

719
720
721
722
723
724
725
726
727
728
729
730
731
732
(** ** Properties on the [map_Forall2] relation *)
Section Forall2.
Context {A B} (R : A  B  Prop) (P : A  Prop) (Q : B  Prop).
Context `{ x y, Decision (R x y),  x, Decision (P x),  y, Decision (Q y)}.

Let f (mx : option A) (my : option B) : option bool :=
  match mx, my with
  | Some x, Some y => Some (bool_decide (R x y))
  | Some x, None => Some (bool_decide (P x))
  | None, Some y => Some (bool_decide (Q y))
  | None, None => None
  end.
Lemma map_Forall2_alt (m1 : M A) (m2 : M B) :
  map_Forall2 R P Q m1 m2  map_Forall (λ _ P, Is_true P) (merge f m1 m2).
733
734
Proof.
  split.
735
736
  * intros Hm i P'; rewrite lookup_merge by done; intros.
    specialize (Hm i). destruct (m1 !! i), (m2 !! i);
737
      simplify_equality'; auto using bool_decide_pack.
738
739
740
741
742
743
744
745
746
747
  * intros Hm i. specialize (Hm i). rewrite lookup_merge in Hm by done.
    destruct (m1 !! i), (m2 !! i); simplify_equality'; auto;
      by eapply bool_decide_unpack, Hm.
Qed.
Global Instance map_Forall2_dec `{ x y, Decision (R x y),  x, Decision (P x),
   y, Decision (Q y)} m1 m2 : Decision (map_Forall2 R P Q m1 m2).
Proof.
  refine (cast_if (decide (map_Forall (λ _ P, Is_true P) (merge f m1 m2))));
    abstract by rewrite map_Forall2_alt.
Defined.
748
749
(** Due to the finiteness of finite maps, we can extract a witness if the
relation does not hold. *)
750
751
752
753
754
Lemma map_not_Forall2 (m1 : M A) (m2 : M B) :
  ¬map_Forall2 R P Q m1 m2   i,
    ( x y, m1 !! i = Some x  m2 !! i = Some y  ¬R x y)
     ( x, m1 !! i = Some x  m2 !! i = None  ¬P x)
     ( y, m1 !! i = None  m2 !! i = Some y  ¬Q y).
755
756
Proof.
  split.
757
758
759
760
761
  * rewrite map_Forall2_alt, (map_not_Forall _). intros (i&?&Hm&?); exists i.
    rewrite lookup_merge in Hm by done.
    destruct (m1 !! i), (m2 !! i); naive_solver auto 2 using bool_decide_pack.
  * by intros [i[(x&y&?&?&?)|[(x&?&?&?)|(y&?&?&?)]]] Hm;
      specialize (Hm i); simplify_option_equality.
762
Qed.
763
End Forall2.
764
765

(** ** Properties on the disjoint maps *)
766
767
768
769
770
771
Lemma map_disjoint_spec {A} (m1 m2 : M A) :
  m1  m2   i x y, m1 !! i = Some x  m2 !! i = Some y  False.
Proof.
  split; intros Hm i; specialize (Hm i);
    destruct (m1 !! i), (m2 !! i); naive_solver.
Qed.
772
773
774
775
776
777
778
779
780
Lemma map_disjoint_alt {A} (m1 m2 : M A) :
  m1  m2   i, m1 !! i = None  m2 !! i = None.
Proof.
  split; intros Hm1m2 i; specialize (Hm1m2 i);
    destruct (m1 !! i), (m2 !! i); naive_solver.
Qed.
Lemma map_not_disjoint {A} (m1 m2 : M A) :
  ¬m1  m2   i x1 x2, m1 !! i = Some x1  m2 !! i = Some x2.
Proof.
781
782
  unfold disjoint, map_disjoint. rewrite map_not_Forall2 by solve_decision.
  split; [|naive_solver].
783
  intros [i[(x&y&?&?&?)|[(x&?&?&[])|(y&?&?&[])]]]; naive_solver.
784
785
Qed.
Global Instance: Symmetric (@disjoint (M A) _).
786
Proof. intros A m1 m2. rewrite !map_disjoint_spec. naive_solver. Qed.
787
Lemma map_disjoint_empty_l {A} (m : M A) :   m.
788
Proof. rewrite !map_disjoint_spec. intros i x y. by rewrite lookup_empty. Qed.
789
Lemma map_disjoint_empty_r {A} (m :