fin_maps.v 64.8 KB
Newer Older
Robbert Krebbers's avatar
Robbert Krebbers committed
1
(* Copyright (c) 2012-2015, Robbert Krebbers. *)
2
3
4
(* This file is distributed under the terms of the BSD license. *)
(** Finite maps associate data to keys. This file defines an interface for
finite maps and collects some theory on it. Most importantly, it proves useful
5
6
induction principles for finite maps and implements the tactic
[simplify_map_equality] to simplify goals involving finite maps. *)
Robbert Krebbers's avatar
Robbert Krebbers committed
7
Require Import Permutation.
8
9
Require Export ars vector orders.

10
11
(** * Axiomatization of finite maps *)
(** We require Leibniz equality to be extensional on finite maps. This of
12
13
14
15
16
course limits the space of finite map implementations, but since we are mainly
interested in finite maps with numbers as indexes, we do not consider this to
be a serious limitation. The main application of finite maps is to implement
the memory, where extensionality of Leibniz equality is very important for a
convenient use in the assertions of our axiomatic semantics. *)
17

Robbert Krebbers's avatar
Robbert Krebbers committed
18
19
(** Finiteness is axiomatized by requiring that each map can be translated
to an association list. The translation to association lists is used to
20
prove well founded recursion on finite maps. *)
21

22
23
24
(** Finite map implementations are required to implement the [merge] function
which enables us to give a generic implementation of [union_with],
[intersection_with], and [difference_with]. *)
25

26
Class FinMapToList K A M := map_to_list: M  list (K * A).
Robbert Krebbers's avatar
Robbert Krebbers committed
27

28
29
30
Class FinMap K M `{FMap M,  A, Lookup K A (M A),  A, Empty (M A),  A,
    PartialAlter K A (M A), OMap M, Merge M,  A, FinMapToList K A (M A),
     i j : K, Decision (i = j)} := {
31
32
  map_eq {A} (m1 m2 : M A) : ( i, m1 !! i = m2 !! i)  m1 = m2;
  lookup_empty {A} i : ( : M A) !! i = None;
33
34
35
36
  lookup_partial_alter {A} f (m : M A) i :
    partial_alter f i m !! i = f (m !! i);
  lookup_partial_alter_ne {A} f (m : M A) i j :
    i  j  partial_alter f i m !! j = m !! j;
37
  lookup_fmap {A B} (f : A  B) (m : M A) i : (f <$> m) !! i = f <$> m !! i;
38
  NoDup_map_to_list {A} (m : M A) : NoDup (map_to_list m);
39
40
  elem_of_map_to_list {A} (m : M A) i x :
    (i,x)  map_to_list m  m !! i = Some x;
41
  lookup_omap {A B} (f : A  option B) m i : omap f m !! i = m !! i = f;
42
43
44
  lookup_merge {A B C} (f : option A  option B  option C)
      `{!PropHolds (f None None = None)} m1 m2 i :
    merge f m1 m2 !! i = f (m1 !! i) (m2 !! i)
Robbert Krebbers's avatar
Robbert Krebbers committed
45
46
}.

47
48
49
(** * Derived operations *)
(** All of the following functions are defined in a generic way for arbitrary
finite map implementations. These generic implementations do not cause a
50
51
significant performance loss to make including them in the finite map interface
worthwhile. *)
52
53
54
55
56
Instance map_insert `{PartialAlter K A M} : Insert K A M :=
  λ i x, partial_alter (λ _, Some x) i.
Instance map_alter `{PartialAlter K A M} : Alter K A M :=
  λ f, partial_alter (fmap f).
Instance map_delete `{PartialAlter K A M} : Delete K M :=
57
  partial_alter (λ _, None).
58
59
Instance map_singleton `{PartialAlter K A M, Empty M} :
  Singleton (K * A) M := λ p, <[p.1:=p.2]> .
Robbert Krebbers's avatar
Robbert Krebbers committed
60

61
Definition map_of_list `{Insert K A M, Empty M} : list (K * A)  M :=
62
  fold_right (λ p, <[p.1:=p.2]>) .
63
64
65
Definition map_of_collection `{Elements K C, Insert K A M, Empty M}
    (f : K  option A) (X : C) : M :=
  map_of_list (omap (λ i, (i,) <$> f i) (elements X)).
Robbert Krebbers's avatar
Robbert Krebbers committed
66

67
68
69
70
71
72
Instance map_union_with `{Merge M} {A} : UnionWith A (M A) :=
  λ f, merge (union_with f).
Instance map_intersection_with `{Merge M} {A} : IntersectionWith A (M A) :=
  λ f, merge (intersection_with f).
Instance map_difference_with `{Merge M} {A} : DifferenceWith A (M A) :=
  λ f, merge (difference_with f).
Robbert Krebbers's avatar
Robbert Krebbers committed
73

74
75
(** The relation [intersection_forall R] on finite maps describes that the
relation [R] holds for each pair in the intersection. *)
76
Definition map_Forall `{Lookup K A M} (P : K  A  Prop) : M  Prop :=
Robbert Krebbers's avatar
Robbert Krebbers committed
77
  λ m,  i x, m !! i = Some x  P i x.
78
79
80
81
82
83
84
85
86
Definition map_Forall2 `{ A, Lookup K A (M A)} {A B}
    (R : A  B  Prop) (P : A  Prop) (Q : B  Prop)
    (m1 : M A) (m2 : M B) : Prop :=  i,
  match m1 !! i, m2 !! i with
  | Some x, Some y => R x y
  | Some x, None => P x
  | None, Some y => Q y
  | None, None => True
  end.
87
88
Definition map_included `{ A, Lookup K A (M A)} {A}
  (R : relation A) : relation (M A) := map_Forall2 R (λ _, False) (λ _, True).
89
90
91
92
Instance map_disjoint `{ A, Lookup K A (M A)} {A} : Disjoint (M A) :=
  map_Forall2 (λ _ _, False) (λ _, True) (λ _, True).
Instance map_subseteq `{ A, Lookup K A (M A)} {A} : SubsetEq (M A) :=
  map_Forall2 (=) (λ _, False) (λ _, True).
Robbert Krebbers's avatar
Robbert Krebbers committed
93
94
95
96
97

(** The union of two finite maps only has a meaningful definition for maps
that are disjoint. However, as working with partial functions is inconvenient
in Coq, we define the union as a total function. In case both finite maps
have a value at the same index, we take the value of the first map. *)
98
Instance map_union `{Merge M} {A} : Union (M A) := union_with (λ x _, Some x).
99
100
101
Instance map_intersection `{Merge M} {A} : Intersection (M A) :=
  intersection_with (λ x _, Some x).

102
103
(** The difference operation removes all values from the first map whose
index contains a value in the second map as well. *)
104
Instance map_difference `{Merge M} {A} : Difference (M A) :=
105
  difference_with (λ _ _, None).
Robbert Krebbers's avatar
Robbert Krebbers committed
106

107
108
109
110
(** * Theorems *)
Section theorems.
Context `{FinMap K M}.

111
112
113
114
115
116
117
118
Lemma map_eq_iff {A} (m1 m2 : M A) : m1 = m2   i, m1 !! i = m2 !! i.
Proof. split. by intros ->. apply map_eq. Qed.
Lemma map_subseteq_spec {A} (m1 m2 : M A) :
  m1  m2   i x, m1 !! i = Some x  m2 !! i = Some x.
Proof.
  unfold subseteq, map_subseteq, map_Forall2. split; intros Hm i;
    specialize (Hm i); destruct (m1 !! i), (m2 !! i); naive_solver.
Qed.
119
Global Instance: EmptySpec (M A).
120
Proof.
121
122
  intros A m. rewrite !map_subseteq_spec.
  intros i x. by rewrite lookup_empty.
123
Qed.
124
125
126
127
128
129
Global Instance:  {A} (R : relation A), PreOrder R  PreOrder (map_included R).
Proof.
  split; [intros m i; by destruct (m !! i)|].
  intros m1 m2 m3 Hm12 Hm23 i; specialize (Hm12 i); specialize (Hm23 i).
  destruct (m1 !! i), (m2 !! i), (m3 !! i); try done; etransitivity; eauto.
Qed.
130
Global Instance: PartialOrder (() : relation (M A)).
131
Proof.
132
133
134
  split; [apply _|].
  intros m1 m2; rewrite !map_subseteq_spec.
  intros; apply map_eq; intros i; apply option_eq; naive_solver.
135
136
137
Qed.
Lemma lookup_weaken {A} (m1 m2 : M A) i x :
  m1 !! i = Some x  m1  m2  m2 !! i = Some x.
138
Proof. rewrite !map_subseteq_spec. auto. Qed.
139
140
141
142
143
144
Lemma lookup_weaken_is_Some {A} (m1 m2 : M A) i :
  is_Some (m1 !! i)  m1  m2  is_Some (m2 !! i).
Proof. inversion 1. eauto using lookup_weaken. Qed.
Lemma lookup_weaken_None {A} (m1 m2 : M A) i :
  m2 !! i = None  m1  m2  m1 !! i = None.
Proof.
145
146
  rewrite map_subseteq_spec, !eq_None_not_Some.
  intros Hm2 Hm [??]; destruct Hm2; eauto.
147
148
Qed.
Lemma lookup_weaken_inv {A} (m1 m2 : M A) i x y :
149
150
  m1 !! i = Some x  m1  m2  m2 !! i = Some y  x = y.
Proof. intros Hm1 ? Hm2. eapply lookup_weaken in Hm1; eauto. congruence. Qed.
151
152
153
154
155
156
157
158
159
Lemma lookup_ne {A} (m : M A) i j : m !! i  m !! j  i  j.
Proof. congruence. Qed.
Lemma map_empty {A} (m : M A) : ( i, m !! i = None)  m = .
Proof. intros Hm. apply map_eq. intros. by rewrite Hm, lookup_empty. Qed.
Lemma lookup_empty_is_Some {A} i : ¬is_Some (( : M A) !! i).
Proof. rewrite lookup_empty. by inversion 1. Qed.
Lemma lookup_empty_Some {A} i (x : A) : ¬ !! i = Some x.
Proof. by rewrite lookup_empty. Qed.
Lemma map_subset_empty {A} (m : M A) : m  .
160
161
162
Proof.
  intros [_ []]. rewrite map_subseteq_spec. intros ??. by rewrite lookup_empty.
Qed.
163
164

(** ** Properties of the [partial_alter] operation *)
165
166
167
Lemma partial_alter_ext {A} (f g : option A  option A) (m : M A) i :
  ( x, m !! i = x  f x = g x)  partial_alter f i m = partial_alter g i m.
Proof.
168
169
  intros. apply map_eq; intros j. by destruct (decide (i = j)) as [->|?];
    rewrite ?lookup_partial_alter, ?lookup_partial_alter_ne; auto.
170
171
Qed.
Lemma partial_alter_compose {A} f g (m : M A) i:
172
173
  partial_alter (f  g) i m = partial_alter f i (partial_alter g i m).
Proof.
174
175
  intros. apply map_eq. intros ii. by destruct (decide (i = ii)) as [->|?];
    rewrite ?lookup_partial_alter, ?lookup_partial_alter_ne.
176
Qed.
177
Lemma partial_alter_commute {A} f g (m : M A) i j :
178
  i  j  partial_alter f i (partial_alter g j m) =
179
180
    partial_alter g j (partial_alter f i m).
Proof.
181
182
183
184
185
186
187
  intros. apply map_eq; intros jj. destruct (decide (jj = j)) as [->|?].
  { by rewrite lookup_partial_alter_ne,
      !lookup_partial_alter, lookup_partial_alter_ne. }
  destruct (decide (jj = i)) as [->|?].
  * by rewrite lookup_partial_alter,
     !lookup_partial_alter_ne, lookup_partial_alter by congruence.
  * by rewrite !lookup_partial_alter_ne by congruence.
188
189
190
191
Qed.
Lemma partial_alter_self_alt {A} (m : M A) i x :
  x = m !! i  partial_alter (λ _, x) i m = m.
Proof.
192
193
  intros. apply map_eq. intros ii. by destruct (decide (i = ii)) as [->|];
    rewrite ?lookup_partial_alter, ?lookup_partial_alter_ne.
194
Qed.
195
Lemma partial_alter_self {A} (m : M A) i : partial_alter (λ _, m !! i) i m = m.
196
Proof. by apply partial_alter_self_alt. Qed.
197
Lemma partial_alter_subseteq {A} f (m : M A) i :
198
  m !! i = None  m  partial_alter f i m.
199
200
201
202
Proof.
  rewrite map_subseteq_spec. intros Hi j x Hj.
  rewrite lookup_partial_alter_ne; congruence.
Qed.
203
Lemma partial_alter_subset {A} f (m : M A) i :
204
  m !! i = None  is_Some (f (m !! i))  m  partial_alter f i m.
205
Proof.
206
207
208
209
  intros Hi Hfi. split; [by apply partial_alter_subseteq|].
  rewrite !map_subseteq_spec. inversion Hfi as [x Hx]. intros Hm.
  apply (Some_ne_None x). rewrite <-(Hm i x); [done|].
  by rewrite lookup_partial_alter.
210
211
212
Qed.

(** ** Properties of the [alter] operation *)
213
214
Lemma alter_ext {A} (f g : A  A) (m : M A) i :
  ( x, m !! i = Some x  f x = g x)  alter f i m = alter g i m.
215
Proof. intro. apply partial_alter_ext. intros [x|] ?; f_equal'; auto. Qed.
216
Lemma lookup_alter {A} (f : A  A) m i : alter f i m !! i = f <$> m !! i.
217
Proof. unfold alter. apply lookup_partial_alter. Qed.
218
Lemma lookup_alter_ne {A} (f : A  A) m i j : i  j  alter f i m !! j = m !! j.
219
Proof. unfold alter. apply lookup_partial_alter_ne. Qed.
220
221
222
223
224
225
226
227
228
Lemma alter_compose {A} (f g : A  A) (m : M A) i:
  alter (f  g) i m = alter f i (alter g i m).
Proof.
  unfold alter, map_alter. rewrite <-partial_alter_compose.
  apply partial_alter_ext. by intros [?|].
Qed.
Lemma alter_commute {A} (f g : A  A) (m : M A) i j :
  i  j  alter f i (alter g j m) = alter g j (alter f i m).
Proof. apply partial_alter_commute. Qed.
229
230
231
232
Lemma lookup_alter_Some {A} (f : A  A) m i j y :
  alter f i m !! j = Some y 
    (i = j   x, m !! j = Some x  y = f x)  (i  j  m !! j = Some y).
Proof.
233
  destruct (decide (i = j)) as [->|?].
234
235
236
237
238
239
  * rewrite lookup_alter. naive_solver (simplify_option_equality; eauto).
  * rewrite lookup_alter_ne by done. naive_solver.
Qed.
Lemma lookup_alter_None {A} (f : A  A) m i j :
  alter f i m !! j = None  m !! j = None.
Proof.
240
241
  by destruct (decide (i = j)) as [->|?];
    rewrite ?lookup_alter, ?fmap_None, ?lookup_alter_ne.
242
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
243
244
Lemma alter_id {A} (f : A  A) m i :
  ( x, m !! i = Some x  f x = x)  alter f i m = m.
245
Proof.
Robbert Krebbers's avatar
Robbert Krebbers committed
246
247
248
  intros Hi; apply map_eq; intros j; destruct (decide (i = j)) as [->|?].
  { rewrite lookup_alter; destruct (m !! j); f_equal'; auto. }
  by rewrite lookup_alter_ne by done.
249
250
251
252
253
254
255
256
257
258
259
Qed.

(** ** Properties of the [delete] operation *)
Lemma lookup_delete {A} (m : M A) i : delete i m !! i = None.
Proof. apply lookup_partial_alter. Qed.
Lemma lookup_delete_ne {A} (m : M A) i j : i  j  delete i m !! j = m !! j.
Proof. apply lookup_partial_alter_ne. Qed.
Lemma lookup_delete_Some {A} (m : M A) i j y :
  delete i m !! j = Some y  i  j  m !! j = Some y.
Proof.
  split.
260
  * destruct (decide (i = j)) as [->|?];
261
262
263
264
265
266
      rewrite ?lookup_delete, ?lookup_delete_ne; intuition congruence.
  * intros [??]. by rewrite lookup_delete_ne.
Qed.
Lemma lookup_delete_None {A} (m : M A) i j :
  delete i m !! j = None  i = j  m !! j = None.
Proof.
267
268
  destruct (decide (i = j)) as [->|?];
    rewrite ?lookup_delete, ?lookup_delete_ne; tauto.
269
270
271
Qed.
Lemma delete_empty {A} i : delete i ( : M A) = .
Proof. rewrite <-(partial_alter_self ) at 2. by rewrite lookup_empty. Qed.
272
Lemma delete_singleton {A} i (x : A) : delete i {[i, x]} = .
273
274
275
276
277
278
279
Proof. setoid_rewrite <-partial_alter_compose. apply delete_empty. Qed.
Lemma delete_commute {A} (m : M A) i j :
  delete i (delete j m) = delete j (delete i m).
Proof. destruct (decide (i = j)). by subst. by apply partial_alter_commute. Qed.
Lemma delete_insert_ne {A} (m : M A) i j x :
  i  j  delete i (<[j:=x]>m) = <[j:=x]>(delete i m).
Proof. intro. by apply partial_alter_commute. Qed.
280
Lemma delete_notin {A} (m : M A) i : m !! i = None  delete i m = m.
281
Proof.
282
283
  intros. apply map_eq. intros j. by destruct (decide (i = j)) as [->|?];
    rewrite ?lookup_delete, ?lookup_delete_ne.
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
Qed.
Lemma delete_partial_alter {A} (m : M A) i f :
  m !! i = None  delete i (partial_alter f i m) = m.
Proof.
  intros. unfold delete, map_delete. rewrite <-partial_alter_compose.
  unfold compose. by apply partial_alter_self_alt.
Qed.
Lemma delete_insert {A} (m : M A) i x :
  m !! i = None  delete i (<[i:=x]>m) = m.
Proof. apply delete_partial_alter. Qed.
Lemma insert_delete {A} (m : M A) i x :
  m !! i = Some x  <[i:=x]>(delete i m) = m.
Proof.
  intros Hmi. unfold delete, map_delete, insert, map_insert.
  rewrite <-partial_alter_compose. unfold compose. rewrite <-Hmi.
  by apply partial_alter_self_alt.
Qed.
301
Lemma delete_subseteq {A} (m : M A) i : delete i m  m.
302
303
304
Proof.
  rewrite !map_subseteq_spec. intros j x. rewrite lookup_delete_Some. tauto.
Qed.
305
Lemma delete_subseteq_compat {A} (m1 m2 : M A) i :
306
  m1  m2  delete i m1  delete i m2.
307
308
309
310
Proof.
  rewrite !map_subseteq_spec. intros ? j x.
  rewrite !lookup_delete_Some. intuition eauto.
Qed.
311
Lemma delete_subset_alt {A} (m : M A) i x : m !! i = Some x  delete i m  m.
312
Proof.
313
314
315
  split; [apply delete_subseteq|].
  rewrite !map_subseteq_spec. intros Hi. apply (None_ne_Some x).
  by rewrite <-(lookup_delete m i), (Hi i x).
316
Qed.
317
Lemma delete_subset {A} (m : M A) i : is_Some (m !! i)  delete i m  m.
318
319
320
321
322
Proof. inversion 1. eauto using delete_subset_alt. Qed.

(** ** Properties of the [insert] operation *)
Lemma lookup_insert {A} (m : M A) i x : <[i:=x]>m !! i = Some x.
Proof. unfold insert. apply lookup_partial_alter. Qed.
323
Lemma lookup_insert_rev {A}  (m : M A) i x y : <[i:=x]>m !! i = Some y  x = y.
324
Proof. rewrite lookup_insert. congruence. Qed.
325
Lemma lookup_insert_ne {A} (m : M A) i j x : i  j  <[i:=x]>m !! j = m !! j.
326
327
328
329
330
331
332
333
Proof. unfold insert. apply lookup_partial_alter_ne. Qed.
Lemma insert_commute {A} (m : M A) i j x y :
  i  j  <[i:=x]>(<[j:=y]>m) = <[j:=y]>(<[i:=x]>m).
Proof. apply partial_alter_commute. Qed.
Lemma lookup_insert_Some {A} (m : M A) i j x y :
  <[i:=x]>m !! j = Some y  (i = j  x = y)  (i  j  m !! j = Some y).
Proof.
  split.
334
  * destruct (decide (i = j)) as [->|?];
335
      rewrite ?lookup_insert, ?lookup_insert_ne; intuition congruence.
336
  * intros [[-> ->]|[??]]; [apply lookup_insert|]. by rewrite lookup_insert_ne.
337
338
339
340
Qed.
Lemma lookup_insert_None {A} (m : M A) i j x :
  <[i:=x]>m !! j = None  m !! j = None  i  j.
Proof.
341
342
343
  split; [|by intros [??]; rewrite lookup_insert_ne].
  destruct (decide (i = j)) as [->|];
    rewrite ?lookup_insert, ?lookup_insert_ne; intuition congruence.
344
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
345
Lemma insert_id {A} (m : M A) i x : m !! i = Some x  <[i:=x]>m = m.
346
347
348
349
350
351
352
353
354
355
356
Proof.
  intros; apply map_eq; intros j; destruct (decide (i = j)) as [->|];
    by rewrite ?lookup_insert, ?lookup_insert_ne by done.
Qed.
Lemma insert_included {A} R `{!Reflexive R} (m : M A) i x :
  ( y, m !! i = Some y  R y x)  map_included R m (<[i:=x]>m).
Proof.
  intros ? j; destruct (decide (i = j)) as [->|].
  * rewrite lookup_insert. destruct (m !! j); eauto.
  * rewrite lookup_insert_ne by done. by destruct (m !! j).
Qed.
357
Lemma insert_subseteq {A} (m : M A) i x : m !! i = None  m  <[i:=x]>m.
358
Proof. apply partial_alter_subseteq. Qed.
359
Lemma insert_subset {A} (m : M A) i x : m !! i = None  m  <[i:=x]>m.
360
361
Proof. intro. apply partial_alter_subset; eauto. Qed.
Lemma insert_subseteq_r {A} (m1 m2 : M A) i x :
362
  m1 !! i = None  m1  m2  m1  <[i:=x]>m2.
363
Proof.
364
365
366
  rewrite !map_subseteq_spec. intros ?? j ?.
  destruct (decide (j = i)) as [->|?]; [congruence|].
  rewrite lookup_insert_ne; auto.
367
368
Qed.
Lemma insert_delete_subseteq {A} (m1 m2 : M A) i x :
369
  m1 !! i = None  <[i:=x]> m1  m2  m1  delete i m2.
370
Proof.
371
372
373
374
  rewrite !map_subseteq_spec. intros Hi Hix j y Hj.
  destruct (decide (i = j)) as [->|]; [congruence|].
  rewrite lookup_delete_ne by done.
  apply Hix; by rewrite lookup_insert_ne by done.
375
376
Qed.
Lemma delete_insert_subseteq {A} (m1 m2 : M A) i x :
377
  m1 !! i = Some x  delete i m1  m2  m1  <[i:=x]> m2.
378
Proof.
379
380
  rewrite !map_subseteq_spec.
  intros Hix Hi j y Hj. destruct (decide (i = j)) as [->|?].
381
  * rewrite lookup_insert. congruence.
382
  * rewrite lookup_insert_ne by done. apply Hi. by rewrite lookup_delete_ne.
383
384
Qed.
Lemma insert_delete_subset {A} (m1 m2 : M A) i x :
385
  m1 !! i = None  <[i:=x]> m1  m2  m1  delete i m2.
386
Proof.
387
388
389
  intros ? [Hm12 Hm21]; split; [eauto using insert_delete_subseteq|].
  contradict Hm21. apply delete_insert_subseteq; auto.
  eapply lookup_weaken, Hm12. by rewrite lookup_insert.
390
391
Qed.
Lemma insert_subset_inv {A} (m1 m2 : M A) i x :
392
  m1 !! i = None  <[i:=x]> m1  m2 
393
394
395
   m2', m2 = <[i:=x]>m2'  m1  m2'  m2' !! i = None.
Proof.
  intros Hi Hm1m2. exists (delete i m2). split_ands.
396
  * rewrite insert_delete. done. eapply lookup_weaken, strict_include; eauto.
397
398
399
400
    by rewrite lookup_insert.
  * eauto using insert_delete_subset.
  * by rewrite lookup_delete.
Qed.
401
402
403
404
405
406
407
Lemma fmap_insert {A B} (f : A  B) (m : M A) i x :
  f <$> <[i:=x]>m = <[i:=f x]>(f <$> m).
Proof.
  apply map_eq; intros i'; destruct (decide (i' = i)) as [->|].
  * by rewrite lookup_fmap, !lookup_insert.
  * by rewrite lookup_fmap, !lookup_insert_ne, lookup_fmap by done.
Qed.
408
409
Lemma insert_empty {A} i (x : A) : <[i:=x]> = {[i,x]}.
Proof. done. Qed.
410
411
412

(** ** Properties of the singleton maps *)
Lemma lookup_singleton_Some {A} i j (x y : A) :
413
  {[i, x]} !! j = Some y  i = j  x = y.
414
415
Proof.
  unfold singleton, map_singleton.
416
  rewrite lookup_insert_Some, lookup_empty. simpl. intuition congruence.
417
Qed.
418
Lemma lookup_singleton_None {A} i j (x : A) : {[i, x]} !! j = None  i  j.
419
420
421
422
Proof.
  unfold singleton, map_singleton.
  rewrite lookup_insert_None, lookup_empty. simpl. tauto.
Qed.
423
Lemma lookup_singleton {A} i (x : A) : {[i, x]} !! i = Some x.
424
Proof. by rewrite lookup_singleton_Some. Qed.
425
Lemma lookup_singleton_ne {A} i j (x : A) : i  j  {[i, x]} !! j = None.
426
Proof. by rewrite lookup_singleton_None. Qed.
427
Lemma map_non_empty_singleton {A} i (x : A) : {[i,x]}  .
428
429
430
431
Proof.
  intros Hix. apply (f_equal (!! i)) in Hix.
  by rewrite lookup_empty, lookup_singleton in Hix.
Qed.
432
Lemma insert_singleton {A} i (x y : A) : <[i:=y]>{[i, x]} = {[i, y]}.
433
434
435
436
Proof.
  unfold singleton, map_singleton, insert, map_insert.
  by rewrite <-partial_alter_compose.
Qed.
437
Lemma alter_singleton {A} (f : A  A) i x : alter f i {[i,x]} = {[i, f x]}.
438
Proof.
439
  intros. apply map_eq. intros i'. destruct (decide (i = i')) as [->|?].
440
441
442
443
  * by rewrite lookup_alter, !lookup_singleton.
  * by rewrite lookup_alter_ne, !lookup_singleton_ne.
Qed.
Lemma alter_singleton_ne {A} (f : A  A) i j x :
444
  i  j  alter f i {[j,x]} = {[j,x]}.
445
Proof.
446
447
  intros. apply map_eq; intros i'. by destruct (decide (i = i')) as [->|?];
    rewrite ?lookup_alter, ?lookup_singleton_ne, ?lookup_alter_ne by done.
448
449
Qed.

450
451
452
453
454
(** ** Properties of the map operations *)
Lemma fmap_empty {A B} (f : A  B) : f <$>  = .
Proof. apply map_empty; intros i. by rewrite lookup_fmap, lookup_empty. Qed.
Lemma omap_empty {A B} (f : A  option B) : omap f  = .
Proof. apply map_empty; intros i. by rewrite lookup_omap, lookup_empty. Qed.
455
456
457
458
459
460
461
Lemma omap_singleton {A B} (f : A  option B) i x y :
  f x = Some y  omap f {[ i,x ]} = {[ i,y ]}.
Proof.
  intros; apply map_eq; intros j; destruct (decide (i = j)) as [->|].
  * by rewrite lookup_omap, !lookup_singleton.
  * by rewrite lookup_omap, !lookup_singleton_ne.
Qed.
462

463
464
(** ** Properties of conversion to lists *)
Lemma map_to_list_unique {A} (m : M A) i x y :
465
  (i,x)  map_to_list m  (i,y)  map_to_list m  x = y.
466
Proof. rewrite !elem_of_map_to_list. congruence. Qed.
467
Lemma NoDup_fst_map_to_list {A} (m : M A) : NoDup ((map_to_list m).*1).
468
Proof. eauto using NoDup_fmap_fst, map_to_list_unique, NoDup_map_to_list. Qed.
469
470
471
472
473
474
475
476
477
478
Lemma elem_of_map_of_list_1_help {A} (l : list (K * A)) i x :
  (i,x)  l  ( y, (i,y)  l  y = x)  map_of_list l !! i = Some x.
Proof.
  induction l as [|[j y] l IH]; csimpl; [by rewrite elem_of_nil|].
  setoid_rewrite elem_of_cons.
  intros [?|?] Hdup; simplify_equality; [by rewrite lookup_insert|].
  destruct (decide (i = j)) as [->|].
  * rewrite lookup_insert; f_equal; eauto.
  * rewrite lookup_insert_ne by done; eauto.
Qed.
479
Lemma elem_of_map_of_list_1 {A} (l : list (K * A)) i x :
480
  NoDup (l.*1)  (i,x)  l  map_of_list l !! i = Some x.
481
Proof.
482
483
  intros ? Hx; apply elem_of_map_of_list_1_help; eauto using NoDup_fmap_fst.
  intros y; revert Hx. rewrite !elem_of_list_lookup; intros [i' Hi'] [j' Hj'].
484
  cut (i' = j'); [naive_solver|]. apply NoDup_lookup with (l.*1) i;
485
    by rewrite ?list_lookup_fmap, ?Hi', ?Hj'.
486
487
Qed.
Lemma elem_of_map_of_list_2 {A} (l : list (K * A)) i x :
488
  map_of_list l !! i = Some x  (i,x)  l.
489
Proof.
490
491
492
  induction l as [|[j y] l IH]; simpl; [by rewrite lookup_empty|].
  rewrite elem_of_cons. destruct (decide (i = j)) as [->|];
    rewrite ?lookup_insert, ?lookup_insert_ne; intuition congruence.
493
494
Qed.
Lemma elem_of_map_of_list {A} (l : list (K * A)) i x :
495
  NoDup (l.*1)  (i,x)  l  map_of_list l !! i = Some x.
496
Proof. split; auto using elem_of_map_of_list_1, elem_of_map_of_list_2. Qed.
497
Lemma not_elem_of_map_of_list_1 {A} (l : list (K * A)) i :
498
  i  l.*1  map_of_list l !! i = None.
499
Proof.
500
501
  rewrite elem_of_list_fmap, eq_None_not_Some. intros Hi [x ?]; destruct Hi.
  exists (i,x); simpl; auto using elem_of_map_of_list_2.
502
503
Qed.
Lemma not_elem_of_map_of_list_2 {A} (l : list (K * A)) i :
504
  map_of_list l !! i = None  i  l.*1.
505
Proof.
506
  induction l as [|[j y] l IH]; csimpl; [rewrite elem_of_nil; tauto|].
507
508
509
510
511
  rewrite elem_of_cons. destruct (decide (i = j)); simplify_equality.
  * by rewrite lookup_insert.
  * by rewrite lookup_insert_ne; intuition.
Qed.
Lemma not_elem_of_map_of_list {A} (l : list (K * A)) i :
512
  i  l.*1  map_of_list l !! i = None.
513
Proof. red; auto using not_elem_of_map_of_list_1,not_elem_of_map_of_list_2. Qed.
514
Lemma map_of_list_proper {A} (l1 l2 : list (K * A)) :
515
  NoDup (l1.*1)  l1  l2  map_of_list l1 = map_of_list l2.
516
517
518
519
520
Proof.
  intros ? Hperm. apply map_eq. intros i. apply option_eq. intros x.
  by rewrite <-!elem_of_map_of_list; rewrite <-?Hperm.
Qed.
Lemma map_of_list_inj {A} (l1 l2 : list (K * A)) :
521
  NoDup (l1.*1)  NoDup (l2.*1)  map_of_list l1 = map_of_list l2  l1  l2.
522
Proof.
523
  intros ?? Hl1l2. apply NoDup_Permutation; auto using (NoDup_fmap_1 fst).
524
525
  intros [i x]. by rewrite !elem_of_map_of_list, Hl1l2.
Qed.
526
Lemma map_of_to_list {A} (m : M A) : map_of_list (map_to_list m) = m.
527
528
529
Proof.
  apply map_eq. intros i. apply option_eq. intros x.
  by rewrite <-elem_of_map_of_list, elem_of_map_to_list
530
    by auto using NoDup_fst_map_to_list.
531
532
Qed.
Lemma map_to_of_list {A} (l : list (K * A)) :
533
  NoDup (l.*1)  map_to_list (map_of_list l)  l.
534
Proof. auto using map_of_list_inj, NoDup_fst_map_to_list, map_of_to_list. Qed.
535
Lemma map_to_list_inj {A} (m1 m2 : M A) :
536
  map_to_list m1  map_to_list m2  m1 = m2.
537
Proof.
538
  intros. rewrite <-(map_of_to_list m1), <-(map_of_to_list m2).
539
  auto using map_of_list_proper, NoDup_fst_map_to_list.
540
Qed.
541
542
543
544
545
546
Lemma map_to_of_list_flip {A} (m1 : M A) l2 :
  map_to_list m1  l2  m1 = map_of_list l2.
Proof.
  intros. rewrite <-(map_of_to_list m1).
  auto using map_of_list_proper, NoDup_fst_map_to_list.
Qed.
547
Lemma map_to_list_empty {A} : map_to_list  = @nil (K * A).
548
549
550
551
552
Proof.
  apply elem_of_nil_inv. intros [i x].
  rewrite elem_of_map_to_list. apply lookup_empty_Some.
Qed.
Lemma map_to_list_insert {A} (m : M A) i x :
553
  m !! i = None  map_to_list (<[i:=x]>m)  (i,x) :: map_to_list m.
554
Proof.
555
  intros. apply map_of_list_inj; csimpl.
556
557
  * apply NoDup_fst_map_to_list.
  * constructor; auto using NoDup_fst_map_to_list.
558
    rewrite elem_of_list_fmap. intros [[??] [? Hlookup]]; subst; simpl in *.
559
560
561
    rewrite elem_of_map_to_list in Hlookup. congruence.
  * by rewrite !map_of_to_list.
Qed.
562
Lemma map_of_list_nil {A} : map_of_list (@nil (K * A)) = .
563
564
565
566
Proof. done. Qed.
Lemma map_of_list_cons {A} (l : list (K * A)) i x :
  map_of_list ((i, x) :: l) = <[i:=x]>(map_of_list l).
Proof. done. Qed.
567
Lemma map_to_list_empty_inv_alt {A}  (m : M A) : map_to_list m  []  m = .
568
Proof. rewrite <-map_to_list_empty. apply map_to_list_inj. Qed.
569
Lemma map_to_list_empty_inv {A} (m : M A) : map_to_list m = []  m = .
570
571
Proof. intros Hm. apply map_to_list_empty_inv_alt. by rewrite Hm. Qed.
Lemma map_to_list_insert_inv {A} (m : M A) l i x :
572
  map_to_list m  (i,x) :: l  m = <[i:=x]>(map_of_list l).
573
574
Proof.
  intros Hperm. apply map_to_list_inj.
575
576
577
  assert (i  l.*1  NoDup (l.*1)) as [].
  { rewrite <-NoDup_cons. change (NoDup (((i,x)::l).*1)). rewrite <-Hperm.
    auto using NoDup_fst_map_to_list. }
578
579
580
  rewrite Hperm, map_to_list_insert, map_to_of_list;
    auto using not_elem_of_map_of_list_1.
Qed.
581
582
583
584
585
586
Lemma map_choose {A} (m : M A) : m     i x, m !! i = Some x.
Proof.
  intros Hemp. destruct (map_to_list m) as [|[i x] l] eqn:Hm.
  { destruct Hemp; eauto using map_to_list_empty_inv. }
  exists i x. rewrite <-elem_of_map_to_list, Hm. by left.
Qed.
587

588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
(** ** Properties of conversion from collections *)
Lemma lookup_map_of_collection {A} `{FinCollection K C}
    (f : K  option A) X i x :
  map_of_collection f X !! i = Some x  i  X  f i = Some x.
Proof.
  assert (NoDup (fst <$> omap (λ i, (i,) <$> f i) (elements X))).
  { induction (NoDup_elements X) as [|i' l]; csimpl; [constructor|].
    destruct (f i') as [x'|]; csimpl; auto; constructor; auto.
    rewrite elem_of_list_fmap. setoid_rewrite elem_of_list_omap.
    by intros (?&?&?&?&?); simplify_option_equality. }
  unfold map_of_collection; rewrite <-elem_of_map_of_list by done.
  rewrite elem_of_list_omap. setoid_rewrite elem_of_elements; split.
  * intros (?&?&?); simplify_option_equality; eauto.
  * intros [??]; exists i; simplify_option_equality; eauto.
Qed.

(** ** Induction principles *)
605
Lemma map_ind {A} (P : M A  Prop) :
606
  P   ( i x m, m !! i = None  P m  P (<[i:=x]>m))   m, P m.
607
Proof.
608
  intros ? Hins. cut ( l, NoDup (l.*1)   m, map_to_list m  l  P m).
609
  { intros help m.
610
    apply (help (map_to_list m)); auto using NoDup_fst_map_to_list. }
611
612
613
  induction l as [|[i x] l IH]; intros Hnodup m Hml.
  { apply map_to_list_empty_inv_alt in Hml. by subst. }
  inversion_clear Hnodup.
614
  apply map_to_list_insert_inv in Hml; subst m. apply Hins.
615
616
617
618
  * by apply not_elem_of_map_of_list_1.
  * apply IH; auto using map_to_of_list.
Qed.
Lemma map_to_list_length {A} (m1 m2 : M A) :
619
  m1  m2  length (map_to_list m1) < length (map_to_list m2).
620
621
622
623
Proof.
  revert m2. induction m1 as [|i x m ? IH] using map_ind.
  { intros m2 Hm2. rewrite map_to_list_empty. simpl.
    apply neq_0_lt. intros Hlen. symmetry in Hlen.
624
    apply nil_length_inv, map_to_list_empty_inv in Hlen.
625
626
627
628
629
    rewrite Hlen in Hm2. destruct (irreflexivity ()  Hm2). }
  intros m2 Hm2.
  destruct (insert_subset_inv m m2 i x) as (m2'&?&?&?); auto; subst.
  rewrite !map_to_list_insert; simpl; auto with arith.
Qed.
630
Lemma map_wf {A} : wf (strict (@subseteq (M A) _)).
631
632
633
634
635
636
Proof.
  apply (wf_projected (<) (length  map_to_list)).
  * by apply map_to_list_length.
  * by apply lt_wf.
Qed.

637
(** ** Properties of the [map_Forall] predicate *)
638
Section map_Forall.
639
640
Context {A} (P : K  A  Prop).

641
Lemma map_Forall_to_list m : map_Forall P m  Forall (curry P) (map_to_list m).
642
643
Proof.
  rewrite Forall_forall. split.
644
645
  * intros Hforall [i x]. rewrite elem_of_map_to_list. by apply (Hforall i x).
  * intros Hforall i x. rewrite <-elem_of_map_to_list. by apply (Hforall (i,x)).
646
Qed.
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
Lemma map_Forall_empty : map_Forall P .
Proof. intros i x. by rewrite lookup_empty. Qed.
Lemma map_Forall_impl (Q : K  A  Prop) m :
  map_Forall P m  ( i x, P i x  Q i x)  map_Forall Q m.
Proof. unfold map_Forall; naive_solver. Qed.
Lemma map_Forall_insert_11 m i x : map_Forall P (<[i:=x]>m)  P i x.
Proof. intros Hm. by apply Hm; rewrite lookup_insert. Qed.
Lemma map_Forall_insert_12 m i x :
  m !! i = None  map_Forall P (<[i:=x]>m)  map_Forall P m.
Proof.
  intros ? Hm j y ?; apply Hm. by rewrite lookup_insert_ne by congruence.
Qed.
Lemma map_Forall_insert_2 m i x :
  P i x  map_Forall P m  map_Forall P (<[i:=x]>m).
Proof. intros ?? j y; rewrite lookup_insert_Some; naive_solver. Qed.
Lemma map_Forall_insert m i x :
  m !! i = None  map_Forall P (<[i:=x]>m)  P i x  map_Forall P m.
Proof.
  naive_solver eauto using map_Forall_insert_11,
    map_Forall_insert_12, map_Forall_insert_2.
Qed.
Lemma map_Forall_ind (Q : M A  Prop) :
  Q  
  ( m i x, m !! i = None  P i x  map_Forall P m  Q m  Q (<[i:=x]>m)) 
   m, map_Forall P m  Q m.
Proof.
  intros Hnil Hinsert m. induction m using map_ind; auto.
  rewrite map_Forall_insert by done; intros [??]; eauto.
Qed.
676
677

Context `{ i x, Decision (P i x)}.
678
Global Instance map_Forall_dec m : Decision (map_Forall P m).
679
680
Proof.
  refine (cast_if (decide (Forall (curry P) (map_to_list m))));
681
    by rewrite map_Forall_to_list.
682
Defined.
683
684
Lemma map_not_Forall (m : M A) :
  ¬map_Forall P m   i x, m !! i = Some x  ¬P i x.
685
Proof.
686
687
688
689
  split; [|intros (i&x&?&?) Hm; specialize (Hm i x); tauto].
  rewrite map_Forall_to_list. intros Hm.
  apply (not_Forall_Exists _), Exists_exists in Hm.
  destruct Hm as ([i x]&?&?). exists i x. by rewrite <-elem_of_map_to_list.
690
Qed.
691
End map_Forall.
692
693
694
695

(** ** Properties of the [merge] operation *)
Section merge.
Context {A} (f : option A  option A  option A).
696
Context `{!PropHolds (f None None = None)}.
697
698
699
Global Instance: LeftId (=) None f  LeftId (=)  (merge f).
Proof.
  intros ??. apply map_eq. intros.
700
  by rewrite !(lookup_merge f), lookup_empty, (left_id_L None f).
701
702
703
704
Qed.
Global Instance: RightId (=) None f  RightId (=)  (merge f).
Proof.
  intros ??. apply map_eq. intros.
705
  by rewrite !(lookup_merge f), lookup_empty, (right_id_L None f).
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
Qed.
Lemma merge_commutative m1 m2 :
  ( i, f (m1 !! i) (m2 !! i) = f (m2 !! i) (m1 !! i)) 
  merge f m1 m2 = merge f m2 m1.
Proof. intros. apply map_eq. intros. by rewrite !(lookup_merge f). Qed.
Global Instance: Commutative (=) f  Commutative (=) (merge f).
Proof.
  intros ???. apply merge_commutative. intros. by apply (commutative f).
Qed.
Lemma merge_associative m1 m2 m3 :
  ( i, f (m1 !! i) (f (m2 !! i) (m3 !! i)) =
        f (f (m1 !! i) (m2 !! i)) (m3 !! i)) 
  merge f m1 (merge f m2 m3) = merge f (merge f m1 m2) m3.
Proof. intros. apply map_eq. intros. by rewrite !(lookup_merge f). Qed.
Global Instance: Associative (=) f  Associative (=) (merge f).
Proof.
722
  intros ????. apply merge_associative. intros. by apply (associative_L f).
723
724
Qed.
Lemma merge_idempotent m1 :
725
  ( i, f (m1 !! i) (m1 !! i) = m1 !! i)  merge f m1 m1 = m1.
726
727
Proof. intros. apply map_eq. intros. by rewrite !(lookup_merge f). Qed.
Global Instance: Idempotent (=) f  Idempotent (=) (merge f).
728
Proof. intros ??. apply merge_idempotent. intros. by apply (idempotent f). Qed.
729
End merge.
730

731
732
733
734
735
736
737
738
739
740
741
742
Section more_merge.
Context {A B C} (f : option A  option B  option C).
Context `{!PropHolds (f None None = None)}.
Lemma merge_Some m1 m2 m :
  ( i, m !! i = f (m1 !! i) (m2 !! i))  merge f m1 m2 = m.
Proof.
  split; [|intros <-; apply (lookup_merge _) ].
  intros Hlookup. apply map_eq; intros. rewrite Hlookup. apply (lookup_merge _).
Qed.
Lemma merge_empty : merge f   = .
Proof. apply map_eq. intros. by rewrite !(lookup_merge f), !lookup_empty. Qed.
Lemma partial_alter_merge g g1 g2 m1 m2 i :
743
744
745
746
747
748
749
750
  g (f (m1 !! i) (m2 !! i)) = f (g1 (m1 !! i)) (g2 (m2 !! i)) 
  partial_alter g i (merge f m1 m2) =
    merge f (partial_alter g1 i m1) (partial_alter g2 i m2).
Proof.
  intro. apply map_eq. intros j. destruct (decide (i = j)); subst.
  * by rewrite (lookup_merge _), !lookup_partial_alter, !(lookup_merge _).
  * by rewrite (lookup_merge _), !lookup_partial_alter_ne, (lookup_merge _).
Qed.
751
Lemma partial_alter_merge_l g g1 m1 m2 i :
752
753
754
755
756
757
758
  g (f (m1 !! i) (m2 !! i)) = f (g1 (m1 !! i)) (m2 !! i) 
  partial_alter g i (merge f m1 m2) = merge f (partial_alter g1 i m1) m2.
Proof.
  intro. apply map_eq. intros j. destruct (decide (i = j)); subst.
  * by rewrite (lookup_merge _), !lookup_partial_alter, !(lo