collections.v 33.3 KB
Newer Older
Robbert Krebbers's avatar
Robbert Krebbers committed
1
(* Copyright (c) 2012-2015, Robbert Krebbers. *)
2 3 4 5
(* This file is distributed under the terms of the BSD license. *)
(** This file collects definitions and theorems on collections. Most
importantly, it implements some tactics to automatically solve goals involving
collections. *)
6
From stdpp Require Export base tactics orders.
7

Robbert Krebbers's avatar
Robbert Krebbers committed
8 9
Instance collection_disjoint `{ElemOf A C} : Disjoint C := λ X Y,
   x, x  X  x  Y  False.
10 11
Instance collection_subseteq `{ElemOf A C} : SubsetEq C := λ X Y,
   x, x  X  x  Y.
Robbert Krebbers's avatar
Robbert Krebbers committed
12
Typeclasses Opaque collection_disjoint collection_subseteq.
13

14
(** * Basic theorems *)
15 16
Section simple_collection.
  Context `{SimpleCollection A C}.
17 18
  Implicit Types x y : A.
  Implicit Types X Y : C.
Robbert Krebbers's avatar
Robbert Krebbers committed
19

20
  Lemma elem_of_empty x : x    False.
21
  Proof. split. apply not_elem_of_empty. done. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
22 23 24 25
  Lemma elem_of_union_l x X Y : x  X  x  X  Y.
  Proof. intros. apply elem_of_union. auto. Qed.
  Lemma elem_of_union_r x X Y : x  Y  x  X  Y.
  Proof. intros. apply elem_of_union. auto. Qed.
26 27 28
  Global Instance: EmptySpec C.
  Proof. firstorder auto. Qed.
  Global Instance: JoinSemiLattice C.
29
  Proof. firstorder auto. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
30 31
  Global Instance: AntiSymm () (@collection_subseteq A C _).
  Proof. done. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
32
  Lemma elem_of_subseteq X Y : X  Y   x, x  X  x  Y.
33
  Proof. done. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
34 35
  Lemma elem_of_equiv X Y : X  Y   x, x  X  x  Y.
  Proof. firstorder. Qed.
36 37
  Lemma elem_of_equiv_alt X Y :
    X  Y  ( x, x  X  x  Y)  ( x, x  Y  x  X).
Robbert Krebbers's avatar
Robbert Krebbers committed
38
  Proof. firstorder. Qed.
39 40
  Lemma elem_of_equiv_empty X : X     x, x  X.
  Proof. firstorder. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
41 42 43
  Lemma elem_of_disjoint X Y : X  Y   x, x  X  x  Y  False.
  Proof. done. Qed.

44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62
  Global Instance disjoint_sym : Symmetric (@disjoint C _).
  Proof. intros ??. rewrite !elem_of_disjoint; naive_solver. Qed.
  Lemma disjoint_empty_l Y :   Y.
  Proof. rewrite elem_of_disjoint; intros x; by rewrite elem_of_empty. Qed.
  Lemma disjoint_empty_r X : X  .
  Proof. rewrite (symmetry_iff _); apply disjoint_empty_l. Qed.
  Lemma disjoint_singleton_l x Y : {[ x ]}  Y  x  Y.
  Proof.
    rewrite elem_of_disjoint; setoid_rewrite elem_of_singleton; naive_solver.
  Qed.
  Lemma disjoint_singleton_r y X : X  {[ y ]}  y  X.
  Proof. rewrite (symmetry_iff ()). apply disjoint_singleton_l. Qed.
  Lemma disjoint_union_l X1 X2 Y : X1  X2  Y  X1  Y  X2  Y.
  Proof.
    rewrite !elem_of_disjoint; setoid_rewrite elem_of_union; naive_solver.
  Qed.
  Lemma disjoint_union_r X Y1 Y2 : X  Y1  Y2  X  Y1  X  Y2.
  Proof. rewrite !(symmetry_iff () X). apply disjoint_union_l. Qed.

63 64 65 66 67 68
  Lemma collection_positive_l X Y : X  Y    X  .
  Proof.
    rewrite !elem_of_equiv_empty. setoid_rewrite elem_of_union. naive_solver.
  Qed.
  Lemma collection_positive_l_alt X Y : X    X  Y  .
  Proof. eauto using collection_positive_l. Qed.
69 70 71 72
  Lemma elem_of_singleton_1 x y : x  {[y]}  x = y.
  Proof. by rewrite elem_of_singleton. Qed.
  Lemma elem_of_singleton_2 x y : x = y  x  {[y]}.
  Proof. by rewrite elem_of_singleton. Qed.
73 74 75
  Lemma elem_of_subseteq_singleton x X : x  X  {[ x ]}  X.
  Proof.
    split.
76 77
    - intros ??. rewrite elem_of_singleton. by intros ->.
    - intros Ex. by apply (Ex x), elem_of_singleton.
78
  Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
79

80
  Global Instance singleton_proper : Proper ((=) ==> ()) (singleton (B:=C)).
81
  Proof. by repeat intro; subst. Qed.
82
  Global Instance elem_of_proper :
Robbert Krebbers's avatar
Robbert Krebbers committed
83
    Proper ((=) ==> () ==> iff) (@elem_of A C _) | 5.
84
  Proof. intros ???; subst. firstorder. Qed.
Ralf Jung's avatar
Ralf Jung committed
85
  Global Instance disjoint_proper: Proper (() ==> () ==> iff) (@disjoint C _).
Robbert Krebbers's avatar
Robbert Krebbers committed
86
  Proof. intros ??????. by rewrite !elem_of_disjoint; setoid_subst. Qed.
87
  Lemma elem_of_union_list Xs x : x   Xs   X, X  Xs  x  X.
88 89
  Proof.
    split.
90
    - induction Xs; simpl; intros HXs; [by apply elem_of_empty in HXs|].
91
      setoid_rewrite elem_of_cons. apply elem_of_union in HXs. naive_solver.
92
    - intros [X []]. induction 1; simpl; [by apply elem_of_union_l |].
93
      intros. apply elem_of_union_r; auto.
94
  Qed.
95
  Lemma non_empty_singleton x : ({[ x ]} : C)  .
96 97 98 99 100 101
  Proof. intros [E _]. by apply (elem_of_empty x), E, elem_of_singleton. Qed.
  Lemma not_elem_of_singleton x y : x  {[ y ]}  x  y.
  Proof. by rewrite elem_of_singleton. Qed.
  Lemma not_elem_of_union x X Y : x  X  Y  x  X  x  Y.
  Proof. rewrite elem_of_union. tauto. Qed.

102 103 104 105 106 107 108 109 110
  Section leibniz.
    Context `{!LeibnizEquiv C}.
    Lemma elem_of_equiv_L X Y : X = Y   x, x  X  x  Y.
    Proof. unfold_leibniz. apply elem_of_equiv. Qed.
    Lemma elem_of_equiv_alt_L X Y :
      X = Y  ( x, x  X  x  Y)  ( x, x  Y  x  X).
    Proof. unfold_leibniz. apply elem_of_equiv_alt. Qed.
    Lemma elem_of_equiv_empty_L X : X =    x, x  X.
    Proof. unfold_leibniz. apply elem_of_equiv_empty. Qed.
111 112 113 114
    Lemma collection_positive_l_L X Y : X  Y =   X = .
    Proof. unfold_leibniz. apply collection_positive_l. Qed.
    Lemma collection_positive_l_alt_L X Y : X    X  Y  .
    Proof. unfold_leibniz. apply collection_positive_l_alt. Qed.
115 116 117 118 119 120 121 122 123 124 125 126
    Lemma non_empty_singleton_L x : {[ x ]}  .
    Proof. unfold_leibniz. apply non_empty_singleton. Qed.
  End leibniz.

  Section dec.
    Context `{ X Y : C, Decision (X  Y)}.
    Global Instance elem_of_dec_slow (x : A) (X : C) : Decision (x  X) | 100.
    Proof.
      refine (cast_if (decide_rel () {[ x ]} X));
        by rewrite elem_of_subseteq_singleton.
    Defined.
  End dec.
127 128
End simple_collection.

129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225
(** * Tactics *)
(** The tactic [set_unfold] transforms all occurrences of [(∪)], [(∩)], [(∖)],
[(<$>)], [∅], [{[_]}], [(≡)], and [(⊆)] into logically equivalent propositions
involving just [∈]. For example, [A → x ∈ X ∪ ∅] becomes [A → x ∈ X ∨ False].

This transformation is implemented using type classes instead of [rewrite]ing
to ensure that we traverse each term at most once. *)
Class SetUnfold (P Q : Prop) := { set_unfold : P  Q }.
Arguments set_unfold _ _ {_}.
Hint Mode SetUnfold + - : typeclass_instances.

Class SetUnfoldSimpl (P Q : Prop) := { set_unfold_simpl : SetUnfold P Q }.
Hint Extern 0 (SetUnfoldSimpl _ _) => csimpl; constructor : typeclass_instances.

Instance set_unfold_fallthrough P : SetUnfold P P | 1000. done. Qed.
Definition set_unfold_1 `{SetUnfold P Q} : P  Q := proj1 (set_unfold P Q).
Definition set_unfold_2 `{SetUnfold P Q} : Q  P := proj2 (set_unfold P Q).

Lemma set_unfold_impl P Q P' Q' :
  SetUnfold P P'  SetUnfold Q Q'  SetUnfold (P  Q) (P'  Q').
Proof. constructor. by rewrite (set_unfold P P'), (set_unfold Q Q'). Qed.
Lemma set_unfold_and P Q P' Q' :
  SetUnfold P P'  SetUnfold Q Q'  SetUnfold (P  Q) (P'  Q').
Proof. constructor. by rewrite (set_unfold P P'), (set_unfold Q Q'). Qed.
Lemma set_unfold_or P Q P' Q' :
  SetUnfold P P'  SetUnfold Q Q'  SetUnfold (P  Q) (P'  Q').
Proof. constructor. by rewrite (set_unfold P P'), (set_unfold Q Q'). Qed.
Lemma set_unfold_iff P Q P' Q' :
  SetUnfold P P'  SetUnfold Q Q'  SetUnfold (P  Q) (P'  Q').
Proof. constructor. by rewrite (set_unfold P P'), (set_unfold Q Q'). Qed.
Lemma set_unfold_not P P' : SetUnfold P P'  SetUnfold (¬P) (¬P').
Proof. constructor. by rewrite (set_unfold P P'). Qed.
Lemma set_unfold_forall {A} (P P' : A  Prop) :
  ( x, SetUnfold (P x) (P' x))  SetUnfold ( x, P x) ( x, P' x).
Proof. constructor. naive_solver. Qed.
Lemma set_unfold_exist {A} (P P' : A  Prop) :
  ( x, SetUnfold (P x) (P' x))  SetUnfold ( x, P x) ( x, P' x).
Proof. constructor. naive_solver. Qed.

(* Avoid too eager application of the above instances (and thus too eager
unfolding of type class transparent definitions). *)
Hint Extern 0 (SetUnfold (_  _) _) =>
  class_apply set_unfold_impl : typeclass_instances.
Hint Extern 0 (SetUnfold (_  _) _) =>
  class_apply set_unfold_and : typeclass_instances.
Hint Extern 0 (SetUnfold (_  _) _) =>
  class_apply set_unfold_or : typeclass_instances.
Hint Extern 0 (SetUnfold (_  _) _) =>
  class_apply set_unfold_iff : typeclass_instances.
Hint Extern 0 (SetUnfold (¬ _) _) =>
  class_apply set_unfold_not : typeclass_instances.
Hint Extern 1 (SetUnfold ( _, _) _) =>
  class_apply set_unfold_forall : typeclass_instances.
Hint Extern 0 (SetUnfold ( _, _) _) =>
  class_apply set_unfold_exist : typeclass_instances.

Section set_unfold_simple.
  Context `{SimpleCollection A C}.
  Implicit Types x y : A.
  Implicit Types X Y : C.

  Global Instance set_unfold_empty x : SetUnfold (x  ) False.
  Proof. constructor; apply elem_of_empty. Qed.
  Global Instance set_unfold_singleton x y : SetUnfold (x  {[ y ]}) (x = y).
  Proof. constructor; apply elem_of_singleton. Qed.
  Global Instance set_unfold_union x X Y P Q :
    SetUnfold (x  X) P  SetUnfold (x  Y) Q  SetUnfold (x  X  Y) (P  Q).
  Proof.
    intros ??; constructor.
    by rewrite elem_of_union, (set_unfold (x  X) P), (set_unfold (x  Y) Q).
  Qed.
  Global Instance set_unfold_equiv_same X : SetUnfold (X  X) True | 1.
  Proof. done. Qed.
  Global Instance set_unfold_equiv_empty_l X (P : A  Prop) :
    ( x, SetUnfold (x  X) (P x))  SetUnfold (  X) ( x, ¬P x) | 5.
  Proof.
    intros ?; constructor.
    rewrite (symmetry_iff equiv), elem_of_equiv_empty; naive_solver.
  Qed.
  Global Instance set_unfold_equiv_empty_r (P : A  Prop) :
    ( x, SetUnfold (x  X) (P x))  SetUnfold (X  ) ( x, ¬P x) | 5.
  Proof. constructor. rewrite elem_of_equiv_empty; naive_solver. Qed.
  Global Instance set_unfold_equiv (P Q : A  Prop) :
    ( x, SetUnfold (x  X) (P x))  ( x, SetUnfold (x  Y) (Q x)) 
    SetUnfold (X  Y) ( x, P x  Q x) | 10.
  Proof. constructor. rewrite elem_of_equiv; naive_solver. Qed.
  Global Instance set_unfold_subseteq (P Q : A  Prop) :
    ( x, SetUnfold (x  X) (P x))  ( x, SetUnfold (x  Y) (Q x)) 
    SetUnfold (X  Y) ( x, P x  Q x).
  Proof. constructor. rewrite elem_of_subseteq; naive_solver. Qed.
  Global Instance set_unfold_subset (P Q : A  Prop) :
    ( x, SetUnfold (x  X) (P x))  ( x, SetUnfold (x  Y) (Q x)) 
    SetUnfold (X  Y) (( x, P x  Q x)  ¬∀ x, P x  Q x).
  Proof.
    constructor. rewrite subset_spec, elem_of_subseteq, elem_of_equiv.
    repeat f_equiv; naive_solver.
  Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
226 227 228 229
  Global Instance set_unfold_disjoint (P Q : A  Prop) :
    ( x, SetUnfold (x  X) (P x))  ( x, SetUnfold (x  Y) (Q x)) 
    SetUnfold (X  Y) ( x, P x  Q x  False).
  Proof. constructor. rewrite elem_of_disjoint. naive_solver. Qed.
230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298

  Context `{!LeibnizEquiv C}.
  Global Instance set_unfold_equiv_same_L X : SetUnfold (X = X) True | 1.
  Proof. done. Qed.
  Global Instance set_unfold_equiv_empty_l_L X (P : A  Prop) :
    ( x, SetUnfold (x  X) (P x))  SetUnfold ( = X) ( x, ¬P x) | 5.
  Proof.
    constructor. rewrite (symmetry_iff eq), elem_of_equiv_empty_L; naive_solver.
  Qed.
  Global Instance set_unfold_equiv_empty_r_L (P : A  Prop) :
    ( x, SetUnfold (x  X) (P x))  SetUnfold (X = ) ( x, ¬P x) | 5.
  Proof. constructor. rewrite elem_of_equiv_empty_L; naive_solver. Qed.
  Global Instance set_unfold_equiv_L (P Q : A  Prop) :
    ( x, SetUnfold (x  X) (P x))  ( x, SetUnfold (x  Y) (Q x)) 
    SetUnfold (X = Y) ( x, P x  Q x) | 10.
  Proof. constructor. rewrite elem_of_equiv_L; naive_solver. Qed.
End set_unfold_simple.

Section set_unfold.
  Context `{Collection A C}.
  Implicit Types x y : A.
  Implicit Types X Y : C.

  Global Instance set_unfold_intersection x X Y P Q :
    SetUnfold (x  X) P  SetUnfold (x  Y) Q  SetUnfold (x  X  Y) (P  Q).
  Proof.
    intros ??; constructor. by rewrite elem_of_intersection,
      (set_unfold (x  X) P), (set_unfold (x  Y) Q).
  Qed.
  Global Instance set_unfold_difference x X Y P Q :
    SetUnfold (x  X) P  SetUnfold (x  Y) Q  SetUnfold (x  X  Y) (P  ¬Q).
  Proof.
    intros ??; constructor. by rewrite elem_of_difference,
      (set_unfold (x  X) P), (set_unfold (x  Y) Q).
  Qed.
End set_unfold.

Section set_unfold_monad.
  Context `{CollectionMonad M} {A : Type}.
  Implicit Types x y : A.

  Global Instance set_unfold_ret x y : SetUnfold (x  mret y) (x = y).
  Proof. constructor; apply elem_of_ret. Qed.
  Global Instance set_unfold_bind {B} (f : A  M B) X (P Q : A  Prop) :
    ( y, SetUnfold (y  X) (P y))  ( y, SetUnfold (x  f y) (Q y)) 
    SetUnfold (x  X = f) ( y, Q y  P y).
  Proof. constructor. rewrite elem_of_bind; naive_solver. Qed.
  Global Instance set_unfold_fmap {B} (f : A  B) X (P : A  Prop) :
    ( y, SetUnfold (y  X) (P y)) 
    SetUnfold (x  f <$> X) ( y, x = f y  P y).
  Proof. constructor. rewrite elem_of_fmap; naive_solver. Qed.
  Global Instance set_unfold_join (X : M (M A)) (P : M A  Prop) :
    ( Y, SetUnfold (Y  X) (P Y))  SetUnfold (x  mjoin X) ( Y, x  Y  P Y).
  Proof. constructor. rewrite elem_of_join; naive_solver. Qed.
End set_unfold_monad.

Ltac set_unfold :=
  let rec unfold_hyps :=
    try match goal with
    | H : _ |- _ =>
       apply set_unfold_1 in H; revert H;
       first [unfold_hyps; intros H | intros H; fail 1]
    end in
  apply set_unfold_2; unfold_hyps; csimpl in *.

(** Since [firstorder] fails or loops on very small goals generated by
[set_solver] already. We use the [naive_solver] tactic as a substitute.
This tactic either fails or proves the goal. *)
Tactic Notation "set_solver" "by" tactic3(tac) :=
299
  try fast_done;
300 301 302 303 304 305 306 307 308 309 310 311 312
  intros; setoid_subst;
  set_unfold;
  intros; setoid_subst;
  try match goal with |- _  _ => apply dec_stable end;
  naive_solver tac.
Tactic Notation "set_solver" "-" hyp_list(Hs) "by" tactic3(tac) :=
  clear Hs; set_solver by tac.
Tactic Notation "set_solver" "+" hyp_list(Hs) "by" tactic3(tac) :=
  clear -Hs; set_solver by tac.
Tactic Notation "set_solver" := set_solver by idtac.
Tactic Notation "set_solver" "-" hyp_list(Hs) := clear Hs; set_solver.
Tactic Notation "set_solver" "+" hyp_list(Hs) := clear -Hs; set_solver.

313 314 315 316
Hint Extern 1000 (_  _) => set_solver : set_solver.
Hint Extern 1000 (_  _) => set_solver : set_solver.
Hint Extern 1000 (_  _) => set_solver : set_solver.

317 318 319
(** * Conversion of option and list *)
Definition of_option `{Singleton A C, Empty C} (mx : option A) : C :=
  match mx with None =>  | Some x => {[ x ]} end.
320 321
Fixpoint of_list `{Singleton A C, Empty C, Union C} (l : list A) : C :=
  match l with [] =>  | x :: l => {[ x ]}  of_list l end.
322

323 324
Section of_option_list.
  Context `{SimpleCollection A C}.
325 326
  Lemma elem_of_of_option (x : A) mx: x  of_option mx  mx = Some x.
  Proof. destruct mx; set_solver. Qed.
327 328 329
  Lemma elem_of_of_list (x : A) l : x  of_list l  x  l.
  Proof.
    split.
330
    - induction l; simpl; [by rewrite elem_of_empty|].
Robbert Krebbers's avatar
Robbert Krebbers committed
331
      rewrite elem_of_union,elem_of_singleton; intros [->|?]; constructor; auto.
332
    - induction 1; simpl; rewrite elem_of_union, elem_of_singleton; auto.
333
  Qed.
334 335 336
  Global Instance set_unfold_of_option (mx : option A) x :
    SetUnfold (x  of_option mx) (mx = Some x).
  Proof. constructor; apply elem_of_of_option. Qed.
337 338 339
  Global Instance set_unfold_of_list (l : list A) x P :
    SetUnfold (x  l) P  SetUnfold (x  of_list l) P.
  Proof. constructor. by rewrite elem_of_of_list, (set_unfold (x  l) P). Qed.
340
End of_option_list.
341

342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357
Section list_unfold.
  Context {A : Type}.
  Implicit Types x : A.
  Implicit Types l : list A.

  Global Instance set_unfold_nil x : SetUnfold (x  []) False.
  Proof. constructor; apply elem_of_nil. Qed.
  Global Instance set_unfold_cons x y l P :
    SetUnfold (x  l) P  SetUnfold (x  y :: l) (x = y  P).
  Proof. constructor. by rewrite elem_of_cons, (set_unfold (x  l) P). Qed.
  Global Instance set_unfold_app x l k P Q :
    SetUnfold (x  l) P  SetUnfold (x  k) Q  SetUnfold (x  l ++ k) (P  Q).
  Proof.
    intros ??; constructor.
    by rewrite elem_of_app, (set_unfold (x  l) P), (set_unfold (x  k) Q).
  Qed.
358 359 360 361
  Global Instance set_unfold_included l k (P Q : A  Prop) :
    ( x, SetUnfold (x  l) (P x))  ( x, SetUnfold (x  k) (Q x)) 
    SetUnfold (l `included` k) ( x, P x  Q x).
  Proof. by constructor; unfold included; set_unfold. Qed.
362 363
End list_unfold.

364
(** * Guard *)
365 366
Global Instance collection_guard `{CollectionMonad M} : MGuard M :=
  λ P dec A x, match dec with left H => x H | _ =>  end.
367 368 369 370 371 372 373 374 375

Section collection_monad_base.
  Context `{CollectionMonad M}.
  Lemma elem_of_guard `{Decision P} {A} (x : A) (X : M A) :
    x  guard P; X  P  x  X.
  Proof.
    unfold mguard, collection_guard; simpl; case_match;
      rewrite ?elem_of_empty; naive_solver.
  Qed.
376 377 378
  Lemma elem_of_guard_2 `{Decision P} {A} (x : A) (X : M A) :
    P  x  X  x  guard P; X.
  Proof. by rewrite elem_of_guard. Qed.
379 380 381 382 383
  Lemma guard_empty `{Decision P} {A} (X : M A) : guard P; X    ¬P  X  .
  Proof.
    rewrite !elem_of_equiv_empty; setoid_rewrite elem_of_guard.
    destruct (decide P); naive_solver.
  Qed.
384 385 386
  Global Instance set_unfold_guard `{Decision P} {A} (x : A) X Q :
    SetUnfold (x  X) Q  SetUnfold (x  guard P; X) (P  Q).
  Proof. constructor. by rewrite elem_of_guard, (set_unfold (x  X) Q). Qed.
387 388
  Lemma bind_empty {A B} (f : A  M B) X :
    X = f    X     x, x  X  f x  .
389
  Proof. set_solver. Qed.
390
End collection_monad_base.
391

392
(** * More theorems *)
Robbert Krebbers's avatar
Robbert Krebbers committed
393 394
Section collection.
  Context `{Collection A C}.
395
  Implicit Types X Y : C.
Robbert Krebbers's avatar
Robbert Krebbers committed
396

397
  Global Instance: Lattice C.
398
  Proof. split. apply _. firstorder auto. set_solver. Qed.
399 400
  Global Instance difference_proper :
     Proper (() ==> () ==> ()) (@difference C _).
Robbert Krebbers's avatar
Robbert Krebbers committed
401 402 403 404
  Proof.
    intros X1 X2 HX Y1 Y2 HY; apply elem_of_equiv; intros x.
    by rewrite !elem_of_difference, HX, HY.
  Qed.
405
  Lemma non_empty_inhabited x X : x  X  X  .
406
  Proof. set_solver. Qed.
407
  Lemma intersection_singletons x : ({[x]} : C)  {[x]}  {[x]}.
408
  Proof. set_solver. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
409
  Lemma difference_twice X Y : (X  Y)  Y  X  Y.
410
  Proof. set_solver. Qed.
411
  Lemma subseteq_empty_difference X Y : X  Y  X  Y  .
412
  Proof. set_solver. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
413
  Lemma difference_diag X : X  X  .
414
  Proof. set_solver. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
415
  Lemma difference_union_distr_l X Y Z : (X  Y)  Z  X  Z  Y  Z.
416
  Proof. set_solver. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
417
  Lemma difference_union_distr_r X Y Z : Z  (X  Y)  (Z  X)  (Z  Y).
418
  Proof. set_solver. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
419
  Lemma difference_intersection_distr_l X Y Z : (X  Y)  Z  X  Z  Y  Z.
420
  Proof. set_solver. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
421
  Lemma disjoint_union_difference X Y : X  Y  (X  Y)  X  Y.
422
  Proof. set_solver. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
423

424 425 426 427 428 429
  Section leibniz.
    Context `{!LeibnizEquiv C}.
    Lemma intersection_singletons_L x : {[x]}  {[x]} = {[x]}.
    Proof. unfold_leibniz. apply intersection_singletons. Qed.
    Lemma difference_twice_L X Y : (X  Y)  Y = X  Y.
    Proof. unfold_leibniz. apply difference_twice. Qed.
430 431
    Lemma subseteq_empty_difference_L X Y : X  Y  X  Y = .
    Proof. unfold_leibniz. apply subseteq_empty_difference. Qed.
432 433 434 435
    Lemma difference_diag_L X : X  X = .
    Proof. unfold_leibniz. apply difference_diag. Qed.
    Lemma difference_union_distr_l_L X Y Z : (X  Y)  Z = X  Z  Y  Z.
    Proof. unfold_leibniz. apply difference_union_distr_l. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
436 437
    Lemma difference_union_distr_r_L X Y Z : Z  (X  Y) = (Z  X)  (Z  Y).
    Proof. unfold_leibniz. apply difference_union_distr_r. Qed.
438 439 440
    Lemma difference_intersection_distr_l_L X Y Z :
      (X  Y)  Z = X  Z  Y  Z.
    Proof. unfold_leibniz. apply difference_intersection_distr_l. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
441
    Lemma disjoint_union_difference_L X Y : X  Y  (X  Y)  X = Y.
442
    Proof. unfold_leibniz. apply disjoint_union_difference. Qed.
443 444 445
  End leibniz.

  Section dec.
Robbert Krebbers's avatar
Robbert Krebbers committed
446
    Context `{ (x : A) (X : C), Decision (x  X)}.
447
    Lemma not_elem_of_intersection x X Y : x  X  Y  x  X  x  Y.
448
    Proof. rewrite elem_of_intersection. destruct (decide (x  X)); tauto. Qed.
449
    Lemma not_elem_of_difference x X Y : x  X  Y  x  X  x  Y.
450
    Proof. rewrite elem_of_difference. destruct (decide (x  Y)); tauto. Qed.
451 452
    Lemma union_difference X Y : X  Y  Y  X  Y  X.
    Proof.
453 454
      split; intros x; rewrite !elem_of_union, elem_of_difference; [|intuition].
      destruct (decide (x  X)); intuition.
455 456
    Qed.
    Lemma non_empty_difference X Y : X  Y  Y  X  .
457
    Proof. intros [HXY1 HXY2] Hdiff. destruct HXY2. set_solver. Qed.
458
    Lemma empty_difference_subseteq X Y : X  Y    X  Y.
459
    Proof. set_solver. Qed.
460 461 462 463 464
    Context `{!LeibnizEquiv C}.
    Lemma union_difference_L X Y : X  Y  Y = X  Y  X.
    Proof. unfold_leibniz. apply union_difference. Qed.
    Lemma non_empty_difference_L X Y : X  Y  Y  X  .
    Proof. unfold_leibniz. apply non_empty_difference. Qed.
465 466
    Lemma empty_difference_subseteq_L X Y : X  Y =   X  Y.
    Proof. unfold_leibniz. apply empty_difference_subseteq. Qed.
467 468 469 470 471 472
  End dec.
End collection.

Section collection_ops.
  Context `{CollectionOps A C}.

Robbert Krebbers's avatar
Robbert Krebbers committed
473 474 475 476 477
  Lemma elem_of_intersection_with_list (f : A  A  option A) Xs Y x :
    x  intersection_with_list f Y Xs   xs y,
      Forall2 () xs Xs  y  Y  foldr (λ x, (= f x)) (Some y) xs = Some x.
  Proof.
    split.
478
    - revert x. induction Xs; simpl; intros x HXs; [eexists [], x; intuition|].
479 480
      rewrite elem_of_intersection_with in HXs; destruct HXs as (x1&x2&?&?&?).
      destruct (IHXs x2) as (xs & y & hy & ? & ?); trivial.
481
      eexists (x1 :: xs), y. intuition (simplify_option_eq; auto).
482
    - intros (xs & y & Hxs & ? & Hx). revert x Hx.
483
      induction Hxs; intros; simplify_option_eq; [done |].
Robbert Krebbers's avatar
Robbert Krebbers committed
484 485 486 487 488 489 490 491 492
      rewrite elem_of_intersection_with. naive_solver.
  Qed.

  Lemma intersection_with_list_ind (P Q : A  Prop) f Xs Y :
    ( y, y  Y  P y) 
    Forall (λ X,  x, x  X  Q x) Xs 
    ( x y z, Q x  P y  f x y = Some z  P z) 
     x, x  intersection_with_list f Y Xs  P x.
  Proof.
493
    intros HY HXs Hf. induction Xs; simplify_option_eq; [done |].
Robbert Krebbers's avatar
Robbert Krebbers committed
494 495 496
    intros x Hx. rewrite elem_of_intersection_with in Hx.
    decompose_Forall. destruct Hx as (? & ? & ? & ? & ?). eauto.
  Qed.
497
End collection_ops.
Robbert Krebbers's avatar
Robbert Krebbers committed
498

499
(** * Sets without duplicates up to an equivalence *)
500
Section NoDup.
501
  Context `{SimpleCollection A B} (R : relation A) `{!Equivalence R}.
Robbert Krebbers's avatar
Robbert Krebbers committed
502 503

  Definition elem_of_upto (x : A) (X : B) :=  y, y  X  R x y.
504
  Definition set_NoDup (X : B) :=  x y, x  X  y  X  R x y  x = y.
Robbert Krebbers's avatar
Robbert Krebbers committed
505 506

  Global Instance: Proper (() ==> iff) (elem_of_upto x).
Robbert Krebbers's avatar
Robbert Krebbers committed
507
  Proof. intros ??? E. unfold elem_of_upto. by setoid_rewrite E. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
508 509 510
  Global Instance: Proper (R ==> () ==> iff) elem_of_upto.
  Proof.
    intros ?? E1 ?? E2. split; intros [z [??]]; exists z.
511 512
    - rewrite <-E1, <-E2; intuition.
    - rewrite E1, E2; intuition.
Robbert Krebbers's avatar
Robbert Krebbers committed
513
  Qed.
514
  Global Instance: Proper (() ==> iff) set_NoDup.
Robbert Krebbers's avatar
Robbert Krebbers committed
515 516 517
  Proof. firstorder. Qed.

  Lemma elem_of_upto_elem_of x X : x  X  elem_of_upto x X.
518
  Proof. unfold elem_of_upto. set_solver. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
519
  Lemma elem_of_upto_empty x : ¬elem_of_upto x .
520
  Proof. unfold elem_of_upto. set_solver. Qed.
521
  Lemma elem_of_upto_singleton x y : elem_of_upto x {[ y ]}  R x y.
522
  Proof. unfold elem_of_upto. set_solver. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
523

524 525
  Lemma elem_of_upto_union X Y x :
    elem_of_upto x (X  Y)  elem_of_upto x X  elem_of_upto x Y.
526
  Proof. unfold elem_of_upto. set_solver. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
527
  Lemma not_elem_of_upto x X : ¬elem_of_upto x X   y, y  X  ¬R x y.
528
  Proof. unfold elem_of_upto. set_solver. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
529

530
  Lemma set_NoDup_empty: set_NoDup .
531
  Proof. unfold set_NoDup. set_solver. Qed.
532 533
  Lemma set_NoDup_add x X :
    ¬elem_of_upto x X  set_NoDup X  set_NoDup ({[ x ]}  X).
534
  Proof. unfold set_NoDup, elem_of_upto. set_solver. Qed.
535 536
  Lemma set_NoDup_inv_add x X :
    x  X  set_NoDup ({[ x ]}  X)  ¬elem_of_upto x X.
537 538
  Proof.
    intros Hin Hnodup [y [??]].
539
    rewrite (Hnodup x y) in Hin; set_solver.
540
  Qed.
541
  Lemma set_NoDup_inv_union_l X Y : set_NoDup (X  Y)  set_NoDup X.
542
  Proof. unfold set_NoDup. set_solver. Qed.
543
  Lemma set_NoDup_inv_union_r X Y : set_NoDup (X  Y)  set_NoDup Y.
544
  Proof. unfold set_NoDup. set_solver. Qed.
545
End NoDup.
Robbert Krebbers's avatar
Robbert Krebbers committed
546

547
(** * Quantifiers *)
Robbert Krebbers's avatar
Robbert Krebbers committed
548
Section quantifiers.
549
  Context `{SimpleCollection A B} (P : A  Prop).
Robbert Krebbers's avatar
Robbert Krebbers committed
550

551 552 553 554
  Definition set_Forall X :=  x, x  X  P x.
  Definition set_Exists X :=  x, x  X  P x.

  Lemma set_Forall_empty : set_Forall .
555
  Proof. unfold set_Forall. set_solver. Qed.
556
  Lemma set_Forall_singleton x : set_Forall {[ x ]}  P x.
557
  Proof. unfold set_Forall. set_solver. Qed.
558
  Lemma set_Forall_union X Y : set_Forall X  set_Forall Y  set_Forall (X  Y).
559
  Proof. unfold set_Forall. set_solver. Qed.
560
  Lemma set_Forall_union_inv_1 X Y : set_Forall (X  Y)  set_Forall X.
561
  Proof. unfold set_Forall. set_solver. Qed.
562
  Lemma set_Forall_union_inv_2 X Y : set_Forall (X  Y)  set_Forall Y.
563
  Proof. unfold set_Forall. set_solver. Qed.
564 565

  Lemma set_Exists_empty : ¬set_Exists .
566
  Proof. unfold set_Exists. set_solver. Qed.
567
  Lemma set_Exists_singleton x : set_Exists {[ x ]}  P x.
568
  Proof. unfold set_Exists. set_solver. Qed.
569
  Lemma set_Exists_union_1 X Y : set_Exists X  set_Exists (X  Y).
570
  Proof. unfold set_Exists. set_solver. Qed.
571
  Lemma set_Exists_union_2 X Y : set_Exists Y  set_Exists (X  Y).
572
  Proof. unfold set_Exists. set_solver. Qed.
573 574
  Lemma set_Exists_union_inv X Y :
    set_Exists (X  Y)  set_Exists X  set_Exists Y.
575
  Proof. unfold set_Exists. set_solver. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
576 577
End quantifiers.

578
Section more_quantifiers.
579
  Context `{SimpleCollection A B}.
580

581 582 583 584 585 586
  Lemma set_Forall_weaken (P Q : A  Prop) (Hweaken :  x, P x  Q x) X :
    set_Forall P X  set_Forall Q X.
  Proof. unfold set_Forall. naive_solver. Qed.
  Lemma set_Exists_weaken (P Q : A  Prop) (Hweaken :  x, P x  Q x) X :
    set_Exists P X  set_Exists Q X.
  Proof. unfold set_Exists. naive_solver. Qed.
587 588
End more_quantifiers.

589 590 591
(** * Fresh elements *)
(** We collect some properties on the [fresh] operation. In particular we
generalize [fresh] to generate lists of fresh elements. *)
592 593 594 595 596 597 598 599 600 601
Fixpoint fresh_list `{Fresh A C, Union C, Singleton A C}
    (n : nat) (X : C) : list A :=
  match n with
  | 0 => []
  | S n => let x := fresh X in x :: fresh_list n ({[ x ]}  X)
  end.
Inductive Forall_fresh `{ElemOf A C} (X : C) : list A  Prop :=
  | Forall_fresh_nil : Forall_fresh X []
  | Forall_fresh_cons x xs :
     x  xs  x  X  Forall_fresh X xs  Forall_fresh X (x :: xs).
602

603 604
Section fresh.
  Context `{FreshSpec A C}.
605
  Implicit Types X Y : C.
606

607
  Global Instance fresh_proper: Proper (() ==> (=)) (fresh (C:=C)).
608
  Proof. intros ???. by apply fresh_proper_alt, elem_of_equiv. Qed.
609 610
  Global Instance fresh_list_proper:
    Proper ((=) ==> () ==> (=)) (fresh_list (C:=C)).
611
  Proof.
612
    intros ? n ->. induction n as [|n IH]; intros ?? E; f_equal/=; [by rewrite E|].
613
    apply IH. by rewrite E.
614
  Qed.
615 616 617 618 619 620 621 622 623 624 625 626 627 628 629

  Lemma Forall_fresh_NoDup X xs : Forall_fresh X xs  NoDup xs.
  Proof. induction 1; by constructor. Qed.
  Lemma Forall_fresh_elem_of X xs x : Forall_fresh X xs  x  xs  x  X.
  Proof.
    intros HX; revert x; rewrite <-Forall_forall.
    by induction HX; constructor.
  Qed.
  Lemma Forall_fresh_alt X xs :
    Forall_fresh X xs  NoDup xs   x, x  xs  x  X.
  Proof.
    split; eauto using Forall_fresh_NoDup, Forall_fresh_elem_of.
    rewrite <-Forall_forall.
    intros [Hxs Hxs']. induction Hxs; decompose_Forall_hyps; constructor; auto.
  Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
630 631
  Lemma Forall_fresh_subseteq X Y xs :
    Forall_fresh X xs  Y  X  Forall_fresh Y xs.
632
  Proof. rewrite !Forall_fresh_alt; set_solver. Qed.
633

634 635
  Lemma fresh_list_length n X : length (fresh_list n X) = n.
  Proof. revert X. induction n; simpl; auto. Qed.
636
  Lemma fresh_list_is_fresh n X x : x  fresh_list n X  x  X.
637
  Proof.
638
    revert X. induction n as [|n IH]; intros X; simpl;[by rewrite elem_of_nil|].
639
    rewrite elem_of_cons; intros [->| Hin]; [apply is_fresh|].
640
    apply IH in Hin; set_solver.
641
  Qed.
642
  Lemma NoDup_fresh_list n X : NoDup (fresh_list n X).
643
  Proof.
644
    revert X. induction n; simpl; constructor; auto.
645
    intros Hin; apply fresh_list_is_fresh in Hin; set_solver.
646 647 648 649
  Qed.
  Lemma Forall_fresh_list X n : Forall_fresh X (fresh_list n X).
  Proof.
    rewrite Forall_fresh_alt; eauto using NoDup_fresh_list, fresh_list_is_fresh.
650 651
  Qed.
End fresh.
652

653
(** * Properties of implementations of collections that form a monad *)
654 655 656
Section collection_monad.
  Context `{CollectionMonad M}.

657 658
  Global Instance collection_fmap_mono {A B} :
    Proper (pointwise_relation _ (=) ==> () ==> ()) (@fmap M _ A B).
659
  Proof. intros f g ? X Y ?; set_solver by eauto. Qed.
660 661
  Global Instance collection_fmap_proper {A B} :
    Proper (pointwise_relation _ (=) ==> () ==> ()) (@fmap M _ A B).
662
  Proof. intros f g ? X Y [??]; split; set_solver by eauto. Qed.
663 664
  Global Instance collection_bind_mono {A B} :
    Proper (((=) ==> ()) ==> () ==> ()) (@mbind M _ A B).
665
  Proof. unfold respectful; intros f g Hfg X Y ?; set_solver. Qed.
666 667
  Global Instance collection_bind_proper {A B} :
    Proper (((=) ==> ()) ==> () ==> ()) (@mbind M _ A B).
668
  Proof. unfold respectful; intros f g Hfg X Y [??]; split; set_solver. Qed.
669 670
  Global Instance collection_join_mono {A} :
    Proper (() ==> ()) (@mjoin M _ A).
671
  Proof. intros X Y ?; set_solver. Qed.
672 673
  Global Instance collection_join_proper {A} :
    Proper (() ==> ()) (@mjoin M _ A).
674
  Proof. intros X Y [??]; split; set_solver. Qed.
675

676
  Lemma collection_bind_singleton {A B} (f : A  M B) x : {[ x ]} = f  f x.
677
  Proof. set_solver. Qed.
678
  Lemma collection_guard_True {A} `{Decision P} (X : M A) : P  guard P; X  X.
679
  Proof. set_solver. Qed.
680
  Lemma collection_fmap_compose {A B C} (f : A  B) (g : B  C) (X : M A) :
681
    g  f <$> X  g <$> (f <$> X).
682
  Proof. set_solver. Qed.
683 684
  Lemma elem_of_fmap_1 {A B} (f : A  B) (X : M A) (y : B) :
    y  f <$> X   x, y = f x  x  X.
685
  Proof. set_solver. Qed.
686 687
  Lemma elem_of_fmap_2 {A B} (f : A  B) (X : M A) (x : A) :
    x  X  f x  f <$> X.
688
  Proof. set_solver. Qed.
689 690
  Lemma elem_of_fmap_2_alt {A B} (f : A  B) (X : M A) (x : A) (y : B) :
    x  X  y = f x  y  f <$> X.
691
  Proof. set_solver. Qed.
692 693 694 695 696

  Lemma elem_of_mapM {A B} (f : A  M B) l k :
    l  mapM f k  Forall2 (λ x y, x  f y) l k.
  Proof.
    split.
697
    - revert l. induction k; set_solver by eauto.
698
    - induction 1; set_solver.
699
  Qed.
700
  Lemma collection_mapM_length {A B} (f : A  M B) l k :
701
    l  mapM f k  length l = length k.
702
  Proof. revert l; induction k; set_solver by eauto. Qed.
703
  Lemma elem_of_mapM_fmap {A B} (f : A  B) (g : B  M A) l k :
704
    Forall (λ x,  y, y  g x  f y = x) l  k  mapM g l  fmap f k = l.
705
  Proof. intros Hl. revert k. induction Hl; set_solver. Qed.
706
  Lemma elem_of_mapM_Forall {A B} (f : A  M B) (P : B  Prop) l k :
707
    l  mapM f k  Forall (λ x,  y, y  f x  P y) k  Forall P l.
Robbert Krebbers's avatar
Robbert Krebbers committed
708
  Proof. rewrite elem_of_mapM. apply Forall2_Forall_l. Qed.
709 710
  Lemma elem_of_mapM_Forall2_l {A B C} (f : A  M B) (P: B  C  Prop) l1 l2 k :
    l1  mapM f k  Forall2 (λ x y,  z, z  f x  P z y) k l2 
Robbert Krebbers's avatar
Robbert Krebbers committed
711 712 713 714 715
    Forall2 P l1 l2.
  Proof.
    rewrite elem_of_mapM. intros Hl1. revert l2.
    induction Hl1; inversion_clear 1; constructor; auto.
  Qed.
716
End collection_monad.
717 718 719 720 721 722

(** Finite collections *)
Definition set_finite `{ElemOf A B} (X : B) :=  l : list A,  x, x  X  x  l.

Section finite.
  Context `{SimpleCollection A B}.
723 724
  Global Instance set_finite_subseteq :
     Proper (flip () ==> impl) (@set_finite A B _).
725
  Proof. intros X Y HX [l Hl]; exists l; set_solver. Qed.
726 727
  Global Instance set_finite_proper : Proper (() ==> iff) (@set_finite A B _).
  Proof. by intros X Y [??]; split; apply set_finite_subseteq. Qed.
728 729 730
  Lemma empty_finite : set_finite .
  Proof. by exists []; intros ?; rewrite elem_of_empty. Qed.
  Lemma singleton_finite (x : A) : set_finite {[ x ]}.
Ralf Jung's avatar
Ralf Jung committed
731
  Proof. exists [x]; intros y ->%elem_of_singleton; left. Qed.
732 733 734 735 736 737
  Lemma union_finite X Y : set_finite X  set_finite Y  set_finite (X  Y).
  Proof.
    intros [lX ?] [lY ?]; exists (lX ++ lY); intros x.
    rewrite elem_of_union, elem_of_app; naive_solver.
  Qed.
  Lemma union_finite_inv_l X Y : set_finite (X  Y)  set_finite X.
738
  Proof. intros [l ?]; exists l; set_solver. Qed.
739
  Lemma union_finite_inv_r X Y : set_finite (X  Y)  set_finite Y.
740
  Proof. intros [l ?]; exists l; set_solver. Qed.
741 742 743 744 745
End finite.

Section more_finite.
  Context `{Collection A B}.
  Lemma intersection_finite_l X Y : set_finite X  set_finite (X  Y).
Ralf Jung's avatar
Ralf Jung committed
746
  Proof. intros [l ?]; exists l; intros x [??]%elem_of_intersection; auto. Qed.
747
  Lemma intersection_finite_r X Y : set_finite Y  set_finite (X  Y).
Ralf Jung's avatar
Ralf Jung committed
748
  Proof. intros [l ?]; exists l; intros x [??]%elem_of_intersection; auto. Qed.
749
  Lemma difference_finite X Y : set_finite X  set_finite (X  Y).
Ralf Jung's avatar
Ralf Jung committed
750
  Proof. intros [l ?]; exists l; intros x [??]%elem_of_difference; auto. Qed.
751 752 753 754
  Lemma difference_finite_inv X Y `{ x, Decision (x  Y)} :
    set_finite Y  set_finite (X  Y)  set_finite X.
  Proof.
    intros [l ?] [k ?]; exists (l ++ k).
755
    intros x ?; destruct (decide (x  Y)); rewrite elem_of_app; set_solver.
756
  Qed.
757
End more_finite.