fin_maps.v 64.6 KB
Newer Older
Robbert Krebbers's avatar
Robbert Krebbers committed
1
(* Copyright (c) 2012-2015, Robbert Krebbers. *)
2
3
4
(* This file is distributed under the terms of the BSD license. *)
(** Finite maps associate data to keys. This file defines an interface for
finite maps and collects some theory on it. Most importantly, it proves useful
5
6
induction principles for finite maps and implements the tactic
[simplify_map_equality] to simplify goals involving finite maps. *)
Robbert Krebbers's avatar
Robbert Krebbers committed
7
Require Import Permutation.
8
9
Require Export ars vector orders.

10
11
(** * Axiomatization of finite maps *)
(** We require Leibniz equality to be extensional on finite maps. This of
12
13
14
15
16
course limits the space of finite map implementations, but since we are mainly
interested in finite maps with numbers as indexes, we do not consider this to
be a serious limitation. The main application of finite maps is to implement
the memory, where extensionality of Leibniz equality is very important for a
convenient use in the assertions of our axiomatic semantics. *)
17

Robbert Krebbers's avatar
Robbert Krebbers committed
18
19
(** Finiteness is axiomatized by requiring that each map can be translated
to an association list. The translation to association lists is used to
20
prove well founded recursion on finite maps. *)
21

22
23
24
(** Finite map implementations are required to implement the [merge] function
which enables us to give a generic implementation of [union_with],
[intersection_with], and [difference_with]. *)
25

26
Class FinMapToList K A M := map_to_list: M  list (K * A).
Robbert Krebbers's avatar
Robbert Krebbers committed
27

28
29
30
Class FinMap K M `{FMap M,  A, Lookup K A (M A),  A, Empty (M A),  A,
    PartialAlter K A (M A), OMap M, Merge M,  A, FinMapToList K A (M A),
     i j : K, Decision (i = j)} := {
31
32
  map_eq {A} (m1 m2 : M A) : ( i, m1 !! i = m2 !! i)  m1 = m2;
  lookup_empty {A} i : ( : M A) !! i = None;
33
34
35
36
  lookup_partial_alter {A} f (m : M A) i :
    partial_alter f i m !! i = f (m !! i);
  lookup_partial_alter_ne {A} f (m : M A) i j :
    i  j  partial_alter f i m !! j = m !! j;
37
  lookup_fmap {A B} (f : A  B) (m : M A) i : (f <$> m) !! i = f <$> m !! i;
38
  NoDup_map_to_list {A} (m : M A) : NoDup (map_to_list m);
39
40
  elem_of_map_to_list {A} (m : M A) i x :
    (i,x)  map_to_list m  m !! i = Some x;
41
  lookup_omap {A B} (f : A  option B) m i : omap f m !! i = m !! i = f;
42
43
44
  lookup_merge {A B C} (f : option A  option B  option C)
      `{!PropHolds (f None None = None)} m1 m2 i :
    merge f m1 m2 !! i = f (m1 !! i) (m2 !! i)
Robbert Krebbers's avatar
Robbert Krebbers committed
45
46
}.

47
48
49
(** * Derived operations *)
(** All of the following functions are defined in a generic way for arbitrary
finite map implementations. These generic implementations do not cause a
50
51
significant performance loss to make including them in the finite map interface
worthwhile. *)
52
53
54
55
56
Instance map_insert `{PartialAlter K A M} : Insert K A M :=
  λ i x, partial_alter (λ _, Some x) i.
Instance map_alter `{PartialAlter K A M} : Alter K A M :=
  λ f, partial_alter (fmap f).
Instance map_delete `{PartialAlter K A M} : Delete K M :=
57
  partial_alter (λ _, None).
58
59
Instance map_singleton `{PartialAlter K A M, Empty M} :
  Singleton (K * A) M := λ p, <[p.1:=p.2]> .
Robbert Krebbers's avatar
Robbert Krebbers committed
60

61
Definition map_of_list `{Insert K A M, Empty M} : list (K * A)  M :=
62
  fold_right (λ p, <[p.1:=p.2]>) .
63
64
65
Definition map_of_collection `{Elements K C, Insert K A M, Empty M}
    (f : K  option A) (X : C) : M :=
  map_of_list (omap (λ i, (i,) <$> f i) (elements X)).
Robbert Krebbers's avatar
Robbert Krebbers committed
66

67
68
69
70
71
72
Instance map_union_with `{Merge M} {A} : UnionWith A (M A) :=
  λ f, merge (union_with f).
Instance map_intersection_with `{Merge M} {A} : IntersectionWith A (M A) :=
  λ f, merge (intersection_with f).
Instance map_difference_with `{Merge M} {A} : DifferenceWith A (M A) :=
  λ f, merge (difference_with f).
Robbert Krebbers's avatar
Robbert Krebbers committed
73

74
75
(** The relation [intersection_forall R] on finite maps describes that the
relation [R] holds for each pair in the intersection. *)
76
Definition map_Forall `{Lookup K A M} (P : K  A  Prop) : M  Prop :=
Robbert Krebbers's avatar
Robbert Krebbers committed
77
  λ m,  i x, m !! i = Some x  P i x.
78
79
80
81
82
83
84
85
86
Definition map_Forall2 `{ A, Lookup K A (M A)} {A B}
    (R : A  B  Prop) (P : A  Prop) (Q : B  Prop)
    (m1 : M A) (m2 : M B) : Prop :=  i,
  match m1 !! i, m2 !! i with
  | Some x, Some y => R x y
  | Some x, None => P x
  | None, Some y => Q y
  | None, None => True
  end.
87
88
Definition map_included `{ A, Lookup K A (M A)} {A}
  (R : relation A) : relation (M A) := map_Forall2 R (λ _, False) (λ _, True).
89
90
91
92
Instance map_disjoint `{ A, Lookup K A (M A)} {A} : Disjoint (M A) :=
  map_Forall2 (λ _ _, False) (λ _, True) (λ _, True).
Instance map_subseteq `{ A, Lookup K A (M A)} {A} : SubsetEq (M A) :=
  map_Forall2 (=) (λ _, False) (λ _, True).
Robbert Krebbers's avatar
Robbert Krebbers committed
93
94
95
96
97

(** The union of two finite maps only has a meaningful definition for maps
that are disjoint. However, as working with partial functions is inconvenient
in Coq, we define the union as a total function. In case both finite maps
have a value at the same index, we take the value of the first map. *)
98
Instance map_union `{Merge M} {A} : Union (M A) := union_with (λ x _, Some x).
99
100
101
Instance map_intersection `{Merge M} {A} : Intersection (M A) :=
  intersection_with (λ x _, Some x).

102
103
(** The difference operation removes all values from the first map whose
index contains a value in the second map as well. *)
104
Instance map_difference `{Merge M} {A} : Difference (M A) :=
105
  difference_with (λ _ _, None).
Robbert Krebbers's avatar
Robbert Krebbers committed
106

107
108
109
110
(** * Theorems *)
Section theorems.
Context `{FinMap K M}.

111
112
113
114
115
116
117
118
Lemma map_eq_iff {A} (m1 m2 : M A) : m1 = m2   i, m1 !! i = m2 !! i.
Proof. split. by intros ->. apply map_eq. Qed.
Lemma map_subseteq_spec {A} (m1 m2 : M A) :
  m1  m2   i x, m1 !! i = Some x  m2 !! i = Some x.
Proof.
  unfold subseteq, map_subseteq, map_Forall2. split; intros Hm i;
    specialize (Hm i); destruct (m1 !! i), (m2 !! i); naive_solver.
Qed.
119
Global Instance: EmptySpec (M A).
120
Proof.
121
122
  intros A m. rewrite !map_subseteq_spec.
  intros i x. by rewrite lookup_empty.
123
Qed.
124
125
126
127
128
129
Global Instance:  {A} (R : relation A), PreOrder R  PreOrder (map_included R).
Proof.
  split; [intros m i; by destruct (m !! i)|].
  intros m1 m2 m3 Hm12 Hm23 i; specialize (Hm12 i); specialize (Hm23 i).
  destruct (m1 !! i), (m2 !! i), (m3 !! i); try done; etransitivity; eauto.
Qed.
130
Global Instance: PartialOrder (() : relation (M A)).
131
Proof.
132
133
134
  split; [apply _|].
  intros m1 m2; rewrite !map_subseteq_spec.
  intros; apply map_eq; intros i; apply option_eq; naive_solver.
135
136
137
Qed.
Lemma lookup_weaken {A} (m1 m2 : M A) i x :
  m1 !! i = Some x  m1  m2  m2 !! i = Some x.
138
Proof. rewrite !map_subseteq_spec. auto. Qed.
139
140
141
142
143
144
Lemma lookup_weaken_is_Some {A} (m1 m2 : M A) i :
  is_Some (m1 !! i)  m1  m2  is_Some (m2 !! i).
Proof. inversion 1. eauto using lookup_weaken. Qed.
Lemma lookup_weaken_None {A} (m1 m2 : M A) i :
  m2 !! i = None  m1  m2  m1 !! i = None.
Proof.
145
146
  rewrite map_subseteq_spec, !eq_None_not_Some.
  intros Hm2 Hm [??]; destruct Hm2; eauto.
147
148
Qed.
Lemma lookup_weaken_inv {A} (m1 m2 : M A) i x y :
149
150
  m1 !! i = Some x  m1  m2  m2 !! i = Some y  x = y.
Proof. intros Hm1 ? Hm2. eapply lookup_weaken in Hm1; eauto. congruence. Qed.
151
152
153
154
155
156
157
158
159
Lemma lookup_ne {A} (m : M A) i j : m !! i  m !! j  i  j.
Proof. congruence. Qed.
Lemma map_empty {A} (m : M A) : ( i, m !! i = None)  m = .
Proof. intros Hm. apply map_eq. intros. by rewrite Hm, lookup_empty. Qed.
Lemma lookup_empty_is_Some {A} i : ¬is_Some (( : M A) !! i).
Proof. rewrite lookup_empty. by inversion 1. Qed.
Lemma lookup_empty_Some {A} i (x : A) : ¬ !! i = Some x.
Proof. by rewrite lookup_empty. Qed.
Lemma map_subset_empty {A} (m : M A) : m  .
160
161
162
Proof.
  intros [_ []]. rewrite map_subseteq_spec. intros ??. by rewrite lookup_empty.
Qed.
163
164

(** ** Properties of the [partial_alter] operation *)
165
166
167
Lemma partial_alter_ext {A} (f g : option A  option A) (m : M A) i :
  ( x, m !! i = x  f x = g x)  partial_alter f i m = partial_alter g i m.
Proof.
168
169
  intros. apply map_eq; intros j. by destruct (decide (i = j)) as [->|?];
    rewrite ?lookup_partial_alter, ?lookup_partial_alter_ne; auto.
170
171
Qed.
Lemma partial_alter_compose {A} f g (m : M A) i:
172
173
  partial_alter (f  g) i m = partial_alter f i (partial_alter g i m).
Proof.
174
175
  intros. apply map_eq. intros ii. by destruct (decide (i = ii)) as [->|?];
    rewrite ?lookup_partial_alter, ?lookup_partial_alter_ne.
176
Qed.
177
Lemma partial_alter_commute {A} f g (m : M A) i j :
178
  i  j  partial_alter f i (partial_alter g j m) =
179
180
    partial_alter g j (partial_alter f i m).
Proof.
181
182
183
184
185
186
187
  intros. apply map_eq; intros jj. destruct (decide (jj = j)) as [->|?].
  { by rewrite lookup_partial_alter_ne,
      !lookup_partial_alter, lookup_partial_alter_ne. }
  destruct (decide (jj = i)) as [->|?].
  * by rewrite lookup_partial_alter,
     !lookup_partial_alter_ne, lookup_partial_alter by congruence.
  * by rewrite !lookup_partial_alter_ne by congruence.
188
189
190
191
Qed.
Lemma partial_alter_self_alt {A} (m : M A) i x :
  x = m !! i  partial_alter (λ _, x) i m = m.
Proof.
192
193
  intros. apply map_eq. intros ii. by destruct (decide (i = ii)) as [->|];
    rewrite ?lookup_partial_alter, ?lookup_partial_alter_ne.
194
Qed.
195
Lemma partial_alter_self {A} (m : M A) i : partial_alter (λ _, m !! i) i m = m.
196
Proof. by apply partial_alter_self_alt. Qed.
197
Lemma partial_alter_subseteq {A} f (m : M A) i :
198
  m !! i = None  m  partial_alter f i m.
199
200
201
202
Proof.
  rewrite map_subseteq_spec. intros Hi j x Hj.
  rewrite lookup_partial_alter_ne; congruence.
Qed.
203
Lemma partial_alter_subset {A} f (m : M A) i :
204
  m !! i = None  is_Some (f (m !! i))  m  partial_alter f i m.
205
Proof.
206
207
208
209
  intros Hi Hfi. split; [by apply partial_alter_subseteq|].
  rewrite !map_subseteq_spec. inversion Hfi as [x Hx]. intros Hm.
  apply (Some_ne_None x). rewrite <-(Hm i x); [done|].
  by rewrite lookup_partial_alter.
210
211
212
Qed.

(** ** Properties of the [alter] operation *)
213
214
Lemma alter_ext {A} (f g : A  A) (m : M A) i :
  ( x, m !! i = Some x  f x = g x)  alter f i m = alter g i m.
215
Proof. intro. apply partial_alter_ext. intros [x|] ?; f_equal'; auto. Qed.
216
Lemma lookup_alter {A} (f : A  A) m i : alter f i m !! i = f <$> m !! i.
217
Proof. unfold alter. apply lookup_partial_alter. Qed.
218
Lemma lookup_alter_ne {A} (f : A  A) m i j : i  j  alter f i m !! j = m !! j.
219
Proof. unfold alter. apply lookup_partial_alter_ne. Qed.
220
221
222
223
224
225
226
227
228
Lemma alter_compose {A} (f g : A  A) (m : M A) i:
  alter (f  g) i m = alter f i (alter g i m).
Proof.
  unfold alter, map_alter. rewrite <-partial_alter_compose.
  apply partial_alter_ext. by intros [?|].
Qed.
Lemma alter_commute {A} (f g : A  A) (m : M A) i j :
  i  j  alter f i (alter g j m) = alter g j (alter f i m).
Proof. apply partial_alter_commute. Qed.
229
230
231
232
Lemma lookup_alter_Some {A} (f : A  A) m i j y :
  alter f i m !! j = Some y 
    (i = j   x, m !! j = Some x  y = f x)  (i  j  m !! j = Some y).
Proof.
233
  destruct (decide (i = j)) as [->|?].
234
235
236
237
238
239
  * rewrite lookup_alter. naive_solver (simplify_option_equality; eauto).
  * rewrite lookup_alter_ne by done. naive_solver.
Qed.
Lemma lookup_alter_None {A} (f : A  A) m i j :
  alter f i m !! j = None  m !! j = None.
Proof.
240
241
  by destruct (decide (i = j)) as [->|?];
    rewrite ?lookup_alter, ?fmap_None, ?lookup_alter_ne.
242
Qed.
243
Lemma alter_None {A} (f : A  A) m i : m !! i = None  alter f i m = m.
244
Proof.
245
246
  intros Hi. apply map_eq. intros j. by destruct (decide (i = j)) as [->|?];
    rewrite ?lookup_alter, ?Hi, ?lookup_alter_ne.
247
248
249
250
251
252
253
254
255
256
257
Qed.

(** ** Properties of the [delete] operation *)
Lemma lookup_delete {A} (m : M A) i : delete i m !! i = None.
Proof. apply lookup_partial_alter. Qed.
Lemma lookup_delete_ne {A} (m : M A) i j : i  j  delete i m !! j = m !! j.
Proof. apply lookup_partial_alter_ne. Qed.
Lemma lookup_delete_Some {A} (m : M A) i j y :
  delete i m !! j = Some y  i  j  m !! j = Some y.
Proof.
  split.
258
  * destruct (decide (i = j)) as [->|?];
259
260
261
262
263
264
      rewrite ?lookup_delete, ?lookup_delete_ne; intuition congruence.
  * intros [??]. by rewrite lookup_delete_ne.
Qed.
Lemma lookup_delete_None {A} (m : M A) i j :
  delete i m !! j = None  i = j  m !! j = None.
Proof.
265
266
  destruct (decide (i = j)) as [->|?];
    rewrite ?lookup_delete, ?lookup_delete_ne; tauto.
267
268
269
Qed.
Lemma delete_empty {A} i : delete i ( : M A) = .
Proof. rewrite <-(partial_alter_self ) at 2. by rewrite lookup_empty. Qed.
270
Lemma delete_singleton {A} i (x : A) : delete i {[i, x]} = .
271
272
273
274
275
276
277
Proof. setoid_rewrite <-partial_alter_compose. apply delete_empty. Qed.
Lemma delete_commute {A} (m : M A) i j :
  delete i (delete j m) = delete j (delete i m).
Proof. destruct (decide (i = j)). by subst. by apply partial_alter_commute. Qed.
Lemma delete_insert_ne {A} (m : M A) i j x :
  i  j  delete i (<[j:=x]>m) = <[j:=x]>(delete i m).
Proof. intro. by apply partial_alter_commute. Qed.
278
Lemma delete_notin {A} (m : M A) i : m !! i = None  delete i m = m.
279
Proof.
280
281
  intros. apply map_eq. intros j. by destruct (decide (i = j)) as [->|?];
    rewrite ?lookup_delete, ?lookup_delete_ne.
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
Qed.
Lemma delete_partial_alter {A} (m : M A) i f :
  m !! i = None  delete i (partial_alter f i m) = m.
Proof.
  intros. unfold delete, map_delete. rewrite <-partial_alter_compose.
  unfold compose. by apply partial_alter_self_alt.
Qed.
Lemma delete_insert {A} (m : M A) i x :
  m !! i = None  delete i (<[i:=x]>m) = m.
Proof. apply delete_partial_alter. Qed.
Lemma insert_delete {A} (m : M A) i x :
  m !! i = Some x  <[i:=x]>(delete i m) = m.
Proof.
  intros Hmi. unfold delete, map_delete, insert, map_insert.
  rewrite <-partial_alter_compose. unfold compose. rewrite <-Hmi.
  by apply partial_alter_self_alt.
Qed.
299
Lemma delete_subseteq {A} (m : M A) i : delete i m  m.
300
301
302
Proof.
  rewrite !map_subseteq_spec. intros j x. rewrite lookup_delete_Some. tauto.
Qed.
303
Lemma delete_subseteq_compat {A} (m1 m2 : M A) i :
304
  m1  m2  delete i m1  delete i m2.
305
306
307
308
Proof.
  rewrite !map_subseteq_spec. intros ? j x.
  rewrite !lookup_delete_Some. intuition eauto.
Qed.
309
Lemma delete_subset_alt {A} (m : M A) i x : m !! i = Some x  delete i m  m.
310
Proof.
311
312
313
  split; [apply delete_subseteq|].
  rewrite !map_subseteq_spec. intros Hi. apply (None_ne_Some x).
  by rewrite <-(lookup_delete m i), (Hi i x).
314
Qed.
315
Lemma delete_subset {A} (m : M A) i : is_Some (m !! i)  delete i m  m.
316
317
318
319
320
Proof. inversion 1. eauto using delete_subset_alt. Qed.

(** ** Properties of the [insert] operation *)
Lemma lookup_insert {A} (m : M A) i x : <[i:=x]>m !! i = Some x.
Proof. unfold insert. apply lookup_partial_alter. Qed.
321
Lemma lookup_insert_rev {A}  (m : M A) i x y : <[i:=x]>m !! i = Some y  x = y.
322
Proof. rewrite lookup_insert. congruence. Qed.
323
Lemma lookup_insert_ne {A} (m : M A) i j x : i  j  <[i:=x]>m !! j = m !! j.
324
325
326
327
328
329
330
331
Proof. unfold insert. apply lookup_partial_alter_ne. Qed.
Lemma insert_commute {A} (m : M A) i j x y :
  i  j  <[i:=x]>(<[j:=y]>m) = <[j:=y]>(<[i:=x]>m).
Proof. apply partial_alter_commute. Qed.
Lemma lookup_insert_Some {A} (m : M A) i j x y :
  <[i:=x]>m !! j = Some y  (i = j  x = y)  (i  j  m !! j = Some y).
Proof.
  split.
332
  * destruct (decide (i = j)) as [->|?];
333
      rewrite ?lookup_insert, ?lookup_insert_ne; intuition congruence.
334
  * intros [[-> ->]|[??]]; [apply lookup_insert|]. by rewrite lookup_insert_ne.
335
336
337
338
Qed.
Lemma lookup_insert_None {A} (m : M A) i j x :
  <[i:=x]>m !! j = None  m !! j = None  i  j.
Proof.
339
340
341
  split; [|by intros [??]; rewrite lookup_insert_ne].
  destruct (decide (i = j)) as [->|];
    rewrite ?lookup_insert, ?lookup_insert_ne; intuition congruence.
342
Qed.
343
344
345
346
347
348
349
350
351
352
353
354
Lemma insert_lookup {A} (m : M A) i x : m !! i = Some x  <[i:=x]>m = m.
Proof.
  intros; apply map_eq; intros j; destruct (decide (i = j)) as [->|];
    by rewrite ?lookup_insert, ?lookup_insert_ne by done.
Qed.
Lemma insert_included {A} R `{!Reflexive R} (m : M A) i x :
  ( y, m !! i = Some y  R y x)  map_included R m (<[i:=x]>m).
Proof.
  intros ? j; destruct (decide (i = j)) as [->|].
  * rewrite lookup_insert. destruct (m !! j); eauto.
  * rewrite lookup_insert_ne by done. by destruct (m !! j).
Qed.
355
Lemma insert_subseteq {A} (m : M A) i x : m !! i = None  m  <[i:=x]>m.
356
Proof. apply partial_alter_subseteq. Qed.
357
Lemma insert_subset {A} (m : M A) i x : m !! i = None  m  <[i:=x]>m.
358
359
Proof. intro. apply partial_alter_subset; eauto. Qed.
Lemma insert_subseteq_r {A} (m1 m2 : M A) i x :
360
  m1 !! i = None  m1  m2  m1  <[i:=x]>m2.
361
Proof.
362
363
364
  rewrite !map_subseteq_spec. intros ?? j ?.
  destruct (decide (j = i)) as [->|?]; [congruence|].
  rewrite lookup_insert_ne; auto.
365
366
Qed.
Lemma insert_delete_subseteq {A} (m1 m2 : M A) i x :
367
  m1 !! i = None  <[i:=x]> m1  m2  m1  delete i m2.
368
Proof.
369
370
371
372
  rewrite !map_subseteq_spec. intros Hi Hix j y Hj.
  destruct (decide (i = j)) as [->|]; [congruence|].
  rewrite lookup_delete_ne by done.
  apply Hix; by rewrite lookup_insert_ne by done.
373
374
Qed.
Lemma delete_insert_subseteq {A} (m1 m2 : M A) i x :
375
  m1 !! i = Some x  delete i m1  m2  m1  <[i:=x]> m2.
376
Proof.
377
378
  rewrite !map_subseteq_spec.
  intros Hix Hi j y Hj. destruct (decide (i = j)) as [->|?].
379
  * rewrite lookup_insert. congruence.
380
  * rewrite lookup_insert_ne by done. apply Hi. by rewrite lookup_delete_ne.
381
382
Qed.
Lemma insert_delete_subset {A} (m1 m2 : M A) i x :
383
  m1 !! i = None  <[i:=x]> m1  m2  m1  delete i m2.
384
Proof.
385
386
387
  intros ? [Hm12 Hm21]; split; [eauto using insert_delete_subseteq|].
  contradict Hm21. apply delete_insert_subseteq; auto.
  eapply lookup_weaken, Hm12. by rewrite lookup_insert.
388
389
Qed.
Lemma insert_subset_inv {A} (m1 m2 : M A) i x :
390
  m1 !! i = None  <[i:=x]> m1  m2 
391
392
393
   m2', m2 = <[i:=x]>m2'  m1  m2'  m2' !! i = None.
Proof.
  intros Hi Hm1m2. exists (delete i m2). split_ands.
394
  * rewrite insert_delete. done. eapply lookup_weaken, strict_include; eauto.
395
396
397
398
    by rewrite lookup_insert.
  * eauto using insert_delete_subset.
  * by rewrite lookup_delete.
Qed.
399
400
401
402
403
404
405
Lemma fmap_insert {A B} (f : A  B) (m : M A) i x :
  f <$> <[i:=x]>m = <[i:=f x]>(f <$> m).
Proof.
  apply map_eq; intros i'; destruct (decide (i' = i)) as [->|].
  * by rewrite lookup_fmap, !lookup_insert.
  * by rewrite lookup_fmap, !lookup_insert_ne, lookup_fmap by done.
Qed.
406
407
Lemma insert_empty {A} i (x : A) : <[i:=x]> = {[i,x]}.
Proof. done. Qed.
408
409
410

(** ** Properties of the singleton maps *)
Lemma lookup_singleton_Some {A} i j (x y : A) :
411
  {[i, x]} !! j = Some y  i = j  x = y.
412
413
Proof.
  unfold singleton, map_singleton.
414
  rewrite lookup_insert_Some, lookup_empty. simpl. intuition congruence.
415
Qed.
416
Lemma lookup_singleton_None {A} i j (x : A) : {[i, x]} !! j = None  i  j.
417
418
419
420
Proof.
  unfold singleton, map_singleton.
  rewrite lookup_insert_None, lookup_empty. simpl. tauto.
Qed.
421
Lemma lookup_singleton {A} i (x : A) : {[i, x]} !! i = Some x.
422
Proof. by rewrite lookup_singleton_Some. Qed.
423
Lemma lookup_singleton_ne {A} i j (x : A) : i  j  {[i, x]} !! j = None.
424
Proof. by rewrite lookup_singleton_None. Qed.
425
Lemma map_non_empty_singleton {A} i (x : A) : {[i,x]}  .
426
427
428
429
Proof.
  intros Hix. apply (f_equal (!! i)) in Hix.
  by rewrite lookup_empty, lookup_singleton in Hix.
Qed.
430
Lemma insert_singleton {A} i (x y : A) : <[i:=y]>{[i, x]} = {[i, y]}.
431
432
433
434
Proof.
  unfold singleton, map_singleton, insert, map_insert.
  by rewrite <-partial_alter_compose.
Qed.
435
Lemma alter_singleton {A} (f : A  A) i x : alter f i {[i,x]} = {[i, f x]}.
436
Proof.
437
  intros. apply map_eq. intros i'. destruct (decide (i = i')) as [->|?].
438
439
440
441
  * by rewrite lookup_alter, !lookup_singleton.
  * by rewrite lookup_alter_ne, !lookup_singleton_ne.
Qed.
Lemma alter_singleton_ne {A} (f : A  A) i j x :
442
  i  j  alter f i {[j,x]} = {[j,x]}.
443
Proof.
444
445
  intros. apply map_eq; intros i'. by destruct (decide (i = i')) as [->|?];
    rewrite ?lookup_alter, ?lookup_singleton_ne, ?lookup_alter_ne by done.
446
447
Qed.

448
449
450
451
452
453
(** ** Properties of the map operations *)
Lemma fmap_empty {A B} (f : A  B) : f <$>  = .
Proof. apply map_empty; intros i. by rewrite lookup_fmap, lookup_empty. Qed.
Lemma omap_empty {A B} (f : A  option B) : omap f  = .
Proof. apply map_empty; intros i. by rewrite lookup_omap, lookup_empty. Qed.

454
455
(** ** Properties of conversion to lists *)
Lemma map_to_list_unique {A} (m : M A) i x y :
456
  (i,x)  map_to_list m  (i,y)  map_to_list m  x = y.
457
Proof. rewrite !elem_of_map_to_list. congruence. Qed.
458
459
Lemma NoDup_fst_map_to_list {A} (m : M A) : NoDup (fst <$> map_to_list m).
Proof. eauto using NoDup_fmap_fst, map_to_list_unique, NoDup_map_to_list. Qed.
460
461
462
463
464
465
466
467
468
469
Lemma elem_of_map_of_list_1_help {A} (l : list (K * A)) i x :
  (i,x)  l  ( y, (i,y)  l  y = x)  map_of_list l !! i = Some x.
Proof.
  induction l as [|[j y] l IH]; csimpl; [by rewrite elem_of_nil|].
  setoid_rewrite elem_of_cons.
  intros [?|?] Hdup; simplify_equality; [by rewrite lookup_insert|].
  destruct (decide (i = j)) as [->|].
  * rewrite lookup_insert; f_equal; eauto.
  * rewrite lookup_insert_ne by done; eauto.
Qed.
470
Lemma elem_of_map_of_list_1 {A} (l : list (K * A)) i x :
471
  NoDup (fst <$> l)  (i,x)  l  map_of_list l !! i = Some x.
472
Proof.
473
474
475
476
  intros ? Hx; apply elem_of_map_of_list_1_help; eauto using NoDup_fmap_fst.
  intros y; revert Hx. rewrite !elem_of_list_lookup; intros [i' Hi'] [j' Hj'].
  cut (i' = j'); [naive_solver|]. apply NoDup_lookup with (fst <$> l) i;
    by rewrite ?list_lookup_fmap, ?Hi', ?Hj'.
477
478
Qed.
Lemma elem_of_map_of_list_2 {A} (l : list (K * A)) i x :
479
  map_of_list l !! i = Some x  (i,x)  l.
480
Proof.
481
482
483
  induction l as [|[j y] l IH]; simpl; [by rewrite lookup_empty|].
  rewrite elem_of_cons. destruct (decide (i = j)) as [->|];
    rewrite ?lookup_insert, ?lookup_insert_ne; intuition congruence.
484
485
Qed.
Lemma elem_of_map_of_list {A} (l : list (K * A)) i x :
486
487
  NoDup (fst <$> l)  (i,x)  l  map_of_list l !! i = Some x.
Proof. split; auto using elem_of_map_of_list_1, elem_of_map_of_list_2. Qed.
488
Lemma not_elem_of_map_of_list_1 {A} (l : list (K * A)) i :
489
  i  fst <$> l  map_of_list l !! i = None.
490
Proof.
491
492
  rewrite elem_of_list_fmap, eq_None_not_Some. intros Hi [x ?]; destruct Hi.
  exists (i,x); simpl; auto using elem_of_map_of_list_2.
493
494
Qed.
Lemma not_elem_of_map_of_list_2 {A} (l : list (K * A)) i :
495
  map_of_list l !! i = None  i  fst <$> l.
496
Proof.
497
  induction l as [|[j y] l IH]; csimpl; [rewrite elem_of_nil; tauto|].
498
499
500
501
502
503
  rewrite elem_of_cons. destruct (decide (i = j)); simplify_equality.
  * by rewrite lookup_insert.
  * by rewrite lookup_insert_ne; intuition.
Qed.
Lemma not_elem_of_map_of_list {A} (l : list (K * A)) i :
  i  fst <$> l  map_of_list l !! i = None.
504
Proof. red; auto using not_elem_of_map_of_list_1,not_elem_of_map_of_list_2. Qed.
505
Lemma map_of_list_proper {A} (l1 l2 : list (K * A)) :
506
  NoDup (fst <$> l1)  l1  l2  map_of_list l1 = map_of_list l2.
507
508
509
510
511
Proof.
  intros ? Hperm. apply map_eq. intros i. apply option_eq. intros x.
  by rewrite <-!elem_of_map_of_list; rewrite <-?Hperm.
Qed.
Lemma map_of_list_inj {A} (l1 l2 : list (K * A)) :
512
513
  NoDup (fst <$> l1)  NoDup (fst <$> l2) 
  map_of_list l1 = map_of_list l2  l1  l2.
514
Proof.
515
  intros ?? Hl1l2. apply NoDup_Permutation; auto using (NoDup_fmap_1 fst).
516
517
  intros [i x]. by rewrite !elem_of_map_of_list, Hl1l2.
Qed.
518
Lemma map_of_to_list {A} (m : M A) : map_of_list (map_to_list m) = m.
519
520
521
Proof.
  apply map_eq. intros i. apply option_eq. intros x.
  by rewrite <-elem_of_map_of_list, elem_of_map_to_list
522
    by auto using NoDup_fst_map_to_list.
523
524
Qed.
Lemma map_to_of_list {A} (l : list (K * A)) :
525
  NoDup (fst <$> l)  map_to_list (map_of_list l)  l.
526
Proof. auto using map_of_list_inj, NoDup_fst_map_to_list, map_of_to_list. Qed.
527
Lemma map_to_list_inj {A} (m1 m2 : M A) :
528
  map_to_list m1  map_to_list m2  m1 = m2.
529
Proof.
530
  intros. rewrite <-(map_of_to_list m1), <-(map_of_to_list m2).
531
  auto using map_of_list_proper, NoDup_fst_map_to_list.
532
Qed.
533
534
535
536
537
538
Lemma map_to_of_list_flip {A} (m1 : M A) l2 :
  map_to_list m1  l2  m1 = map_of_list l2.
Proof.
  intros. rewrite <-(map_of_to_list m1).
  auto using map_of_list_proper, NoDup_fst_map_to_list.
Qed.
539
Lemma map_to_list_empty {A} : map_to_list  = @nil (K * A).
540
541
542
543
544
Proof.
  apply elem_of_nil_inv. intros [i x].
  rewrite elem_of_map_to_list. apply lookup_empty_Some.
Qed.
Lemma map_to_list_insert {A} (m : M A) i x :
545
  m !! i = None  map_to_list (<[i:=x]>m)  (i,x) :: map_to_list m.
546
Proof.
547
  intros. apply map_of_list_inj; csimpl.
548
549
  * apply NoDup_fst_map_to_list.
  * constructor; auto using NoDup_fst_map_to_list.
550
    rewrite elem_of_list_fmap. intros [[??] [? Hlookup]]; subst; simpl in *.
551
552
553
    rewrite elem_of_map_to_list in Hlookup. congruence.
  * by rewrite !map_of_to_list.
Qed.
554
Lemma map_of_list_nil {A} : map_of_list (@nil (K * A)) = .
555
556
557
558
Proof. done. Qed.
Lemma map_of_list_cons {A} (l : list (K * A)) i x :
  map_of_list ((i, x) :: l) = <[i:=x]>(map_of_list l).
Proof. done. Qed.
559
Lemma map_to_list_empty_inv_alt {A}  (m : M A) : map_to_list m  []  m = .
560
Proof. rewrite <-map_to_list_empty. apply map_to_list_inj. Qed.
561
Lemma map_to_list_empty_inv {A} (m : M A) : map_to_list m = []  m = .
562
563
Proof. intros Hm. apply map_to_list_empty_inv_alt. by rewrite Hm. Qed.
Lemma map_to_list_insert_inv {A} (m : M A) l i x :
564
  map_to_list m  (i,x) :: l  m = <[i:=x]>(map_of_list l).
565
566
567
Proof.
  intros Hperm. apply map_to_list_inj.
  assert (NoDup (fst <$> (i, x) :: l)) as Hnodup.
568
  { rewrite <-Hperm. auto using NoDup_fst_map_to_list. }
569
  csimpl in *. rewrite NoDup_cons in Hnodup. destruct Hnodup.
570
571
572
  rewrite Hperm, map_to_list_insert, map_to_of_list;
    auto using not_elem_of_map_of_list_1.
Qed.
573
574
575
576
577
578
Lemma map_choose {A} (m : M A) : m     i x, m !! i = Some x.
Proof.
  intros Hemp. destruct (map_to_list m) as [|[i x] l] eqn:Hm.
  { destruct Hemp; eauto using map_to_list_empty_inv. }
  exists i x. rewrite <-elem_of_map_to_list, Hm. by left.
Qed.
579

580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
(** ** Properties of conversion from collections *)
Lemma lookup_map_of_collection {A} `{FinCollection K C}
    (f : K  option A) X i x :
  map_of_collection f X !! i = Some x  i  X  f i = Some x.
Proof.
  assert (NoDup (fst <$> omap (λ i, (i,) <$> f i) (elements X))).
  { induction (NoDup_elements X) as [|i' l]; csimpl; [constructor|].
    destruct (f i') as [x'|]; csimpl; auto; constructor; auto.
    rewrite elem_of_list_fmap. setoid_rewrite elem_of_list_omap.
    by intros (?&?&?&?&?); simplify_option_equality. }
  unfold map_of_collection; rewrite <-elem_of_map_of_list by done.
  rewrite elem_of_list_omap. setoid_rewrite elem_of_elements; split.
  * intros (?&?&?); simplify_option_equality; eauto.
  * intros [??]; exists i; simplify_option_equality; eauto.
Qed.

(** ** Induction principles *)
597
Lemma map_ind {A} (P : M A  Prop) :
598
  P   ( i x m, m !! i = None  P m  P (<[i:=x]>m))   m, P m.
599
Proof.
600
  intros ? Hins. cut ( l, NoDup (fst <$> l)   m, map_to_list m  l  P m).
601
  { intros help m.
602
    apply (help (map_to_list m)); auto using NoDup_fst_map_to_list. }
603
604
605
  induction l as [|[i x] l IH]; intros Hnodup m Hml.
  { apply map_to_list_empty_inv_alt in Hml. by subst. }
  inversion_clear Hnodup.
606
  apply map_to_list_insert_inv in Hml; subst m. apply Hins.
607
608
609
610
  * by apply not_elem_of_map_of_list_1.
  * apply IH; auto using map_to_of_list.
Qed.
Lemma map_to_list_length {A} (m1 m2 : M A) :
611
  m1  m2  length (map_to_list m1) < length (map_to_list m2).
612
613
614
615
Proof.
  revert m2. induction m1 as [|i x m ? IH] using map_ind.
  { intros m2 Hm2. rewrite map_to_list_empty. simpl.
    apply neq_0_lt. intros Hlen. symmetry in Hlen.
616
    apply nil_length_inv, map_to_list_empty_inv in Hlen.
617
618
619
620
621
    rewrite Hlen in Hm2. destruct (irreflexivity ()  Hm2). }
  intros m2 Hm2.
  destruct (insert_subset_inv m m2 i x) as (m2'&?&?&?); auto; subst.
  rewrite !map_to_list_insert; simpl; auto with arith.
Qed.
622
Lemma map_wf {A} : wf (strict (@subseteq (M A) _)).
623
624
625
626
627
628
Proof.
  apply (wf_projected (<) (length  map_to_list)).
  * by apply map_to_list_length.
  * by apply lt_wf.
Qed.

629
(** ** Properties of the [map_Forall] predicate *)
630
Section map_Forall.
631
632
Context {A} (P : K  A  Prop).

633
Lemma map_Forall_to_list m : map_Forall P m  Forall (curry P) (map_to_list m).
634
635
Proof.
  rewrite Forall_forall. split.
636
637
  * intros Hforall [i x]. rewrite elem_of_map_to_list. by apply (Hforall i x).
  * intros Hforall i x. rewrite <-elem_of_map_to_list. by apply (Hforall (i,x)).
638
Qed.
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
Lemma map_Forall_empty : map_Forall P .
Proof. intros i x. by rewrite lookup_empty. Qed.
Lemma map_Forall_impl (Q : K  A  Prop) m :
  map_Forall P m  ( i x, P i x  Q i x)  map_Forall Q m.
Proof. unfold map_Forall; naive_solver. Qed.
Lemma map_Forall_insert_11 m i x : map_Forall P (<[i:=x]>m)  P i x.
Proof. intros Hm. by apply Hm; rewrite lookup_insert. Qed.
Lemma map_Forall_insert_12 m i x :
  m !! i = None  map_Forall P (<[i:=x]>m)  map_Forall P m.
Proof.
  intros ? Hm j y ?; apply Hm. by rewrite lookup_insert_ne by congruence.
Qed.
Lemma map_Forall_insert_2 m i x :
  P i x  map_Forall P m  map_Forall P (<[i:=x]>m).
Proof. intros ?? j y; rewrite lookup_insert_Some; naive_solver. Qed.
Lemma map_Forall_insert m i x :
  m !! i = None  map_Forall P (<[i:=x]>m)  P i x  map_Forall P m.
Proof.
  naive_solver eauto using map_Forall_insert_11,
    map_Forall_insert_12, map_Forall_insert_2.
Qed.
Lemma map_Forall_ind (Q : M A  Prop) :
  Q  
  ( m i x, m !! i = None  P i x  map_Forall P m  Q m  Q (<[i:=x]>m)) 
   m, map_Forall P m  Q m.
Proof.
  intros Hnil Hinsert m. induction m using map_ind; auto.
  rewrite map_Forall_insert by done; intros [??]; eauto.
Qed.
668
669

Context `{ i x, Decision (P i x)}.
670
Global Instance map_Forall_dec m : Decision (map_Forall P m).
671
672
Proof.
  refine (cast_if (decide (Forall (curry P) (map_to_list m))));
673
    by rewrite map_Forall_to_list.
674
Defined.
675
676
Lemma map_not_Forall (m : M A) :
  ¬map_Forall P m   i x, m !! i = Some x  ¬P i x.
677
Proof.
678
679
680
681
  split; [|intros (i&x&?&?) Hm; specialize (Hm i x); tauto].
  rewrite map_Forall_to_list. intros Hm.
  apply (not_Forall_Exists _), Exists_exists in Hm.
  destruct Hm as ([i x]&?&?). exists i x. by rewrite <-elem_of_map_to_list.
682
Qed.
683
End map_Forall.
684
685
686
687

(** ** Properties of the [merge] operation *)
Section merge.
Context {A} (f : option A  option A  option A).
688
Context `{!PropHolds (f None None = None)}.
689
690
691
Global Instance: LeftId (=) None f  LeftId (=)  (merge f).
Proof.
  intros ??. apply map_eq. intros.
692
  by rewrite !(lookup_merge f), lookup_empty, (left_id_L None f).
693
694
695
696
Qed.
Global Instance: RightId (=) None f  RightId (=)  (merge f).
Proof.
  intros ??. apply map_eq. intros.
697
  by rewrite !(lookup_merge f), lookup_empty, (right_id_L None f).
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
Qed.
Lemma merge_commutative m1 m2 :
  ( i, f (m1 !! i) (m2 !! i) = f (m2 !! i) (m1 !! i)) 
  merge f m1 m2 = merge f m2 m1.
Proof. intros. apply map_eq. intros. by rewrite !(lookup_merge f). Qed.
Global Instance: Commutative (=) f  Commutative (=) (merge f).
Proof.
  intros ???. apply merge_commutative. intros. by apply (commutative f).
Qed.
Lemma merge_associative m1 m2 m3 :
  ( i, f (m1 !! i) (f (m2 !! i) (m3 !! i)) =
        f (f (m1 !! i) (m2 !! i)) (m3 !! i)) 
  merge f m1 (merge f m2 m3) = merge f (merge f m1 m2) m3.
Proof. intros. apply map_eq. intros. by rewrite !(lookup_merge f). Qed.
Global Instance: Associative (=) f  Associative (=) (merge f).
Proof.
714
  intros ????. apply merge_associative. intros. by apply (associative_L f).
715
716
Qed.
Lemma merge_idempotent m1 :
717
  ( i, f (m1 !! i) (m1 !! i) = m1 !! i)  merge f m1 m1 = m1.
718
719
Proof. intros. apply map_eq. intros. by rewrite !(lookup_merge f). Qed.
Global Instance: Idempotent (=) f  Idempotent (=) (merge f).
720
Proof. intros ??. apply merge_idempotent. intros. by apply (idempotent f). Qed.
721
End merge.
722

723
724
725
726
727
728
729
730
731
732
733
734
Section more_merge.
Context {A B C} (f : option A  option B  option C).
Context `{!PropHolds (f None None = None)}.
Lemma merge_Some m1 m2 m :
  ( i, m !! i = f (m1 !! i) (m2 !! i))  merge f m1 m2 = m.
Proof.
  split; [|intros <-; apply (lookup_merge _) ].
  intros Hlookup. apply map_eq; intros. rewrite Hlookup. apply (lookup_merge _).
Qed.
Lemma merge_empty : merge f   = .
Proof. apply map_eq. intros. by rewrite !(lookup_merge f), !lookup_empty. Qed.
Lemma partial_alter_merge g g1 g2 m1 m2 i :
735
736
737
738
739
740
741
742
  g (f (m1 !! i) (m2 !! i)) = f (g1 (m1 !! i)) (g2 (m2 !! i)) 
  partial_alter g i (merge f m1 m2) =
    merge f (partial_alter g1 i m1) (partial_alter g2 i m2).
Proof.
  intro. apply map_eq. intros j. destruct (decide (i = j)); subst.
  * by rewrite (lookup_merge _), !lookup_partial_alter, !(lookup_merge _).
  * by rewrite (lookup_merge _), !lookup_partial_alter_ne, (lookup_merge _).
Qed.
743
Lemma partial_alter_merge_l g g1 m1 m2 i :
744
745
746
747
748
749
750
  g (f (m1 !! i) (m2 !! i)) = f (g1 (m1 !! i)) (m2 !! i) 
  partial_alter g i (merge f m1 m2) = merge f (partial_alter g1 i m1) m2.
Proof.
  intro. apply map_eq. intros j. destruct (decide (i = j)); subst.
  * by rewrite (lookup_merge _), !lookup_partial_alter, !(lookup_merge _).
  * by rewrite (lookup_merge _), !lookup_partial_alter_ne, (lookup_merge _).
Qed.
751
Lemma partial_alter_merge_r g g2 m1 m2 i :
752
753
754
755
756
757
758
  g (f (m1 !! i) (m2 !! i)) = f (m1 !! i) (g2 (m2 !! i)) 
  partial_alter g i (merge f m1 m2) = merge f m1 (partial_alter g2 i m2).
Proof.
  intro. apply map_eq. intros j. destruct (decide (i = j)); subst.
  * by rewrite (lookup_merge _), !lookup_partial_alter, !(lookup_merge _).
  * by rewrite (lookup_merge _), !lookup_partial_alter_ne, (lookup_merge _).
Qed.
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
Lemma insert_merge m1 m2 i x y z :
  f (Some y) (Some z) = Some x 
  <[i:=x]>(merge f m1 m2) = merge f (<[i:=y]>m1) (<[i:=z]>m2).
Proof. by intros; apply partial_alter_merge. Qed.
Lemma merge_singleton i x y z :
  f (Some y) (Some z) = Some x  merge f {[i,y]} {[i,z]} = {[i,x]}.
Proof.
  intros. unfold singleton, map_singleton; simpl.
  by erewrite <-insert_merge, merge_empty by eauto.
Qed.
Lemma insert_merge_l m1 m2 i x y :
  f (Some y) (m2 !! i) = Some x 
  <[i:=x]>(merge f m1 m2) = merge f (<[i:=y]>m1) m2.
Proof. by intros; apply partial_alter_merge_l. Qed.
Lemma insert_merge_r m1 m2 i x z :
  f (m1 !! i) (Some z) = Some x 
  <[i:=x]>(merge f m1 m2) = merge f m1 (<[i:=z]>m2).
Proof. by intros; apply partial_alter_merge_r. Qed.
End more_merge.
778

779
780
781
782
783
784
785
786
787
788
789
790
791
(** ** Properties on the [map_Forall2] relation *)
Section Forall2.
Context {A B} (R : A  B  Prop) (P : A  Prop) (Q : B  Prop).
Context `{ x y, Decision (R x y),  x, Decision (P x),  y, Decision (Q y)}.

Let f (mx : option A) (my : option B) : option bool :=
  match mx, my with
  | Some x, Some y => Some (bool_decide (R x y))
  | Some x, None => Some (bool_decide (P x))
  | None, Some y => Some (bool_decide (Q y))
  | None, None => None
  end.
Lemma map_Forall2_alt (m1 : M A) (m2 : M B) :
792