fin_maps.v 92.5 KB
Newer Older
1
(* Copyright (c) 2012-2019, Coq-std++ developers. *)
2
3
4
(* This file is distributed under the terms of the BSD license. *)
(** Finite maps associate data to keys. This file defines an interface for
finite maps and collects some theory on it. Most importantly, it proves useful
5
induction principles for finite maps and implements the tactic
6
[simplify_map_eq] to simplify goals involving finite maps. *)
7
From Coq Require Import Permutation.
8
From stdpp Require Export relations orders vector fin_sets.
9
10
(* FIXME: This file needs a 'Proof Using' hint, but the default we use
   everywhere makes for lots of extra ssumptions. *)
11

12
13
(** * Axiomatization of finite maps *)
(** We require Leibniz equality to be extensional on finite maps. This of
14
15
16
17
18
course limits the space of finite map implementations, but since we are mainly
interested in finite maps with numbers as indexes, we do not consider this to
be a serious limitation. The main application of finite maps is to implement
the memory, where extensionality of Leibniz equality is very important for a
convenient use in the assertions of our axiomatic semantics. *)
19

Robbert Krebbers's avatar
Robbert Krebbers committed
20
21
(** Finiteness is axiomatized by requiring that each map can be translated
to an association list. The translation to association lists is used to
22
prove well founded recursion on finite maps. *)
23

24
25
26
(** Finite map implementations are required to implement the [merge] function
which enables us to give a generic implementation of [union_with],
[intersection_with], and [difference_with]. *)
27

28
Class FinMapToList K A M := map_to_list: M  list (K * A).
29
30
Hint Mode FinMapToList ! - - : typeclass_instances.
Hint Mode FinMapToList - - ! : typeclass_instances.
Robbert Krebbers's avatar
Robbert Krebbers committed
31

32
33
Class FinMap K M `{FMap M,  A, Lookup K A (M A),  A, Empty (M A),  A,
    PartialAlter K A (M A), OMap M, Merge M,  A, FinMapToList K A (M A),
34
    EqDecision K} := {
35
36
  map_eq {A} (m1 m2 : M A) : ( i, m1 !! i = m2 !! i)  m1 = m2;
  lookup_empty {A} i : ( : M A) !! i = None;
37
38
39
40
  lookup_partial_alter {A} f (m : M A) i :
    partial_alter f i m !! i = f (m !! i);
  lookup_partial_alter_ne {A} f (m : M A) i j :
    i  j  partial_alter f i m !! j = m !! j;
41
  lookup_fmap {A B} (f : A  B) (m : M A) i : (f <$> m) !! i = f <$> m !! i;
42
  NoDup_map_to_list {A} (m : M A) : NoDup (map_to_list m);
43
44
  elem_of_map_to_list {A} (m : M A) i x :
    (i,x)  map_to_list m  m !! i = Some x;
45
  lookup_omap {A B} (f : A  option B) m i : omap f m !! i = m !! i = f;
46
  lookup_merge {A B C} (f: option A  option B  option C) `{!DiagNone f} m1 m2 i :
47
    merge f m1 m2 !! i = f (m1 !! i) (m2 !! i)
Robbert Krebbers's avatar
Robbert Krebbers committed
48
49
}.

50
51
52
(** * Derived operations *)
(** All of the following functions are defined in a generic way for arbitrary
finite map implementations. These generic implementations do not cause a
53
54
significant performance loss, which justifies including them in the finite map
interface as primitive operations. *)
55
56
57
58
59
60
61
62
63
Instance map_insert `{PartialAlter K A M} : Insert K A M :=
  λ i x, partial_alter (λ _, Some x) i.
Instance map_alter `{PartialAlter K A M} : Alter K A M :=
  λ f, partial_alter (fmap f).
Instance map_delete `{PartialAlter K A M} : Delete K M :=
  partial_alter (λ _, None).
Instance map_singleton `{PartialAlter K A M, Empty M} :
  SingletonM K A M := λ i x, <[i:=x]> .

64
Definition list_to_map `{Insert K A M, Empty M} : list (K * A)  M :=
65
  fold_right (λ p, <[p.1:=p.2]>) .
66

67
68
Instance map_size `{FinMapToList K A M} : Size M := λ m, length (map_to_list m).

69
Definition map_to_set `{FinMapToList K A M,
70
    Singleton B C, Empty C, Union C} (f : K  A  B) (m : M) : C :=
71
72
  list_to_set (curry f <$> map_to_list m).
Definition set_to_map `{Elements B C, Insert K A M, Empty M}
73
    (f : B  K * A) (X : C) : M :=
74
  list_to_map (f <$> elements X).
Robbert Krebbers's avatar
Robbert Krebbers committed
75

76
77
78
79
80
81
Instance map_union_with `{Merge M} {A} : UnionWith A (M A) :=
  λ f, merge (union_with f).
Instance map_intersection_with `{Merge M} {A} : IntersectionWith A (M A) :=
  λ f, merge (intersection_with f).
Instance map_difference_with `{Merge M} {A} : DifferenceWith A (M A) :=
  λ f, merge (difference_with f).
Robbert Krebbers's avatar
Robbert Krebbers committed
82

83
84
85
(** Higher precedence to make sure it's not used for other types with a [Lookup]
instance, such as lists. *)
Instance map_equiv `{ A, Lookup K A (M A), Equiv A} : Equiv (M A) | 20 :=
86
  λ m1 m2,  i, m1 !! i  m2 !! i.
Robbert Krebbers's avatar
Robbert Krebbers committed
87

88
89
(** The relation [intersection_forall R] on finite maps describes that the
relation [R] holds for each pair in the intersection. *)
90
Definition map_Forall `{Lookup K A M} (P : K  A  Prop) : M  Prop :=
Robbert Krebbers's avatar
Robbert Krebbers committed
91
  λ m,  i x, m !! i = Some x  P i x.
92
Definition map_relation `{ A, Lookup K A (M A)} {A B} (R : A  B  Prop)
Robbert Krebbers's avatar
Robbert Krebbers committed
93
94
    (P : A  Prop) (Q : B  Prop) (m1 : M A) (m2 : M B) : Prop :=  i,
  option_relation R P Q (m1 !! i) (m2 !! i).
95
Definition map_included `{ A, Lookup K A (M A)} {A}
Robbert Krebbers's avatar
Robbert Krebbers committed
96
  (R : relation A) : relation (M A) := map_relation R (λ _, False) (λ _, True).
97
Definition map_disjoint `{ A, Lookup K A (M A)} {A} : relation (M A) :=
Robbert Krebbers's avatar
Robbert Krebbers committed
98
  map_relation (λ _ _, False) (λ _, True) (λ _, True).
99
Infix "##ₘ" := map_disjoint (at level 70) : stdpp_scope.
Tej Chajed's avatar
Tej Chajed committed
100
Hint Extern 0 (_ ## _) => symmetry; eassumption : core.
101
102
Notation "( m ##ₘ.)" := (map_disjoint m) (only parsing) : stdpp_scope.
Notation "(.##ₘ m )" := (λ m2, m2 ## m) (only parsing) : stdpp_scope.
103
Instance map_subseteq `{ A, Lookup K A (M A)} {A} : SubsetEq (M A) :=
Robbert Krebbers's avatar
Robbert Krebbers committed
104
  map_included (=).
Robbert Krebbers's avatar
Robbert Krebbers committed
105
106
107
108
109

(** The union of two finite maps only has a meaningful definition for maps
that are disjoint. However, as working with partial functions is inconvenient
in Coq, we define the union as a total function. In case both finite maps
have a value at the same index, we take the value of the first map. *)
110
Instance map_union `{Merge M} {A} : Union (M A) := union_with (λ x _, Some x).
111
112
113
Instance map_intersection `{Merge M} {A} : Intersection (M A) :=
  intersection_with (λ x _, Some x).

114
115
(** The difference operation removes all values from the first map whose
index contains a value in the second map as well. *)
116
Instance map_difference `{Merge M} {A} : Difference (M A) :=
117
  difference_with (λ _ _, None).
Robbert Krebbers's avatar
Robbert Krebbers committed
118

119
120
(** A stronger variant of map that allows the mapped function to use the index
of the elements. Implemented by conversion to lists, so not very efficient. *)
121
122
Definition map_imap `{ A, Insert K A (M A),  A, Empty (M A),
     A, FinMapToList K A (M A)} {A B} (f : K  A  option B) (m : M A) : M B :=
123
  list_to_map (omap (λ ix, (fst ix,) <$> curry f ix) (map_to_list m)).
124

125
126
127
128
129
130
131
(* The zip operation on maps combines two maps key-wise. The keys of resulting
map correspond to the keys that are in both maps. *)
Definition map_zip_with `{Merge M} {A B C} (f : A  B  C) : M A  M B  M C :=
  merge (λ mx my,
    match mx, my with Some x, Some y => Some (f x y) | _, _ => None end).
Notation map_zip := (map_zip_with pair).

132
133
134
135
136
(* Folds a function [f] over a map. The order in which the function is called
is unspecified. *)
Definition map_fold `{FinMapToList K A M} {B}
  (f : K  A  B  B) (b : B) : M  B := foldr (curry f) b  map_to_list.

137
Instance map_filter `{FinMapToList K A M, Insert K A M, Empty M} : Filter (K * A) M :=
138
139
  λ P _, map_fold (λ k v m, if decide (P (k,v)) then <[k := v]>m else m) .

140
141
142
143
144
145
Fixpoint map_seq `{Insert nat A M, Empty M} (start : nat) (xs : list A) : M :=
  match xs with
  | [] => 
  | x :: xs => <[start:=x]> (map_seq (S start) xs)
  end.

146
147
148
149
(** * Theorems *)
Section theorems.
Context `{FinMap K M}.

Robbert Krebbers's avatar
Robbert Krebbers committed
150
151
(** ** Setoids *)
Section setoid.
152
  Context `{Equiv A}.
153

154
155
156
157
  Lemma map_equiv_lookup_l (m1 m2 : M A) i x :
    m1  m2  m1 !! i = Some x   y, m2 !! i = Some y  x  y.
  Proof. generalize (equiv_Some_inv_l (m1 !! i) (m2 !! i) x); naive_solver. Qed.

158
  Global Instance map_equivalence : Equivalence (@{A})  Equivalence (@{M A}).
Robbert Krebbers's avatar
Robbert Krebbers committed
159
160
  Proof.
    split.
161
162
    - by intros m i.
    - by intros m1 m2 ? i.
163
    - by intros m1 m2 m3 ?? i; trans (m2 !! i).
Robbert Krebbers's avatar
Robbert Krebbers committed
164
  Qed.
165
  Global Instance lookup_proper (i : K) : Proper ((@{M A}) ==> ()) (lookup i).
Robbert Krebbers's avatar
Robbert Krebbers committed
166
167
  Proof. by intros m1 m2 Hm. Qed.
  Global Instance partial_alter_proper :
168
    Proper ((() ==> ()) ==> (=) ==> () ==> (@{M A})) partial_alter.
Robbert Krebbers's avatar
Robbert Krebbers committed
169
170
171
172
173
174
  Proof.
    by intros f1 f2 Hf i ? <- m1 m2 Hm j; destruct (decide (i = j)) as [->|];
      rewrite ?lookup_partial_alter, ?lookup_partial_alter_ne by done;
      try apply Hf; apply lookup_proper.
  Qed.
  Global Instance insert_proper (i : K) :
175
    Proper (() ==> () ==> (@{M A})) (insert i).
Robbert Krebbers's avatar
Robbert Krebbers committed
176
  Proof. by intros ???; apply partial_alter_proper; [constructor|]. Qed.
177
  Global Instance singleton_proper k : Proper (() ==> (@{M A})) (singletonM k).
178
179
180
181
  Proof.
    intros ???; apply insert_proper; [done|].
    intros ?. rewrite lookup_empty; constructor.
  Qed.
182
  Global Instance delete_proper (i : K) : Proper (() ==> (@{M A})) (delete i).
Robbert Krebbers's avatar
Robbert Krebbers committed
183
184
  Proof. by apply partial_alter_proper; [constructor|]. Qed.
  Global Instance alter_proper :
185
    Proper ((() ==> ()) ==> (=) ==> () ==> (@{M A})) alter.
Robbert Krebbers's avatar
Robbert Krebbers committed
186
187
188
189
  Proof.
    intros ?? Hf; apply partial_alter_proper.
    by destruct 1; constructor; apply Hf.
  Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
190
191
  Lemma merge_ext `{Equiv B, Equiv C} (f g : option A  option B  option C)
      `{!DiagNone f, !DiagNone g} :
Robbert Krebbers's avatar
Robbert Krebbers committed
192
    (() ==> () ==> ())%signature f g 
193
    (() ==> () ==> (@{M _}))%signature (merge f) (merge g).
Robbert Krebbers's avatar
Robbert Krebbers committed
194
195
196
197
  Proof.
    by intros Hf ?? Hm1 ?? Hm2 i; rewrite !lookup_merge by done; apply Hf.
  Qed.
  Global Instance union_with_proper :
198
    Proper ((() ==> () ==> ()) ==> () ==> () ==>(@{M A})) union_with.
Robbert Krebbers's avatar
Robbert Krebbers committed
199
200
201
  Proof.
    intros ?? Hf ?? Hm1 ?? Hm2 i; apply (merge_ext _ _); auto.
    by do 2 destruct 1; first [apply Hf | constructor].
202
  Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
203
  Global Instance map_leibniz `{!LeibnizEquiv A} : LeibnizEquiv (M A).
204
  Proof. intros m1 m2 Hm; apply map_eq; intros i. apply leibniz_equiv, Hm. Qed.
205
206
  Lemma map_equiv_empty (m : M A) : m    m = .
  Proof.
207
208
209
    split; [intros Hm; apply map_eq; intros i|intros ->].
    - generalize (Hm i). by rewrite lookup_empty, equiv_None.
    - intros ?. rewrite lookup_empty; constructor.
210
  Qed.
211
  Global Instance map_fmap_proper `{Equiv B} (f : A  B) :
212
    Proper (() ==> ()) f  Proper (() ==> (@{M _})) (fmap f).
213
214
215
  Proof.
    intros ? m m' ? k; rewrite !lookup_fmap. by apply option_fmap_proper.
  Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
216
217
218
End setoid.

(** ** General properties *)
219
220
221
222
223
Lemma map_eq_iff {A} (m1 m2 : M A) : m1 = m2   i, m1 !! i = m2 !! i.
Proof. split. by intros ->. apply map_eq. Qed.
Lemma map_subseteq_spec {A} (m1 m2 : M A) :
  m1  m2   i x, m1 !! i = Some x  m2 !! i = Some x.
Proof.
Robbert Krebbers's avatar
Robbert Krebbers committed
224
  unfold subseteq, map_subseteq, map_relation. split; intros Hm i;
225
226
    specialize (Hm i); destruct (m1 !! i), (m2 !! i); naive_solver.
Qed.
227
Global Instance map_included_preorder {A} (R : relation A) :
228
  PreOrder R  PreOrder (map_included R : relation (M A)).
229
Proof.
Robbert Krebbers's avatar
Robbert Krebbers committed
230
  split; [intros m i; by destruct (m !! i); simpl|].
231
  intros m1 m2 m3 Hm12 Hm23 i; specialize (Hm12 i); specialize (Hm23 i).
232
  destruct (m1 !! i), (m2 !! i), (m3 !! i); simplify_eq/=;
233
    done || etrans; eauto.
234
Qed.
235
Global Instance map_subseteq_po : PartialOrder (@{M A}).
236
Proof.
237
238
239
  split; [apply _|].
  intros m1 m2; rewrite !map_subseteq_spec.
  intros; apply map_eq; intros i; apply option_eq; naive_solver.
240
241
242
Qed.
Lemma lookup_weaken {A} (m1 m2 : M A) i x :
  m1 !! i = Some x  m1  m2  m2 !! i = Some x.
243
Proof. rewrite !map_subseteq_spec. auto. Qed.
244
245
246
247
248
249
Lemma lookup_weaken_is_Some {A} (m1 m2 : M A) i :
  is_Some (m1 !! i)  m1  m2  is_Some (m2 !! i).
Proof. inversion 1. eauto using lookup_weaken. Qed.
Lemma lookup_weaken_None {A} (m1 m2 : M A) i :
  m2 !! i = None  m1  m2  m1 !! i = None.
Proof.
250
251
  rewrite map_subseteq_spec, !eq_None_not_Some.
  intros Hm2 Hm [??]; destruct Hm2; eauto.
252
253
Qed.
Lemma lookup_weaken_inv {A} (m1 m2 : M A) i x y :
254
255
  m1 !! i = Some x  m1  m2  m2 !! i = Some y  x = y.
Proof. intros Hm1 ? Hm2. eapply lookup_weaken in Hm1; eauto. congruence. Qed.
256
257
258
259
260
261
Lemma lookup_ne {A} (m : M A) i j : m !! i  m !! j  i  j.
Proof. congruence. Qed.
Lemma map_empty {A} (m : M A) : ( i, m !! i = None)  m = .
Proof. intros Hm. apply map_eq. intros. by rewrite Hm, lookup_empty. Qed.
Lemma lookup_empty_is_Some {A} i : ¬is_Some (( : M A) !! i).
Proof. rewrite lookup_empty. by inversion 1. Qed.
262
Lemma lookup_empty_Some {A} i (x : A) : ¬( : M A) !! i = Some x.
263
264
Proof. by rewrite lookup_empty. Qed.
Lemma map_subset_empty {A} (m : M A) : m  .
265
266
267
Proof.
  intros [_ []]. rewrite map_subseteq_spec. intros ??. by rewrite lookup_empty.
Qed.
268
269
Lemma map_fmap_empty {A B} (f : A  B) : f <$> ( : M A) = .
Proof. by apply map_eq; intros i; rewrite lookup_fmap, !lookup_empty. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
270
271
272
273
274
Lemma map_fmap_empty_inv {A B} (f : A  B) m : f <$> m =   m = .
Proof.
  intros Hm. apply map_eq; intros i. generalize (f_equal (lookup i) Hm).
  by rewrite lookup_fmap, !lookup_empty, fmap_None.
Qed.
275

276
277
278
279
280
Lemma map_subset_alt {A} (m1 m2 : M A) :
  m1  m2  m1  m2   i, m1 !! i = None  is_Some (m2 !! i).
Proof.
  rewrite strict_spec_alt. split.
  - intros [? Heq]; split; [done|].
Robbert Krebbers's avatar
Robbert Krebbers committed
281
    destruct (decide (Exists (λ ix, m1 !! ix.1 = None) (map_to_list m2)))
282
283
284
285
286
287
288
289
290
291
      as [[[i x] [?%elem_of_map_to_list ?]]%Exists_exists
         |Hm%(not_Exists_Forall _)]; [eauto|].
    destruct Heq; apply (anti_symm _), map_subseteq_spec; [done|intros i x Hi].
    assert (is_Some (m1 !! i)) as [x' ?].
    { by apply not_eq_None_Some,
        (proj1 (Forall_forall _ _) Hm (i,x)), elem_of_map_to_list. }
    by rewrite <-(lookup_weaken_inv m1 m2 i x' x).
  - intros [? (i&?&x&?)]; split; [done|]. congruence.
Qed.

292
(** ** Properties of the [partial_alter] operation *)
293
294
295
Lemma partial_alter_ext {A} (f g : option A  option A) (m : M A) i :
  ( x, m !! i = x  f x = g x)  partial_alter f i m = partial_alter g i m.
Proof.
296
297
  intros. apply map_eq; intros j. by destruct (decide (i = j)) as [->|?];
    rewrite ?lookup_partial_alter, ?lookup_partial_alter_ne; auto.
298
299
Qed.
Lemma partial_alter_compose {A} f g (m : M A) i:
300
301
  partial_alter (f  g) i m = partial_alter f i (partial_alter g i m).
Proof.
302
303
  intros. apply map_eq. intros ii. by destruct (decide (i = ii)) as [->|?];
    rewrite ?lookup_partial_alter, ?lookup_partial_alter_ne.
304
Qed.
305
Lemma partial_alter_commute {A} f g (m : M A) i j :
306
  i  j  partial_alter f i (partial_alter g j m) =
307
308
    partial_alter g j (partial_alter f i m).
Proof.
309
310
311
312
  intros. apply map_eq; intros jj. destruct (decide (jj = j)) as [->|?].
  { by rewrite lookup_partial_alter_ne,
      !lookup_partial_alter, lookup_partial_alter_ne. }
  destruct (decide (jj = i)) as [->|?].
313
  - by rewrite lookup_partial_alter,
314
     !lookup_partial_alter_ne, lookup_partial_alter by congruence.
315
  - by rewrite !lookup_partial_alter_ne by congruence.
316
317
318
319
Qed.
Lemma partial_alter_self_alt {A} (m : M A) i x :
  x = m !! i  partial_alter (λ _, x) i m = m.
Proof.
320
321
  intros. apply map_eq. intros ii. by destruct (decide (i = ii)) as [->|];
    rewrite ?lookup_partial_alter, ?lookup_partial_alter_ne.
322
Qed.
323
Lemma partial_alter_self {A} (m : M A) i : partial_alter (λ _, m !! i) i m = m.
324
Proof. by apply partial_alter_self_alt. Qed.
325
Lemma partial_alter_subseteq {A} f (m : M A) i :
326
  m !! i = None  m  partial_alter f i m.
327
328
329
330
Proof.
  rewrite map_subseteq_spec. intros Hi j x Hj.
  rewrite lookup_partial_alter_ne; congruence.
Qed.
331
Lemma partial_alter_subset {A} f (m : M A) i :
332
  m !! i = None  is_Some (f (m !! i))  m  partial_alter f i m.
333
Proof.
334
335
  intros Hi Hfi. apply map_subset_alt; split; [by apply partial_alter_subseteq|].
  exists i. by rewrite lookup_partial_alter.
336
337
338
Qed.

(** ** Properties of the [alter] operation *)
339
Lemma lookup_alter {A} (f : A  A) (m : M A) i : alter f i m !! i = f <$> m !! i.
340
Proof. unfold alter. apply lookup_partial_alter. Qed.
341
342
Lemma lookup_alter_ne {A} (f : A  A) (m : M A) i j :
  i  j  alter f i m !! j = m !! j.
343
Proof. unfold alter. apply lookup_partial_alter_ne. Qed.
344
345
346
Lemma alter_ext {A} (f g : A  A) (m : M A) i :
  ( x, m !! i = Some x  f x = g x)  alter f i m = alter g i m.
Proof. intro. apply partial_alter_ext. intros [x|] ?; f_equal/=; auto. Qed.
347
348
349
350
351
352
353
354
355
Lemma alter_compose {A} (f g : A  A) (m : M A) i:
  alter (f  g) i m = alter f i (alter g i m).
Proof.
  unfold alter, map_alter. rewrite <-partial_alter_compose.
  apply partial_alter_ext. by intros [?|].
Qed.
Lemma alter_commute {A} (f g : A  A) (m : M A) i j :
  i  j  alter f i (alter g j m) = alter g j (alter f i m).
Proof. apply partial_alter_commute. Qed.
356
Lemma lookup_alter_Some {A} (f : A  A) (m : M A) i j y :
357
358
359
  alter f i m !! j = Some y 
    (i = j   x, m !! j = Some x  y = f x)  (i  j  m !! j = Some y).
Proof.
360
  destruct (decide (i = j)) as [->|?].
361
  - rewrite lookup_alter. naive_solver (simplify_option_eq; eauto).
362
  - rewrite lookup_alter_ne by done. naive_solver.
363
Qed.
364
Lemma lookup_alter_None {A} (f : A  A) (m : M A) i j :
365
366
  alter f i m !! j = None  m !! j = None.
Proof.
367
368
  by destruct (decide (i = j)) as [->|?];
    rewrite ?lookup_alter, ?fmap_None, ?lookup_alter_ne.
369
Qed.
370
Lemma lookup_alter_is_Some {A} (f : A  A) (m : M A) i j :
371
372
  is_Some (alter f i m !! j)  is_Some (m !! j).
Proof. by rewrite <-!not_eq_None_Some, lookup_alter_None. Qed.
373
Lemma alter_id {A} (f : A  A) (m : M A) i :
Robbert Krebbers's avatar
Robbert Krebbers committed
374
  ( x, m !! i = Some x  f x = x)  alter f i m = m.
375
Proof.
Robbert Krebbers's avatar
Robbert Krebbers committed
376
  intros Hi; apply map_eq; intros j; destruct (decide (i = j)) as [->|?].
377
  { rewrite lookup_alter; destruct (m !! j); f_equal/=; auto. }
Robbert Krebbers's avatar
Robbert Krebbers committed
378
  by rewrite lookup_alter_ne by done.
379
Qed.
380
381
382
383
384
385
386
387
388
389
390
391
Lemma alter_mono {A} f (m1 m2 : M A) i : m1  m2  alter f i m1  alter f i m2.
Proof.
  rewrite !map_subseteq_spec. intros ? j x.
  rewrite !lookup_alter_Some. naive_solver.
Qed.
Lemma alter_strict_mono {A} f (m1 m2 : M A) i :
  m1  m2  alter f i m1  alter f i m2.
Proof.
  rewrite !map_subset_alt.
  intros [? (j&?&?)]; split; auto using alter_mono.
  exists j. by rewrite lookup_alter_None, lookup_alter_is_Some.
Qed.
392
393
394
395
396
397
398
399
400
401

(** ** Properties of the [delete] operation *)
Lemma lookup_delete {A} (m : M A) i : delete i m !! i = None.
Proof. apply lookup_partial_alter. Qed.
Lemma lookup_delete_ne {A} (m : M A) i j : i  j  delete i m !! j = m !! j.
Proof. apply lookup_partial_alter_ne. Qed.
Lemma lookup_delete_Some {A} (m : M A) i j y :
  delete i m !! j = Some y  i  j  m !! j = Some y.
Proof.
  split.
402
  - destruct (decide (i = j)) as [->|?];
403
      rewrite ?lookup_delete, ?lookup_delete_ne; intuition congruence.
404
  - intros [??]. by rewrite lookup_delete_ne.
405
Qed.
406
407
408
Lemma lookup_delete_is_Some {A} (m : M A) i j :
  is_Some (delete i m !! j)  i  j  is_Some (m !! j).
Proof. unfold is_Some; setoid_rewrite lookup_delete_Some; naive_solver. Qed.
409
410
411
Lemma lookup_delete_None {A} (m : M A) i j :
  delete i m !! j = None  i = j  m !! j = None.
Proof.
412
413
  destruct (decide (i = j)) as [->|?];
    rewrite ?lookup_delete, ?lookup_delete_ne; tauto.
414
415
416
417
418
419
420
421
422
Qed.
Lemma delete_empty {A} i : delete i ( : M A) = .
Proof. rewrite <-(partial_alter_self ) at 2. by rewrite lookup_empty. Qed.
Lemma delete_commute {A} (m : M A) i j :
  delete i (delete j m) = delete j (delete i m).
Proof. destruct (decide (i = j)). by subst. by apply partial_alter_commute. Qed.
Lemma delete_insert_ne {A} (m : M A) i j x :
  i  j  delete i (<[j:=x]>m) = <[j:=x]>(delete i m).
Proof. intro. by apply partial_alter_commute. Qed.
423
Lemma delete_notin {A} (m : M A) i : m !! i = None  delete i m = m.
424
Proof.
425
426
  intros. apply map_eq. intros j. by destruct (decide (i = j)) as [->|?];
    rewrite ?lookup_delete, ?lookup_delete_ne.
427
Qed.
428
429
430
Lemma delete_idemp {A} (m : M A) i :
  delete i (delete i m) = delete i m.
Proof. by setoid_rewrite <-partial_alter_compose. Qed.
431
432
433
434
435
436
437
438
439
Lemma delete_partial_alter {A} (m : M A) i f :
  m !! i = None  delete i (partial_alter f i m) = m.
Proof.
  intros. unfold delete, map_delete. rewrite <-partial_alter_compose.
  unfold compose. by apply partial_alter_self_alt.
Qed.
Lemma delete_insert {A} (m : M A) i x :
  m !! i = None  delete i (<[i:=x]>m) = m.
Proof. apply delete_partial_alter. Qed.
440
441
442
Lemma delete_insert_delete {A} (m : M A) i x :
  delete i (<[i:=x]>m) = delete i m.
Proof. by setoid_rewrite <-partial_alter_compose. Qed.
443
444
Lemma insert_delete {A} (m : M A) i x : <[i:=x]>(delete i m) = <[i:=x]> m.
Proof. symmetry; apply (partial_alter_compose (λ _, Some x)). Qed.
445
Lemma delete_subseteq {A} (m : M A) i : delete i m  m.
446
447
448
Proof.
  rewrite !map_subseteq_spec. intros j x. rewrite lookup_delete_Some. tauto.
Qed.
449
Lemma delete_subset {A} (m : M A) i : is_Some (m !! i)  delete i m  m.
450
Proof.
451
452
  intros [x ?]; apply map_subset_alt; split; [apply delete_subseteq|].
  exists i. rewrite lookup_delete; eauto.
453
Qed.
454
Lemma delete_mono {A} (m1 m2 : M A) i : m1  m2  delete i m1  delete i m2.
455
Proof.
456
457
  rewrite !map_subseteq_spec. intros ? j x.
  rewrite !lookup_delete_Some. intuition eauto.
458
459
460
461
462
Qed.

(** ** Properties of the [insert] operation *)
Lemma lookup_insert {A} (m : M A) i x : <[i:=x]>m !! i = Some x.
Proof. unfold insert. apply lookup_partial_alter. Qed.
463
Lemma lookup_insert_rev {A}  (m : M A) i x y : <[i:=x]>m !! i = Some y  x = y.
464
Proof. rewrite lookup_insert. congruence. Qed.
465
Lemma lookup_insert_ne {A} (m : M A) i j x : i  j  <[i:=x]>m !! j = m !! j.
466
Proof. unfold insert. apply lookup_partial_alter_ne. Qed.
467
468
Lemma insert_insert {A} (m : M A) i x y : <[i:=x]>(<[i:=y]>m) = <[i:=x]>m.
Proof. unfold insert, map_insert. by rewrite <-partial_alter_compose. Qed.
469
470
471
472
473
474
475
Lemma insert_commute {A} (m : M A) i j x y :
  i  j  <[i:=x]>(<[j:=y]>m) = <[j:=y]>(<[i:=x]>m).
Proof. apply partial_alter_commute. Qed.
Lemma lookup_insert_Some {A} (m : M A) i j x y :
  <[i:=x]>m !! j = Some y  (i = j  x = y)  (i  j  m !! j = Some y).
Proof.
  split.
476
  - destruct (decide (i = j)) as [->|?];
477
      rewrite ?lookup_insert, ?lookup_insert_ne; intuition congruence.
478
  - intros [[-> ->]|[??]]; [apply lookup_insert|]. by rewrite lookup_insert_ne.
479
Qed.
480
481
482
Lemma lookup_insert_is_Some {A} (m : M A) i j x :
  is_Some (<[i:=x]>m !! j)  i = j  i  j  is_Some (m !! j).
Proof. unfold is_Some; setoid_rewrite lookup_insert_Some; naive_solver. Qed.
483
484
485
Lemma lookup_insert_is_Some' {A} (m : M A) i j x :
  is_Some (<[i:=x]>m !! j)  i = j  is_Some (m !! j).
Proof. rewrite lookup_insert_is_Some. destruct (decide (i=j)); naive_solver. Qed.
486
487
488
Lemma lookup_insert_None {A} (m : M A) i j x :
  <[i:=x]>m !! j = None  m !! j = None  i  j.
Proof.
489
490
491
  split; [|by intros [??]; rewrite lookup_insert_ne].
  destruct (decide (i = j)) as [->|];
    rewrite ?lookup_insert, ?lookup_insert_ne; intuition congruence.
492
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
493
Lemma insert_id {A} (m : M A) i x : m !! i = Some x  <[i:=x]>m = m.
494
495
496
497
498
499
500
501
Proof.
  intros; apply map_eq; intros j; destruct (decide (i = j)) as [->|];
    by rewrite ?lookup_insert, ?lookup_insert_ne by done.
Qed.
Lemma insert_included {A} R `{!Reflexive R} (m : M A) i x :
  ( y, m !! i = Some y  R y x)  map_included R m (<[i:=x]>m).
Proof.
  intros ? j; destruct (decide (i = j)) as [->|].
502
503
  - rewrite lookup_insert. destruct (m !! j); simpl; eauto.
  - rewrite lookup_insert_ne by done. by destruct (m !! j); simpl.
504
Qed.
505
Lemma insert_empty {A} i (x : A) : <[i:=x]>( : M A) = {[i := x]}.
506
507
508
509
510
511
Proof. done. Qed.
Lemma insert_non_empty {A} (m : M A) i x : <[i:=x]>m  .
Proof.
  intros Hi%(f_equal (!! i)). by rewrite lookup_insert, lookup_empty in Hi.
Qed.

512
Lemma insert_subseteq {A} (m : M A) i x : m !! i = None  m  <[i:=x]>m.
513
Proof. apply partial_alter_subseteq. Qed.
514
Lemma insert_subset {A} (m : M A) i x : m !! i = None  m  <[i:=x]>m.
515
Proof. intro. apply partial_alter_subset; eauto. Qed.
516
517
518
519
520
Lemma insert_mono {A} (m1 m2 : M A) i x : m1  m2  <[i:=x]> m1  <[i:=x]>m2.
Proof.
  rewrite !map_subseteq_spec.
  intros Hm j y. rewrite !lookup_insert_Some. naive_solver.
Qed.
521
Lemma insert_subseteq_r {A} (m1 m2 : M A) i x :
522
  m1 !! i = None  m1  m2  m1  <[i:=x]>m2.
523
Proof.
524
  intros. trans (<[i:=x]> m1); eauto using insert_subseteq, insert_mono.
525
Qed.
526

527
Lemma insert_delete_subseteq {A} (m1 m2 : M A) i x :
528
  m1 !! i = None  <[i:=x]> m1  m2  m1  delete i m2.
529
Proof.
530
531
532
533
  rewrite !map_subseteq_spec. intros Hi Hix j y Hj.
  destruct (decide (i = j)) as [->|]; [congruence|].
  rewrite lookup_delete_ne by done.
  apply Hix; by rewrite lookup_insert_ne by done.
534
535
Qed.
Lemma delete_insert_subseteq {A} (m1 m2 : M A) i x :
536
  m1 !! i = Some x  delete i m1  m2  m1  <[i:=x]> m2.
537
Proof.
538
539
  rewrite !map_subseteq_spec.
  intros Hix Hi j y Hj. destruct (decide (i = j)) as [->|?].
540
541
  - rewrite lookup_insert. congruence.
  - rewrite lookup_insert_ne by done. apply Hi. by rewrite lookup_delete_ne.
542
543
Qed.
Lemma insert_delete_subset {A} (m1 m2 : M A) i x :
544
  m1 !! i = None  <[i:=x]> m1  m2  m1  delete i m2.
545
Proof.
546
547
548
  intros ? [Hm12 Hm21]; split; [eauto using insert_delete_subseteq|].
  contradict Hm21. apply delete_insert_subseteq; auto.
  eapply lookup_weaken, Hm12. by rewrite lookup_insert.
549
550
Qed.
Lemma insert_subset_inv {A} (m1 m2 : M A) i x :
551
  m1 !! i = None  <[i:=x]> m1  m2 
552
553
   m2', m2 = <[i:=x]>m2'  m1  m2'  m2' !! i = None.
Proof.
554
  intros Hi Hm1m2. exists (delete i m2). split_and?.
555
556
  - rewrite insert_delete, insert_id. done.
    eapply lookup_weaken, strict_include; eauto. by rewrite lookup_insert.
557
558
  - eauto using insert_delete_subset.
  - by rewrite lookup_delete.
559
560
561
562
Qed.

(** ** Properties of the singleton maps *)
Lemma lookup_singleton_Some {A} i j (x y : A) :
563
  ({[i := x]} : M A) !! j = Some y  i = j  x = y.
564
Proof.
565
  rewrite <-insert_empty,lookup_insert_Some, lookup_empty; intuition congruence.
566
Qed.
567
568
Lemma lookup_singleton_None {A} i j (x : A) :
  ({[i := x]} : M A) !! j = None  i  j.
569
Proof. rewrite <-insert_empty,lookup_insert_None, lookup_empty; tauto. Qed.
570
Lemma lookup_singleton {A} i (x : A) : ({[i := x]} : M A) !! i = Some x.
571
Proof. by rewrite lookup_singleton_Some. Qed.
572
573
Lemma lookup_singleton_ne {A} i j (x : A) :
  i  j  ({[i := x]} : M A) !! j = None.
574
Proof. by rewrite lookup_singleton_None. Qed.
575
Lemma map_non_empty_singleton {A} i (x : A) : {[i := x]}  ( : M A).
576
577
578
579
Proof.
  intros Hix. apply (f_equal (!! i)) in Hix.
  by rewrite lookup_empty, lookup_singleton in Hix.
Qed.
580
Lemma insert_singleton {A} i (x y : A) : <[i:=y]>({[i := x]} : M A) = {[i := y]}.
581
Proof.
582
  unfold singletonM, map_singleton, insert, map_insert.
583
584
  by rewrite <-partial_alter_compose.
Qed.
585
586
Lemma alter_singleton {A} (f : A  A) i x :
  alter f i ({[i := x]} : M A) = {[i := f x]}.
587
Proof.
588
  intros. apply map_eq. intros i'. destruct (decide (i = i')) as [->|?].
589
590
  - by rewrite lookup_alter, !lookup_singleton.
  - by rewrite lookup_alter_ne, !lookup_singleton_ne.
591
592
Qed.
Lemma alter_singleton_ne {A} (f : A  A) i j x :
593
  i  j  alter f i ({[j := x]} : M A) = {[j := x]}.
594
Proof.
595
596
  intros. apply map_eq; intros i'. by destruct (decide (i = i')) as [->|?];
    rewrite ?lookup_alter, ?lookup_singleton_ne, ?lookup_alter_ne by done.
597
Qed.
598
Lemma singleton_non_empty {A} i (x : A) : {[i:=x]}  ( : M A).
599
Proof. apply insert_non_empty. Qed.
600
Lemma delete_singleton {A} i (x : A) : delete i {[i := x]} = ( : M A).
601
Proof. setoid_rewrite <-partial_alter_compose. apply delete_empty. Qed.
602
Lemma delete_singleton_ne {A} i j (x : A) :
603
  i  j  delete i ({[j := x]} : M A) = {[j := x]}.
604
Proof. intro. apply delete_notin. by apply lookup_singleton_ne. Qed.
605

606
607
608
609
610
(** ** Properties of the map operations *)
Lemma fmap_empty {A B} (f : A  B) : f <$>  = .
Proof. apply map_empty; intros i. by rewrite lookup_fmap, lookup_empty. Qed.
Lemma omap_empty {A B} (f : A  option B) : omap f  = .
Proof. apply map_empty; intros i. by rewrite lookup_omap, lookup_empty. Qed.
611
612
613
Lemma fmap_insert {A B} (f: A  B) m i x: f <$> <[i:=x]>m = <[i:=f x]>(f <$> m).
Proof.
  apply map_eq; intros i'; destruct (decide (i' = i)) as [->|].
614
615
  - by rewrite lookup_fmap, !lookup_insert.
  - by rewrite lookup_fmap, !lookup_insert_ne, lookup_fmap by done.
616
Qed.
617
618
619
620
621
622
Lemma fmap_delete {A B} (f: A  B) m i: f <$> delete i m = delete i (f <$> m).
Proof.
  apply map_eq; intros i'; destruct (decide (i' = i)) as [->|].
  - by rewrite lookup_fmap, !lookup_delete.
  - by rewrite lookup_fmap, !lookup_delete_ne, lookup_fmap by done.
Qed.
623
624
625
626
Lemma omap_insert {A B} (f : A  option B) m i x y :
  f x = Some y  omap f (<[i:=x]>m) = <[i:=y]>(omap f m).
Proof.
  intros; apply map_eq; intros i'; destruct (decide (i' = i)) as [->|].
627
628
  - by rewrite lookup_omap, !lookup_insert.
  - by rewrite lookup_omap, !lookup_insert_ne, lookup_omap by done.
629
Qed.
630
Lemma map_fmap_singleton {A B} (f : A  B) i x : f <$> {[i := x]} = {[i := f x]}.
631
632
633
Proof.
  by unfold singletonM, map_singleton; rewrite fmap_insert, map_fmap_empty.
Qed.
634
Lemma omap_singleton {A B} (f : A  option B) i x y :
635
  f x = Some y  omap f {[ i := x ]} = {[ i := y ]}.
636
Proof.
637
638
  intros. unfold singletonM, map_singleton.
  by erewrite omap_insert, omap_empty by eauto.
639
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
640
641
642
Lemma map_fmap_id {A} (m : M A) : id <$> m = m.
Proof. apply map_eq; intros i; by rewrite lookup_fmap, option_fmap_id. Qed.
Lemma map_fmap_compose {A B C} (f : A  B) (g : B  C) (m : M A) :
643
  g  f <$> m = g <$> (f <$> m).
Robbert Krebbers's avatar
Robbert Krebbers committed
644
Proof. apply map_eq; intros i; by rewrite !lookup_fmap,option_fmap_compose. Qed.
645
Lemma map_fmap_equiv_ext `{Equiv A, Equiv B} (f1 f2 : A  B) (m : M A) :
646
647
648
649
650
  ( i x, m !! i = Some x  f1 x  f2 x)  f1 <$> m  f2 <$> m.
Proof.
  intros Hi i; rewrite !lookup_fmap.
  destruct (m !! i) eqn:?; constructor; eauto.
Qed.
651
Lemma map_fmap_ext {A B} (f1 f2 : A  B) (m : M A) :
Robbert Krebbers's avatar
Robbert Krebbers committed
652
653
654
655
656
  ( i x, m !! i = Some x  f1 x = f2 x)  f1 <$> m = f2 <$> m.
Proof.
  intros Hi; apply map_eq; intros i; rewrite !lookup_fmap.
  by destruct (m !! i) eqn:?; simpl; erewrite ?Hi by eauto.
Qed.
657
Lemma omap_ext {A B} (f1 f2 : A  option B) (m : M A) :
Robbert Krebbers's avatar
Robbert Krebbers committed
658
659
660
661
662
  ( i x, m !! i = Some x  f1 x = f2 x)  omap f1 m = omap f2 m.
Proof.
  intros Hi; apply map_eq; intros i; rewrite !lookup_omap.
  by destruct (m !! i) eqn:?; simpl; erewrite ?Hi by eauto.
Qed.
663

664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
Lemma map_fmap_mono {A B} (f : A  B) (m1 m2 : M A) :
  m1  m2  f <$> m1  f <$> m2.
Proof.
  rewrite !map_subseteq_spec; intros Hm i x.
  rewrite !lookup_fmap, !fmap_Some. naive_solver.
Qed.
Lemma map_fmap_strict_mono {A B} (f : A  B) (m1 m2 : M A) :
  m1  m2  f <$> m1  f <$> m2.
Proof.
  rewrite !map_subset_alt.
  intros [? (j&?&?)]; split; auto using map_fmap_mono.
  exists j. by rewrite !lookup_fmap, fmap_None, fmap_is_Some.
Qed.
Lemma map_omap_mono {A B} (f : A  option B) (m1 m2 : M A) :
  m1  m2  omap f m1  omap f m2.
Proof.
  rewrite !map_subseteq_spec; intros Hm i x.
  rewrite !lookup_omap, !bind_Some. naive_solver.
Qed.

684
(** ** Properties of conversion to lists *)
685
686
687
Lemma elem_of_map_to_list' {A} (m : M A) ix :
  ix  map_to_list m  m !! ix.1 = Some (ix.2).
Proof